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Abstract

This paper uses combinatorial group theory to help answer some long-
standing questions about the genera of orientable surfaces that carry partic-
ular kinds of regular maps. By classifying all orientably-regular maps whose
automorphism group has order coprime to g − 1, where g is the genus, all
orientably-regular maps of genus p + 1 for p prime are determined. As a conse-
quence, it is shown that orientable surfaces of infinitely many genera carry no
regular map that is chiral (irreflexible), and that orientable surfaces of infinitely
many genera carry no reflexible regular map with simple underlying graph. An-
other consequence is a simpler proof of the Breda-Nedela-Širáň classification of
non-orientable regular maps of Euler characteristic −p where p is prime.

2000 Mathematics Subject Classification: 05C25, 57M15

∗Research supported in part by the N.Z. Marsden Fund, Grants UOA 316 and UOA 412
†Research supported in part by the N.Z. Marsden Fund, Grant UOA 316

1



1 Introduction

Regular maps are generalizations of the platonic solids (viewed as tessellations of the
sphere) to surfaces of higher genus. Their formal study was initiated by Brahana [5]
in the 1920s and continued by Coxeter (see [10]) and others decades later. Regular
maps on the sphere and the torus and other orientable surfaces of small genus are
now quite well understood, but until recently, the situation for surfaces of higher
genus has been something of a mystery. In particular, some long-standing questions
have remained open, about the genera of orientable surfaces carrying a regular map
having no multiple edges, or a regular map that is chiral (admitting no reflectional
symmetry). This paper takes a significant step towards answering these questions.

Here, a map M is an embedding of a connected graph or multigraph into a closed
surface, such that each component (or face) of the complement is simply connected.
The genus and the Euler characteristic of the map M are defined as the genus and
the Euler characteristic of the supporting surface. The topological dual of M (which
is denoted by M∗) is obtained from M by interchanging the roles of vertices and faces
in the usual way.

An automorphism of a map M is any permutation of the edges of the underlying
(multi)graph that preserves the embedding, or equivalently, any automorphism of the
(multi)graph induced by a homeomorphism of the supporting surface. By connected-
ness, any automorphism is uniquely determined by its effect on any flag (which is an
incident vertex-edge pair (v, e) taken together with a chosen side along the edge e).
The automorphism group of M is denoted by Aut(M). If the surface is orientable,
then the subgroup of Aut(M) of all orientation-preserving automorphisms is denoted
Auto(M), and this has index at most 2 in Aut(M); if M admits an orientation-
reversing automorphism (so that Auto(M) has index 2 in Aut(M)), then M is said to
be reflexible, and otherwise M is chiral . If the surface is non-orientable, then there
is no such distinction.

An orientable map M is called regular (or orientably-regular , or sometimes rotary)
if G = Auto(M) acts regularly on the set of oriented edges (or arcs) of M . The
platonic solids give the most famous examples. If each face has size k and each vertex
has valence m, then the map M is said to have type {k,m}, and M is regular if and
only if there is a k-fold rotation X about the centre of a face f and an m-fold rotation
Y about an incident vertex v, with product XY an involutory rotation around the
midpoint of an edge e incident with v and f . By connectedness, X and Y generate
G = Auto(M), which is therefore a quotient of the ordinary (k,m, 2) triangle group
∆o(k,m, 2) = 〈x, y, z | xk = ym = z2 = xyz = 1 〉 (under an epimorphism taking x to
X and y to Y ). The dual M∗ is also regular, with the roles of X and Y interchanged,
and the map M (or its dual M∗) is reflexible if and only if the group G = Auto(M)
admits an automorphism of order 2 taking X to X−1 and Y to Y −1, or equivalently
(following conjugation by X), an automorphism of order 2 taking X to X−1 and XY
to Y −1X−1 = (XY )−1 = XY .

Conversely, given any epimorphism θ from ∆o(k,m, 2) to a finite group G with
torsion-free kernel, a map M can be constructed using (right) cosets of the images
of 〈x〉, 〈y〉 and 〈z〉 as vertices, faces and edges, with incidence given by non-empty
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intersection, and then G acts regularly on the ordered edges of M by (right) multi-
plication. From this point of view the study of regular maps is simply the study of
smooth quotients of triangle groups — with ‘smooth’ here meaning that the orders
of the generators x, y and z are preserved.

Deep connections exist between maps and other branches of mathematics, how-
ever, which go far beyond group theory, and include hyperbolic geometry, Riemann
surfaces and, rather surprisingly, number fields and Galois theory. A brief summary
can be given as follows. If 1/k + 1/m < 1/2, then the (k,m, 2)-triangle group acts as
a group of hyperbolic isometries preserving an infinite tessellation of the hyperbolic
plane consisting of congruent k-gons, with m of them meeting at each vertex. Factor-
ing out by any torsion-free normal subgroup of finite index yields (as quotient space)
a regular map of type {k, m} on some compact, orientable surface, endowed with
hyperbolic geometry and complex structure from the Poincaré metric on the complex
upper half-plane (on which the triangle group acts). If the normality condition is
dropped, one still obtains maps (not necessarily regular) on compact surfaces. Maps
can thus be viewed as complex algebraic curves; moreover, by substantial results in
algebraic varieties, the curves can be taken to be defined over algebraic number fields.

This connection has opened up the possibility of studying the absolute Galois
group by its action on maps defined in terms of the natural action of the group on
coefficients of the defining polynomial of the corresponding Riemann surface over
an algebraic number field, as suggested in Grothendieck’s programme [11]. Further
details about these and other exciting connections can be found in excellent survey
papers by Jones [14] and Jones and Singerman [15].

By a celebrated theorem of Hurwitz, for any g ≥ 2 the order of a finite group acting
as a group of conformal automorphisms of the Riemann surface of genus g is bounded
above by 84(g − 1). A classical problem here is classification of the largest possible
group of automorphisms for any given genus g ≥ 2. As was shown by Accola [1], this
problem reduces to a large extent, for infinitely many genera, to the classification of
all regular maps on a surface of given genus. For example, the case where g = p + 1
for some prime p and the group has order greater than 6(g − 1) has been dealt with
by Belolipetsky and Jones [3], and involves three families of chiral maps (which will
reappear in Section 3 of this paper).

It is well known that for every g > 0 there exists a reflexible regular map of type
{4g, 4g} on an orientable surface of genus g (with dihedral automorphism group). It
follows that there are no ‘gaps’ in the genus spectrum of orientable surfaces carrying
reflexible regular maps. On the other hand, the underlying graphs for these maps are
highly degenerate, being bouquets of 2g loops based at a single vertex.

There is no analogous family for non-orientable surfaces. Indeed, it has been
known for some time that there are gaps in the the genus spectrum of non-orientable
regular maps, at least for small genera (see [19], for example). This has led to a
fundamental question about whether or not there exist infinitely many gaps in the
genus spectrum of non-orientable regular maps. A similar question has been raised
about the genus spectrum of orientably-regular but chiral maps.

On the positive side, the connection between regular maps and smooth quotients
of triangle groups has been exploited on occasion to construct various infinite families
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of regular maps, with the aim of filling possible gaps. For example, this approach was
taken by Conder and Everitt [8] to prove that non-orientable surfaces of more than 75
per cent of all genera carry some regular map. The same kind of approach, sometimes
with the help of group-theoretic procedures now available in systems like Magma [4],
has been taken successfully to determine all regular maps of various small genera,
including all orientably-regular maps of genus 2 to 15; see [7] and references therein.

Until very recently, however, there has been no significant classification of regular
maps by supporting surface for an infinite family of genera. A major breakthrough
was achieved in a classification by Breda D’Azevedo, Nedela and Širáň [2] of regular
maps on non-orientable surfaces of Euler characteristic −p, for p an odd prime. One
consequence of this classification is that there are no such maps for p ≡ 1 modulo
12, thereby exhibiting infinitely many gaps in the genus spectrum of non-orientable
regular maps. This has been taken further by Conder, Potočnik and Siráň [9], in
showing that there are no regular maps of Euler characteristic −p2 for any prime
p > 7.

Last year, Conder extended the computer-assisted search for all regular maps of
small Euler characteristic, using a new version of an algorithm for finding all normal
subgroups of up to a given index in a finitely-presented group; see [6]. The resulting
lists of all regular maps of characteristic 1 to 100 reveal patterns in the genus spectrum
of various kinds of regular maps never seen before, and these have led us to the main
observations that we prove in this paper.

As in [2], if one attempts to classify regular maps on some orientable surface of
genus g, one may begin with the Euler-Poincaré formula

2− 2g = χ = V − E + F = |G|
(

1

k
− 1

2
+

1

m

)
,

which relates the type {k,m} of the map M and the order of G = Auto(M) to the
genus g. This yields an equation in integers with |G| and g−1 appearing on different
sides of the equation. Two natural extremes arise that one has to consider: the case
when g − 1 divides G on one hand, and the case when g − 1 and |G| are relatively
prime on the other.

In this paper we apply combinatorial group theory (sometimes in a remarkably
elementary way) to prove a number of results in this direction. First, we classify
all orientably-regular maps M of genus g > 1 such that g − 1 is a prime dividing
|Auto(M)|. Second, we make a major advance by producing a classification of all
orientably-regular maps M of genus g ≥ 0 for which g−1 and |Auto(M)| are relatively
prime. As a consequence of these results, we obtain a complete classification of all
orientably-regular maps M of genus p + 1 where p is prime, and as corollaries, we
have the following:

(1) If p is a prime such that p−1 is not divisible by 3, 5 or 8, then every orientably-
regular map of genus g = p + 1 is reflexible;

(2) If M is an orientably-regular but chiral map of genus g = p + 1, where p is
prime, and p− 1 is not divisible by 5 or 8, then either M or its topological dual
M∗ has multiple edges;
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(3) If M is a reflexible orientably-regular map of genus g = p + 1, where p is prime
and p > 13, then either M or M∗ has multiple edges, and if p ≡ 1 mod 6, then
both M and M∗ have multiple edges.

The first of these shows there exist infinitely many gaps in the spectrum of
orientably-regular maps that are chiral, and the third shows there exist infinitely
many gaps in the spectrum of reflexible orientably-regular maps that have simple
underlying graphs. We also obtain from this work a new and more concise proof of
the classification result of [2] for non-orientable maps.

The fact that we could take a common approach to considering genus questions for
simplicity, reflexibility, and non-orientability, we found surprising. We acknowledge
the use of Magma in helping us obtain these results, and for showing us the best
way forward in some of the proofs.

2 Preliminaries

For an orientably-regular map M of type {k,m}, we will always let G = Auto(M),
which is generated by single-step rotations X and Y about a face and incident vertex,
such that XY reverses an incident edge. Thus Xk = Y m = (XY )2 = 1.

We will define the X-core of G to be the largest normal subgroup of G contained
in 〈X〉 and denote this by Co(X), and define the Y-core Co(Y ) similarly. Note that if
〈Y 〉 stabilizes the vertex v, then the stabilizers of the neighbours of v are conjugates
of 〈Y 〉 by XY i for 0 ≤ i < m, so the existence of multiple edges incident to v is
equivalent to having 〈Y 〉XY i

= 〈Y 〉XY j
for some i 6= j, which in turn is easily seen to

be equivalent to Co(Y ) being non-trivial. We will say the group G is non-degenerate
if both Co(X) and Co(Y ) are trivial, degenerate if one of Co(X) or Co(Y ) is non-
trivial, singly-degenerate if exactly one of Co(X) or Co(Y ) is non-trivial, and doubly-
degenerate if both are non-trivial. If G is non-degenerate (resp. singly-degenerate, or
doubly-degenerate) then both (resp. exactly one of, or neither of) the map M and
its dual M∗ will have simple underlying graph.

Further, we will say that G is XY-disjoint if 〈X〉 ∩ 〈Y 〉 = {1}. Note that if G is
non-degenerate, then it must be XY-disjoint, but not conversely.

We will make extensive use of a number of key theorems from group theory:

Theorem 2.1 (Schur-Zassenhaus theorem) If N is a normal subgroup of the
finite group G, such that the order |N | and the index |G : N | are coprime, then G
contains a subgroup of order |G :N |, and any two such subgroups are conjugate in G.

Theorem 2.2 (Transfer to a central subgroup) If H is a subgroup of the centre
Z(G) of the group G, with finite index |G : H| = m, then the mapping τ : G → G
given by x 7→ xm (for all x ∈ G) is a homomorphism.

Corollary 2.3 (Schur’s theorem) If the centre Z(G) of a group G has finite index
m, then the commutator subgroup G′ is finite and the order of every element of G′

divides m.

5



Theorem 2.4 (Ito’s theorem) If the group G is expressible as AB where A and
B are abelian subgroups of G, then the commutator subgroup G′ is abelian (and hence
G is solvable).

The proofs of the first three of these can be found in [16, Chapters 9 & 10], and
the fourth in [12].

We will also require the classification of non-solvable, almost Sylow-cyclic groups.
A finite group G is said to be almost Sylow-cyclic if all its Sylow subgroups of odd
order are cyclic and (when |G| is even) all its Sylow 2-subgroups have a cyclic subgroup
of index 2. Classification of all solvable almost Sylow-cyclic groups is a classical result
by Zassenhaus. The non-solvable case is covered by the results of Suzuki [17] and
Wong [18], giving the following:

Theorem 2.5 (Suzuki and Wong) Let G be a finite, non-solvable, almost Sylow-
cyclic group. Then G has a subgroup G0 of index at most 2 such that G0 is isomorphic
to H×L, where H is isomorphic to a semi-direct product of two cyclic groups of order
u and v, and L ∼= SL(2, q) or PSL(2, q) for some prime q > 3, with u, v and |L| being
pairwise relatively prime.

Finally we need the following important observations, the second using the fact
that if G is abelian then X = Co(X) and Y = Co(Y ) so G is doubly-degenerate.
Here, and later, CG(H) denotes the centralizer of the subgroup H in the group G.

Lemma 2.6 Every element of Co(X) and every element of Co(Y ) commutes with
all squares in G. In particular, if Y has odd order, then Co(X) is central in G.

Proof. Consider the homomorphism θ : G → Aut(Co(Y )) given by conjugation. As
G = 〈XY, Y 〉, the θ-image of XY generates im θ, so this has order at most 2. Hence
all squares and all elements of odd order in G lie in ker θ = CG(Co(Y )). The same is
true for Co(X). In particular, if Y has odd order then G = 〈X, Y 〉 ⊆ CG(Co(X)). �

Lemma 2.7 If G has a normal cyclic subgroup N , then either G is degenerate or
2|N | divides the Euler characteristic χ of the map M .

Proof. Suppose G is non-degenerate. Then XY /∈ N , for otherwise XY would be
the only involution in the cyclic normal subgroup N , making XY central, and then
G = 〈X, XY 〉 would be abelian and hence degenerate. Also 〈X〉∩N and 〈Y 〉∩N are
characteristic in the cyclic subgroup N and so normal in G, hence both are trivial.
Thus G/N is the orientation-preserving group of automorphisms of an orientably-
regular map of the same type as M . It follows that in applying the Euler-Poincaré
formula, we simply replace |G| by |G/N |, so this quotient map has Euler characteristic
χ/|N |, which is an even integer, and hence 2|N | divides χ. �
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3 The case where p divides |G|
In this section we find all possibilities for an orientably-regular map M of genus p+1
where p is prime, p > 13 and |Auto(M)| is divisible by p. All such maps turn out to
be chiral, and fall into three families (as arose in a slightly different context in [3]).

Theorem 3.1 Let M be an orientably-regular map of genus g = p+1 for some prime
p > 13, and let G = Auto(M) be its group of orientation-preserving automorphisms.
If p divides the order of G, then one of the following holds:
(a) M has type {8, 8} and |G| = 8p, with p ≡ 1 mod 8,
(b) M has type {5, 10} and |G| = 10p, with p ≡ 1 mod 10,
(c) M has type {6, 6} and |G| = 12p, with p ≡ 1 mod 6.

Moreover, in each of these three cases M is chiral, and in cases (a) and (b) the group
G is non-degenerate, while in case (c) G is singly-degenerate. Up to equivalence and
duality there is one chiral pair of such maps for each p in cases (a) and (c), and there
are two chiral pairs for each p in case (b).

Proof. First suppose p > 84, and let the map M have type {k, m}. By the Euler-
Poincaré formula, we know that |G| = R(g−1) = Rp where R = 4km/(km−2k−2m)
satisfies 4 < R ≤ 84. Since p divides |G|, we see that G has a unique Sylow p-subgroup
P , which is cyclic, and normal in G with index R. In particular, since R is the order
of G/P , we see that R is an even integer, so R ≥ 6, but R is not divisible by p.

Now if p divides k or m, then since p does not divide R = 4km/(km− 2k − 2m),
we find that p has to divide both k and m, and hence p2 divides km − 2k − 2m,
so p2 divides k + m. On the other hand, since k and m are divisible by p, which
is greater than 6, the ratio R = 4km/(km − 2k − 2m) is less than 12, and hence
|G| = Rp < 12p. In particular, each of k and m is less than 12p, so k + m < 24p,
which makes it impossible for p2 to divide k + m. Thus p divides neither k nor m.

Next, let X and Y be generators for M satisfying the usual relations Xk = Y m =
(XY )2 = 1. Then each of 〈X〉 and 〈Y 〉 has trivial intersection with P (since p divides
neither k nor m), as does 〈XY 〉 (since |P | = p is odd). Hence the quotient G/P is
the orientation-preserving group of automorphisms of an orientably-regular map of
the same type {k,m} as M , with Euler characteristic −2p/p = −2, so genus 2.

The orientably-regular maps of genus 2 are well known, and listed in [7]. In
particular, we find from this list that one of the following holds:
(a) {k,m} = {8, 8} and G/P ∼= C8;
(b) {k,m} = {5, 10} and G/P ∼= C10;
(c) {k,m} = {6, 6} and G/P ∼= C6 × C2;
(d) {k,m} = {4, 8} and G/P ∼= C8 o C2, dicyclic of order 16;
(e) {k,m} = {4, 6} and G/P ∼= C3 o D4, of order 24 (with centre of order 2);
(f) {k,m} = {3, 8} and G/P ∼= GL(2, 3), of order 48.

We will consider each of these cases in turn, using the following observations.
Since Aut(P ) ∼= Aut(Cp) is cyclic, we know that G/CG(P ) is abelian and hence

CG(P ) contains G′. On the other hand, G itself is not abelian, for otherwise the order
of G would divide 2k and then be coprime to p, contradiction.
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Now consider case (a). Here G/P is cyclic of order 8, so G is a semi-direct product
of Cp by C8. As Y has order 8 and XY has order 2 (but G itself is not cyclic) we
have XY = wY 4 for some non-trivial element w of P , and indeed w must generate
P (since |P | is prime). Also 1 = (XY )2 = w(wY 4

), so Y 4 conjugates w to w−1, and
hence conjugation by Y induces an automorphism of P of order 8. In particular, p is
congruent to 1 mod 8. Also X = XY Y −1 = wY 3. Note there are four possibilities: if
c is a primitive 8th root of 1 in Zp, then Y −1wY = wci

where i = 1, 3, 5 or 7. None of
these gives a reflexible map, for if τ were an automorphism that inverts both X and
Y , then τ would take w = XY −3 to X−1Y 3 = Y −3w−1Y 3 = (w−1)Y 3

, and then could
not have order 2. Hence these four possibilities fall into two chiral pairs, with one
pair dual to the other. Also in each case it is easy to see that 〈X〉 and 〈Y 〉 are both
core-free, so the map M and its dual both have simple underlying graphs. Hence in
case (a), up to equivalence and duality we have just one chiral pair of non-degenerate
maps of type {8, 8} and genus p + 1, whenever p ≡ 1 mod 8.

Similarly, in case (b) we know G/P is cyclic (of order 10), so G is a semi-direct
product of Cp by C10, and assuming X has order 5 while Y has order 10, we have
XY = wY 5 for some generator w of P . Also 1 = (XY )2 = w(wY 5

), so conjugation
by Y 5 inverts w. Furthermore, X = XY Y −1 = wY 4, and as X has order 5, we
see that Y 4 cannot centralize w (or else X = wY 4 would have order 5p), and hence
conjugation by Y induces an automorphism of P of order 10. In particular, p is
congruent to 1 mod 10. Again there are four possibilities: if c is a primitive 10th root
of 1 in Zp, then Y −1wY = wci

where i = 1, 3, 7 or 9. All give irreflexible maps, by
the same kind of argument as in case (a), and again both 〈X〉 and 〈Y 〉 are core-free.
Hence in case (b), up to equivalence we have two chiral pairs of non-degenerate maps
of type {5, 10} and genus p + 1, whenever p ≡ 1 mod 10.

In case (c), the quotient G/P is isomorphic to C6×C2. Now P cannot be central-
ized by XY (of order 2), for otherwise 〈XY,P 〉 would be an abelian normal subgroup
of order 2p in G, with unique involution XY , and then XY would be central in G,
making G = 〈XY,X〉 abelian. Similarly, P cannot be centralized by X2 or Y 2 (of
order 3), for otherwise CG(P ) would contain a characteristic subgroup K of order
3 that would then be normal in G, and the quotient G/K of order 4p would be
(2, 2, 2)-generated, which is impossible. On the other hand, G/CG(P ) is isomorphic
to a subgroup of Aut(P ) and is therefore cyclic, and is a quotient of G/P ∼= C6×C2,
so must be cyclic of order 6. It follows that p ≡ 1 mod 6, and that conjugation by XY
inverts every element of P , and conjugation by either X or Y induces an automor-
phism of P of order 6. Without loss of generality (by moving to the dual if necessary),
we may suppose that conjugation of P by Y has order 6, with Y 3 inverting every el-
ement of P . Then XY 4 = (XY )Y 3 centralizes P , so conjugation by X induces the
same automorphism of P as conjugation by Y −4 = Y 2, and therefore X3 centralizes
P . Thus CG(P ) = 〈X3, P 〉, of order 2p. In particular, 〈X3〉 is normal in G, so 〈X〉 is
not core-free. On the other hand, clearly 〈Y 〉 is core-free. As before, however, both
the map and its dual are irreflexible, since if τ were an automorphism of G inverting
both X and Y , then τ would take w = X2Y −4 to w = X−2Y 4 = Y −4w−1Y 4, and so τ
could not have order 2. In fact there are two possibilities: if c is a primitive 6th root
of 1 in Zp, and w is a generator of P , then Y wY −1 = wc±1

. Hence up to equivalence
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and duality we have just one chiral pair of singly-degenerate maps of type {6, 6} and
genus p + 1, whenever p ≡ 1 mod 6.

On the other hand, cases (d) to (f) are impossible. To see this, first note that |P |
and |G :P | are coprime, so by the Schur-Zassenhaus theorem, CG(P ) has a subgroup
K of order |CG(P ) :P |, and hence CG(P ) is a direct product K × P . Each of K and
P is characteristic in CG(P ) and so is normal in G, and G/K is a quotient of G of
order |G :CG(P )||P |. In case (d), the abelianization of G/P can be seen from [7, map
R2.3] to be isomorphic to C2 × C2, and it follows that the largest cyclic quotient of
G has order 2. Thus CG(P ) has index 1 or 2 in G, so G/K has order p or 2p, which
is impossible for a quotient of a (4, 8, 2)-generated group. Cases (e) and (f) are even
easier: G/CG(P ) is a cyclic quotient of the ordinary (4, 6, 2) or (3, 8, 2) triangle group
and so has order at most 2, so |G : CG(P )| = 1 or 2, and G/K has order p or 2p,
again a contradiction.

This completes the proof for p > 84. For 13 < p < 84, we may refer to the lists
of all orientably-regular maps of genus 2 to 100 computed by Conder [6], or use the
same arguments as in the paper [3] by Belolipetsky and Jones. �

4 The coprime classification: XY-disjoint case

In this section we begin to consider the case where |G| is coprime to −χ/2 = g − 1,
where g is the genus of the respective orientably-regular map M . We will suppose
that M has at least one edge, so that |G| is even, and hence g− 1 must be odd. The
Euler-Poincaré formula gives

4km(g − 1) = −2kmχ = |G|(km− 2k − 2m).

Dividing by d = gcd(k,m), we have:

4 lcm(k,m)(g − 1) = |G|(km/d− 2k/d− 2m/d).

Since gcd(|G|, g − 1) = 1, this gives 4 lcm(k,m) = |G|t, where t is a positive inte-
ger. On the other hand, since k and m are element orders, lcm(k,m) divides |G|,
and hence t divides 4, so t = 1, 2 or 4. In fact t = (km/d − 2k/d − 2m/d)/(g − 1),
which will be odd if and only if km/d − 2k/d − 2m/d is odd, and hence t = 1 if
and only if k and m are both odd. Thus |G| = 4 lcm(k, m) whenever k and m are
both odd, while |G| = lcm(k,m) or |G| = 2 lcm(k, m) if at least one of k and m is even.

Next, we show that the group G is almost Sylow-cyclic. Letting k = k′d and
m = m′d, we have gcd(k,m′) = gcd(k′, m) = 1, and

|G| = 4 lcm(k,m)

t
=

4km

td
= (

4

t
)k′m = (

4

t
)km′.

It follows that if q is the largest power of any odd prime divisor of |G|, then either
q divides k but not m′, or q divides m but not k′, and in particular, 〈X〉 or 〈Y 〉
contains a cyclic Sylow q-subgroup of G. For Sylow 2-subgroups, the situation is
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similar: if both k and m are odd, then t = 1, and a Sylow 2-subgroup of G has order
4, so contains a cyclic subgroup of index 2; otherwise |G| = k′m, km′, 2k′m or 2km′,
and 〈X〉 or 〈Y 〉 contains a cyclic subgroup of index 1 or 2 in a Sylow 2-subgroup of G.

In the special case where G is XY -disjoint, the elements X iY j are all distinct
for 0 ≤ i < k and 0 ≤ j < m, so km ≤ |G| ≤ 4 lcm(k,m) = 4km/d, and therefore
d ≤ 4. Moreover, since |G| = 4 lcm(k,m) only when k and m are odd, in which
case d = gcd(k,m) is odd, it follows that d = 1, 2 or 3. On the other hand, if at
least one of k and m is even, then km ≤ |G| ≤ 2 lcm(k,m) = 2km/d, so d ≤ 2, and
hence if d = 3 then k and m are both odd. Similarly, if d = 2, then the inequality
km ≤ |G| ≤ 2 lcm(k,m) forces |G| = km, which in turn implies that |G| = 2km if
and only if k and m have opposite parity.

Summarizing, and without loss of generality (by taking the dual if necessary), we
have the following possibilities when the group G is XY-disjoint:

(A) |G| = km, where gcd(k,m) = 1 or 2, and k is even,

(B) |G| = 2km, where gcd(k,m) = 1, and k is even but m is odd,

(C) |G| = 4km/3, where gcd(k,m) = 3, and k,m are both odd,

(D) |G| = 4km, where gcd(k,m) = 1, and k,m are both odd.

We will classify the possibilities for all groups of each of these types (not just
those corresponding to maps for which g − 1 and |G| are coprime), and give explicit
presentations for the group G in each case. In Section 8 we will drop the assumption
that G is XY-disjoint, to deal with the general case.

First, for each of the above types we consider the possibilities for the abelianization
G/G′, where G′ is the commutator subgroup of G.

Lemma 4.1 If G is XY-disjoint, then G/G′ is isomorphic to a subgroup of C2 ×C2

for type (A), or of C2 for type (B), or of C3 for type (C), while G/G′ is trivial (and
so G is perfect) for type (D).

Proof. These possibilities follow from the fact that G/G′ is an abelian group gener-
ated by the images of X and Y , of orders dividing k and m, with product of order
dividing 2. For type (A), we have G/G′ ∼= 1, C2 or C2 × C2 since gcd(k,m) = 1 or
2; for type (B), G/G′ ∼= 1 or C2 since gcd(k,m) = 1; for type (C), G/G′ ∼= 1 or
C3 since gcd(k,m) = 3 and k,m are both odd; and for type (D), G/G′ ∼= 1 since
gcd(k,m) = 1, and k, m are both odd. �

Now for type (A) we have the following:

Lemma 4.2 For coprime positive integers u and v, the group with presentation
〈X, Y | X2u = Y 2v = (XY )2 = [X2, Y 2] = 1 〉 is a group of order 4uv, in which
XY 2X−1 = Y −2 and Y X2Y −1 = X−2.
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Proof. In the given group G, let K be the subgroup generated by the elements X2 and
Y X2Y −1 (each of order dividing u). Note that Y normalizes K, with Y 2 centralizing
K, since [X2, Y 2] = 1 and then Y X2Y −1 = Y −1X2Y . As (XY )2 = 1 we have
X(Y X2Y −1)X−1 = (XY )X2(XY )−1 = Y −1X−1X2XY = Y −1X2Y = Y X2Y −1,
so X centralizes K, and therefore K is normal in G. Also K is abelian (because
X centralizes Y X2Y −1), and so |K| divides u2. Furthermore, the quotient G/K
(obtained by adding the relation X2 = 1) is dihedral of order 4v, so K has index 4v
in G. Similarly, the subgroup L generated by Y 2 and XY 2X−1 is an abelian normal
subgroup of G of index 4u and order dividing v2. Since gcd(u, v) = 1, it follows
that |G| = 4uv, with |K| = v and |L| = u. Finally, since G/K is dihedral we have
XY 2X−1 = wY −2 for some w ∈ K, but then w = XY 2X−1Y 2 lies in K ∩ L which is
trivial (since gcd(u, v) = 1), so XY 2X−1Y 2 = 1. Similarly Y X2Y −1X2 = 1. �

Theorem 4.3 Suppose that G is XY-disjoint and of type (A). Then either k = 2
and G is dihedral of order 2m where m is odd, or otherwise k = 2u and m = 2v
with gcd(u, v) = 1, and G is an extension of Cuv by C2 × C2, with presentation
〈X, Y | X2u = Y 2v = (XY )2 = [X2, Y 2] = 1 〉. In the latter case, XY 2X−1 = Y −2

and Y X2Y −1 = X−2, and so G is degenerate in both cases.

Proof. First, since |G| = km, and G is XY-disjoint, we know that G = 〈X〉〈Y 〉, and
so by Ito’s theorem, G′ is abelian, and hence G is solvable. Moreover, G/G′ ∼= C2 or
C2 × C2, so G′ contains both X2 and Y 2, and therefore [X2, Y 2] = 1.

Now suppose G/G′ ∼= C2. Then without loss of generality we can assume not
only that k is even but also that G′ is generated by X2 and Y (with XY X = Y −1).
In particular, X2 commutes with Y . Moreover, m is odd and so gcd(k, m) = 1, for
otherwise by Lemma 4.2 the elements X2 and Y 2 would generate a normal subgroup
of index 4, with abelian quotient, contradicting the assumption that G/G′ ∼= C2.
Also XY X−1 = Y −1X−2 = (X2Y )−1, and as XY X−1 is conjugate to Y (and so has
order m), while X2Y has order (k/2)m, we find that k/2 = 1, so k = 2. Hence G is
dihedral, and then Co(Y ) = 〈Y 〉, so G is degenerate.

Suppose instead that G/G′ ∼= C2 × C2. Then k and m must both be even, so
k = 2u and m = 2v with gcd(u, v) = 1, and then Lemma 4.2 gives XY 2X−1 = Y −2

and Y X2Y −1 = X−2. In particular, Co(X) = 〈X2〉 and Co(Y ) = 〈Y 2〉, so G is
degenerate. Also G′ is generated by the commuting elements X2 and Y 2 of coprime
orders u and v, so G′ is cyclic of order uv. �

In the two cases given by Theorem 4.3, we will say that G is of type (A1) or (A2),
respectively. For the other three types, we proceed thus:

Theorem 4.4 If G is non-degenerate, and of type (B), (C) or (D), then:
(B) G ∼= 〈X, Y | X4 = Y 3 = (XY )2 = 1 〉 ∼= S4, or
(C) G ∼= 〈X, Y | X3 = Y 3 = (XY )2 = 1 〉 ∼= A4, or
(D) G ∼= 〈X, Y | X3 = Y 5 = (XY )2 = 1 〉 ∼= A5.

Proof. First , suppose that G is solvable, and let J be any minimal normal subgroup
of G. Then J is elementary abelian, and further, since G is almost Sylow-cyclic, J is
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isomorphic to Cq for some prime q, or to C2×C2. By Lemma 2.7, however, J cannot
be cyclic, and therefore J ∼= C2 ×C2. Moreover, since G is perfect for type (D), that
means we only need to consider types (B) and (C).

For type (B), the quotient G/J has order |G|/4 = (k/2)m, where m is odd, so
J must contain Xk/2, and hence G/J is the product of its subgroups 〈X〉J/J and
〈Y 〉J/J , of orders k/2 and m, which intersect trivially. By the same argument as
in the first part of the proof of the last theorem (for case (A)), we find that G/J
is dihedral, so k/2 = 2, giving k = 4, and the subgroup 〈Y 〉J/J is normal in G/J .
On the other hand, no non-trivial element of 〈Y 〉 can centralize J , for otherwise that
element would generate a characteristic central subgroup of 〈Y 〉J , and then be normal
in G, contradicting the assumption that G is non-degenerate. As J is isomorphic to
C2 × C2, we know Aut(J) is isomorphic to S3, and then since Y has odd order, it
follows that 〈Y 〉 has order 3. Thus {k,m} = {4, 3}, and G ∼= S4, as claimed.

For type (C), we see that G/J has order |G|/4 = km/3, which is odd, so XY ∈ J ,
and hence G/J = 〈XY, Y 〉/J is cyclic. In particular, J contains G′, and then since
G/G′ has order 1 or 3, we must have G/J ∼= C3. Thus |G| = 3|J | = 12, giving
k = m = 3 and G ∼= A4.

Next, suppose instead that G is not solvable. Since G is almost Sylow-cyclic,
Theorem 2.5 implies that G has a subgroup G0 of index at most 2 such that G0

is isomorphic to H × L, where H ∼= Cu o Cv (a semi-direct product of Cu by Cv)
and L ∼= SL(2, q) or PSL(2, q), for some prime q > 3, and that u, v and |L| are
pairwise coprime. Clearly H is a characteristic subgroup of G0 and hence is a normal
subgroup of G, and also its cyclic subgroup of order u is normal in G; but on the other
hand, Lemma 2.7 shows G has no cyclic normal subgroup, so H is trivial. Similarly,
if L ∼= SL(2, q) then L contains a unique involution, which then generates a cyclic
normal subgroup of G, again not allowed by Lemma 2.7. Thus G0 = L ∼= PSL(2, q).

Finally, we use the fact that the order of any element of PSL(2, q) divides q,
(q−1)/2 or (q+1)/2. Let ε = |G :G0|, so that |G| = ε|PSL(2, q)| = ε(q−1)q(q+1)/2.
Now G0

∼= PSL(2, q) contains the elements Xε (of order k/ε) and Y (of odd order m),
and therefore k/ε ≤ q and m ≤ q. But also |G| = 2km, 4km/3 or 4km, so the odd
prime q must divide k or m, and hence either k = qε and m ≤ (q + 1)/2, or m = q
and k ≤ (q + 1)ε/2. In both cases, km ≤ q(q + 1)ε/2, and therefore

ε(q + 1)q(q − 1)/2 = |G| ≤ 4km ≤ 2q(q + 1)ε,

which implies (q − 1)/2 ≤ 2, so q = 5. In particular, the inequalities above become
equalities, so |G| = 4km = 2q(q + 1)ε. Thus G has type (D), making k odd, and so
|G :G0| = ε = 1, giving {k,m} = {(q + 1)/2, q} = {3, 5} and G ∼= PSL(2, 5) ∼= A5. �

We will now allow the possibility that the group G is degenerate.

Theorem 4.5 Suppose G is XY-disjoint, and of type (B), (C) or (D), and let L be
the normal subgroup Co(X)Co(Y ). Then L is cyclic, and G/L is non-degenerate, so
G/L ∼= S4, A4 or A5 respectively. In particular, G is non-solvable only for type (D).

Proof. First, observe that m is odd, so by Lemma 2.6, Co(X) is central in G, and
therefore L is abelian. In fact, since gcd(k,m) is odd and G is almost Sylow-cyclic, L
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is cyclic. Moreover, Y centralizes L (since Co(X) is central), and by Lemma 2.6 we
know that X2 centralizes Co(Y ), and so X2 centralizes L. For types (C) and (D), we
know k is odd, and hence also X centralizes L for those two types.

Now let Ḡ = G/L and let X̄ and Ȳ be the images of X and Y in Ḡ. We will show
that the X- and Y-cores of Ḡ are trivial, so Ḡ is non-degenerate. Suppose Ȳ s generates
the Y-core of Ḡ. Then K = 〈Y s〉L is normal in G, and abelian since Y centralizes L,
and cyclic since gcd(k, m) is odd and G is almost Sylow-cyclic. Since K is cyclic, 〈Y s〉
is characteristic in K, and therefore normal in G, so 〈Y s〉 ⊆ Co(Y ). This tells us that
the Y-core of Ḡ is trivial. Similarly, if X̄r generates the X-core of Ḡ, then J = 〈Xr〉L
is normal in G, and is generated by Xr and Co(Y ) = 〈Y v〉, say. The same argument
as above shows that if Xr centralizes L then 〈Xr〉 ⊆ Co(X) and so X̄r is trivial. In
particular, this holds for types (C) and (D), where X centralizes L, and also for type
(B) when r is even. Otherwise, if G has type (B) and r is odd, then |G/J | = 2rv, where
r and v are both odd, and G/J is (r, v, 2)-generated; but then the Euler characteristic
of the associated orientable surface is 2rv/r− 2rv/2 + 2rv/v = 2v− rv + 2r, which is
odd, contradiction. Hence r must be even when G has type (B), and it follows that
the X-core of Ḡ is trivial, for all three types.

Thus G/L = Ḡ is non-degenerate, and so by Theorem 4.4, G/L ∼= S4, A4 or A5.
Finally, as L is a cyclic normal subgroup of G, we see that G is solvable if and only
if G/L ∼= S4 or A4, and hence if and only if G has type (B) or (C). �

Lemma 4.6 For every odd positive integer v, the group with presentation 〈X,Y | X4

= Y 3v = (XY )2 = [X2, Y 3] = 1 〉 is an extension of Cv by S4, of order 24v, and in
this group, XY 3X−1 = Y −3.

Proof. In the given group G, let K be the subgroup generated by the elements Y 3 and
XY 3X−1 (each of order dividing v). Note that X normalizes K, with X2 centralizing
K, since [X2, Y 3] = 1 and then XY 3X−1 = X−1Y 3X. As (Y X)2 = 1 we have
Y (XY 3X−1)Y −1 = X−1Y −1Y 3Y X = X−1Y 3X = XY 3X−1, so Y centralizes K, and
therefore K is normal in G. Also K is abelian (because Y centralizes XY 3X−1), and
so |K| divides v2. Furthermore, the quotient G/K (obtained by adding the relation
Y 3 = 1) is isomorphic to the ordinary (4, 3, 2) triangle group S4, so K has index 24 in
G. The pre-image of the Klein 4-subgroup V4 of S4 is an abelian normal subgroup L
of G, generated by K and conjugates of X2, and has order 4v. The Sylow 2-subgroup
P of L is characteristic in L and therefore normal in G, and since P contains X2 the
quotient G/P is dihedral. It follows that XY 3X−1 = wY −3 for some w ∈ P , but then
w = XY 3X−1Y 3 lies in K ∩P which is trivial (since v is odd), so XY 3X−1Y 3 = 1. �

Lemma 4.7 The group 〈X, Y | (XY )2 = Y 3 = [X4, Y ] = 1 〉 has order 144, and is
a central product of C6 by S4.

Proof. First, clearly X4 is central, and the quotient of this group by 〈X4〉 is the
ordinary (4, 3, 2) triangle group S4. Hence all we need to do is prove that X4 has order
6. Let H be the subgroup generated by u = X2 and v = (XY −1)2, which has index 6,
with Schreier transversal {1, Y, Y −1, X,XY, XY −1}. By Reidemeister-Schreier theory
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[13], we find that H has presentation 〈u, v | u2v2 = u2(uv−1)2 = (u−1v)2v2 = 1 〉.
(In fact the 3rd relation is redundant.) In this group, u2 is central, and v−1uv =
(u−1v)−2u−1v2 = v2u−1v2 = u−5, so u2 = v−1u2v = (v−1uv)2 = (u−5)2 = u−10, so
u12 = 1. Thus X has order 24, as required. �

Theorem 4.8 Suppose G is XY-disjoint, and of type (B), (C) or (D), and G is
degenerate. Then G is of type (B), and has a presentation of one of these two forms:
(B1) G ∼= 〈X, Y | X4 = Y 3v = (XY )2 = [X2, Y 3] = 1 〉, or
(B2) G ∼= 〈X, Y | X8 = Y 3v = (XY )2 = [X4, Y ] = [X2, Y 3] = 1 〉.

In particular, XY 3X−1 = Y −3 in both of these two cases, so that if G has type (B1)
with v > 1 or type (B2) then G is degenerate. On the other hand, if G is XY-disjoint
of type (C) or (D), or type (B1) with v = 1, then G is non-degenerate.

Proof. Again let L = Co(X)Co(Y ), which by Theorem 4.5 is cyclic.
If G has type (B), then by Theorem 4.5 we know G/L ∼= S4, so that Co(X) = 〈X4〉

and Co(Y ) = 〈Y 3〉. Now by Lemma 2.6, [X2, Y 3] = 1 and 〈X4〉 = Co(X) is central in
G. It follows from Lemma 4.7 that in the quotient G/Co(Y ) = G/〈Y 3〉, the image of
〈X4〉 has order dividing 6. But gcd(k,m) = 1, so gcd(k, 3) = 1, so Co(X) has order
1 or 2, and hence k = 4 or 8. If k = 4, then we have the presentation in Lemma
4.6 for G, giving case (B1) and the relation XY 3X−1 = Y −3. On the other hand, if
k = 8, with Co(X) = 〈X4〉, then G/Co(X) has presentation of the form (B1), and so
XY 3X−1 = Y −3 or Y −3X4. The latter is impossible, however, because Y −3X4 has
even order (with X4 being central), while the conjugate XY 3X−1 of Y 3 has odd order
m/3. Thus we obtain the presentation in case (B2), and the relation XY 3X−1 = Y −3.

If G has type (C), then G/L ∼= A4, so Co(X) = 〈X3〉 and Co(Y ) = 〈Y 3〉, and
G/G′ ∼= C3. Also, L is central (as shown in the proof of Theorem 4.5), so by Schur’s
theorem, the exponent of G′ divides |G :L| = 12. Hence the orders k/3 and m/3 of
X3 and Y 3 divide 12, so divide 3. But k 6= 9, for otherwise every Sylow 3-subgroup
of G would contain Co(X) as its only subgroup of order 3, so 〈Y 〉 would intersect
Co(X) non-trivially, contradiction. Similarly m 6= 9, so {k,m} = {3, 3}, making
Co(X)Co(Y ) trivial and G non-degenerate.

Finally, if G has type (D), then G/L ∼= A5. Again L is central (as in the proof
of Theorem 4.5), and so by Schur’s theorem, the exponent of G′ divides |G :L| = 60.
But here G = G′, so k and m divide 60, and as k and m are odd and gcd(k,m) = 1,
the only possibility is {k,m} = {3, 5}, making G non-degenerate. �

To summarize, we have the following possibilities when G is XY-disjoint. Here by
‘additional relations’ we mean relations which define the group G = Auto(M) when
taken together with the standard relations Xk = Y m = (XY )2 = 1. We also add (for
later use in Section 8) the case (A0) of the trivial group, which is the automorphism
group of a 1-vertex, 0-edge, 1-face map on the sphere.
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Case Type Genus |G| Conditions Additional relations

A0 – 0 1 — —

A1 {2, v} 0 2v v odd —

A2 {2u, 2v} (u− 1)(v − 1) 4uv gcd(u, v) = 1 [X2, Y 2] = 1

B1 {4, 3v} 3(v − 1) 24v v odd [X2, Y 3] = 1

B2 {8, 3v} 9v − 7 48v v odd [X4, Y ] = [X2, Y 3] = 1

C {3, 3} 0 12 — —

D {3, 5} 0 60 — —

Table 1: Classification of XY-disjoint cases

Note that in each case, there is one map for every choice of the given parameters.
Moreover, all these maps are reflexible, because the presentation for G in each case
is preserved by an involutory automorphism τ that inverts the generators X and Y .
The underlying graphs of the non-trivial maps and their duals are covers of cycles
or dipoles in case (A), the octahedron or cube in case (B), the tetrahedron in case
(C), and the dodecahedron or icosahedron in case (D). Simplicity (or otherwise) of
the underlying graphs will be considered in the next section.

5 Maps with simple underlying graphs

We can now give our main theorems about degeneracy:

Theorem 5.1 Suppose M is an orientably-regular map of genus g = p + 1, where p
is prime. If the underlying graph of at least one of M and its dual M∗ is simple, then
up to duality, one of the following holds:
(a) p ≡ 1 mod 6, and M is chiral, of type {6, 6},
(b) p ≡ 1 mod 8, and M is chiral, of type {8, 8},
(c) p ≡ 1 mod 10, and M is chiral, of type {5, 10},
(d) p ≡ 5 mod 6, and M is reflexible, of type {4, p + 4},
(e) p = 2, and M is reflexible, of type {3, 7}, {3, 8}, {3, 12}, {4, 6} or {4, 8},
(f) p = 3, and M is reflexible, of type {3, 12}, {4, 5}, {4, 6} or {5, 5},
(g) p = 5, and M is reflexible, of type {3, 10}, {4, 6} or {5, 10}
(h) p = 7, and M is reflexible, of type {3, 8},
(i) p = 13, and M is reflexible, of type {3, 7}.

Moreover, in cases (b) and (c) the underlying graphs of both M and M∗ are simple,
while in cases (a) and (d), one of them is simple while the other is not. Up to
equivalence and duality the numbers of such maps are as follows: one chiral pair for
each p in cases (a) and (b), two chiral pairs for each p in case (c), one map for each
p in case (d), one map of each given type in cases (e) to (g), two maps in case (h),
and three maps in case (i).
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Corollary 5.2 Suppose M is an orientably-regular map of genus g = p + 1, where p
is prime. If M is chiral and p− 1 is not divisible by 5 or 8, or if M is reflexible and
p > 13, then either M or M∗ has multiple edges. Moreover, if M is reflexible, p > 13
and p ≡ 1 mod 6, then both M and M∗ have multiple edges.

Proof (of 5.1). Let G = Auto(M), and suppose that G is not doubly-degenerate.
Then G is XY-disjoint. If p divides |G|, then by Theorem 3.1, we know that either
M is chiral and one of cases (a) to (c) holds, or otherwise p ≤ 13. In the latter
case, we find easily that M or M∗ has to be one of the reflexible maps R3.1 (of type
{3, 7}), R3.2 (of type {3, 8}), R3.3 (of type {3, 12}), R3.4 (of type {4, 6}), R3.5 (of
type {4, 8}), R4.1 (of type {3, 12}), R4.2 (of type {4, 5}), R4.3 (of type {4, 6}), R4.6
(of type {5, 5}), R6.1 (of type {3, 10}), R6.2 (of type {4, 6}), R6.6 (of type {5, 10}),
R8.1 (of type {3, 8}), R8.2 (of type {3, 8}), R14.1 (of type {3, 7}), R14.2 (of type
{3, 7}) or R14.3 (of type {3, 7}) from the tables in [7]. On the other hand, if |G| is
coprime to p = g − 1, then the theorems in Section 4 apply. For type (A) we have
no examples of genus g > 1, since X2 and either Y or Y 2 always generate a normal
subgroup of G. For type (B), the examples of type {4, 3v} are singly-degenerate, and
reflexible, with genus g = 3v − 3 for v odd, so p = g − 1 = 3v − 4 ≡ 5 mod 6; these
give the maps in case (d) in the statement of the theorem. On the other hand, the
examples of type {8, 3v} are doubly-degenerate. Finally, for types (C) and (D) the
only examples are A4 and A5, with genus 0. �

6 Reflexibility

Next, we prove our main results about reflexibility:

Theorem 6.1 Suppose M is an orientably-regular map of genus g = p + 1, where p
is prime. If M is chiral, then p divides |Aut(M)| and M or its dual M∗ belongs to
one of the three families of maps of types {6, 6}, {8, 8} or {5, 10} from Theorem 3.1,
and p ≡ 1 mod 6, 8 or 10 respectively. In all other cases, M is reflexible.

Proof. Let G = Auto(M) be the group of orientation-preserving automorphisms of
M . If p divides |G|, then by Theorem 3.1 and inspection of the tables in [7], we
know that either M or M∗ belongs to one of the three families of chiral maps from
Theorem 3.1, or otherwise M is a reflexible map of genus at most 14. On the other
hand, suppose |G| is coprime to p = g− 1. If G is XY-disjoint, then we may consider
types (A) to (D) from Section 4 in turn; in each case, the group G has a defining
presentation in which every relation is of the form Xk = 1, Y m = 1, (XY )2 = 1,
[X2, Y 2] = 1, [X2, Y 3] = 1, or [X4, Y ] = 1, but these relations are all preserved by an
automorphism τ that inverts the two generators X and Y , and so the corresponding
map is always reflexible. When G is not XY-disjoint, its cyclic normal subgroup
N = 〈X〉∩ 〈Y 〉 is generated by some element of the form X i which coincides with Y j

(for some i and j), and then a presentation for G can be obtained from one for G/N
in a way that ensures that every relation is of the form Xk = 1, Y m = 1, (XY )2 = 1,
[X2, Y 2] = 1, [X4, Y ] = 1, [X2, Y 3] = 1, or X i = Y j for some i, j, and again every

16



relation of one of these forms is preserved by an automorphism τ that inverts the two
generators X and Y , and so the corresponding map is always reflexible. (Full details
will be given in Section 8.) �

Corollary 6.2 There is no orientably-regular but chiral map of genus g = p + 1,
where p is a prime such that p− 1 is not divisible by 3, 5 or 8.

7 Non-orientable regular maps of negative prime

characteristic

Let M be a non-orientable regular map of type {k,m}. Then its automorphism
group G = Aut(M) is generated by three involutions a, b, c satisfying the relations
(ab)k = (bc)m = (ca)2 = 1 (among others), and further, G = 〈a, b, c〉 = 〈X, Y 〉
where X = ab and Y = bc. Conjugation by b is an (inner) automorphism of G that
inverts each of X and Y — and, similarly, conjugation by a inverts X and XY , and
conjugation by c inverts Y and XY . Conversely, if G is any finite group generated
by elements X and Y of orders k and m for which XY has order 2, and G contains
an element of order 2 that conjugates any two of X,Y and XY to their respective
inverses, then G is the automorphism group of such a non-orientable regular map M .

If M has Euler characteristic −p for some odd prime p, then its orientable double
cover M̃ of M has the same type {k,m} but its Euler characteristic is 2χ(M) = −2p,
so M̃ has genus p + 1, and its full automorphism group is G×C2, with G preserving
orientation. Hence our observations from earlier sections apply to G acting on M̃ . In
particular, since M̃ is not chiral, we find that either p ≤ 13, or otherwise p does not
divide |G|.

The non-orientable regular maps of genus 2 to 15 are given in [7], and from there
we find that the only examples of small negative prime characteristic are N4.1 (of
type {4, 6}), N4.2 (of type {4, 6}), N5.1 (of type {4, 5}), N5.2 (of type {4, 6}), N5.3
(of type {5, 5}), N5.4 (of type {6, 6}), N7.1 (of type {4, 6}), N7.2 (of type {4, 9}),
N9.1 (of type {3, 8}), N9.2 (of type {3, 8}), N9.3 (of type {6, 10}), N13.1 (of type
{4, 15}), N13.2 (of type {6, 14}), and N15.1 (of type {3, 7}).

Lemma 7.1 For p odd, the group G has no central involution, so G is XY-disjoint.

Proof. It is easy to check that this holds for the above examples of small charac-
teristic. Hence we may suppose that p does not divide |G|, and then G is almost
Sylow-cyclic. Now the subgroup 〈a, c〉 (which stabilizes an edge of M) is isomorphic
to C2 × C2, and so by almost Sylow-cyclicity of G, every involution in G must be
conjugate to one of a, c or ac. The involutions a and c are not central in G, for
otherwise X = ab or Y = bc would have order 2, giving k = 2 or m = 2, which is
impossible when M has characteristic −p. Also ac = XY is not central, for other-
wise G = 〈XY, Y 〉 would be abelian. Hence G has no central involution. Finally,
consider N = 〈X〉 ∩ 〈Y 〉. This is a central cyclic subgroup of G, but also each
of its elements is inverted under conjugation by b, so it has order 1 or 2. Since G
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has no central involutions, we conclude that N is trivial, and thus G is XY-disjoint. �

It follows that all examples other than those of small genus can be found from the
families of maps that we considered in Section 4.

For type (A), we need gcd(k, m) = 2, for otherwise k = 2 and so the map is
planar (and therefore orientable). Thus k = 2r and m = 2s with gcd(r, s) = 1,
and G is an extension of a cyclic group of order rs by C2 × C2, with presentation
〈X, Y | X2r = Y 2s = (XY )2 = [X2, Y 2] = 1 〉. Now in this group, each of X2

and Y 2 generates a cyclic normal subgroup, which by the above lemma contains no
involution, so r and s are both odd. The Euler-Poincaré formula now implies that
p = −χ(M) = |G|/4−|G|/2k−|G|/2m = rs− s− r = (r− 1)(s− 1)− 1 is congruent
to 3 mod 4. On the other hand, since r is odd and X2Y = Y X−2 (by Lemma 4.2),
we have XrY Xr = XY X−(r−1)Xr = XY X = Y −1, so conjugation by the involution
Xr inverts Y . Similarly, conjugation by the involution Y s inverts X. It follows that
XrY s is an involution that conjugates each of X and Y to its inverse, and hence one
such non-orientable map of type {2r, 2s} and characteristic r + s − rs exists for all
odd positive integers r and s. The maps N9.3 (of type {6, 10}) and N13.2 (of type
{6, 14}) are examples.

For type (B), we need k = 4 (since Xk/2 cannot be central), and so G is an
extension of a cyclic group of odd order v by PSL(2, 3) ∼= S4, with presentation
〈X, Y | X4 = Y 3v = (XY )2 = [X2, Y 3] = 1 〉. The Euler-Poincaré formula implies
that p = −χ(M) = |G|/4−|G|/8−|G|/6v = 3v−4 is congruent to 5 mod 6. On the
other hand, consider T = Y X2Y −1, which (as a conjugate of X2) is an involution.
Now also Y −2X is an involution, since the relations Y 3X = XY −3 (from Lemma 4.6)
and (Y X)2 = 1 imply Y −2X = Y Y −3X = Y XY 3 = X−1Y 2 = (Y −2X)−1. Thus
TX = Y X2Y −1X = X−1Y −1XY −1X, being conjugate to Y −2X, is an involution,
so TXT = X−1. Similarly TXY is an involution as well, since TXY = X−1TY =
X−1Y X2 = X−1(Y X)X, and therefore TXY T = (XY )−1. Hence T is an involution
that inverts each of X and XY by conjugation, and it follows that one such non-
orientable map of type {4, 3v} and characteristic 4−3v exists for every odd integer v.
In fact these maps are members of the family constructed in Example 3.1 of [8], with
Y X2Y −1 giving the ‘inner reflector’ in the quotient S4, and they include the maps
N7.2 (of type {4, 9}) and N13.1 (of type {4, 15}).

Finally, once again for types (C) and (D) the only examples have G ∼= A4 and A5,
which are impossible for negative Euler characteristic.

Thus we have the following, most of which was proved in [2]:

Theorem 7.2 Suppose M is a non-orientable regular map of characteristic −p, where
p is prime. Then up to duality, one of the following holds:
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(a) p ≡ 3 mod 4, and M has type {2r, 2s}, for r, s odd and p = rs− s− r,
(b) p ≡ 5 mod 6, and M has type {4, p + 4},
(c) p = 2, and M has type {4, 6},
(d) p = 3, and M has type {4, 5}, {4, 6}, {5, 5} or {6, 6},
(e) p = 5, and M has type {4, 6},
(f) p = 7, and M has type {3, 8},
(g) p = 13, and M has type {3, 7}.

Moreover, there is just one such map in each of cases (a), (b), (d), (e) and (g), while
there are two in cases (c) and (f). Hence in particular, if p is prime, p > 13 and
p ≡ 1 mod 12, then there exists no non-orientable regular map of characteristic −p.

8 The full classification

In this section, we complete the classification of orientably-regular maps M for which
|Auto(M)| is coprime to g − 1, where g is the genus of M , and hence obtain a full
classification of all orientably-regular maps of genus p + 1 where p is prime.

As previously, we suppose M has type {k,m}, and let X and Y be generators of
G = Auto(M) satisfying Xk = Y m = (XY )2 = 1, and also we let N = 〈X〉 ∩ 〈Y 〉.
The condition that |G| is coprime to g−1 implies that g is even, and that G is almost
Sylow-cyclic. Moreover, the quotient G/N is XY-disjoint, and so from Section 4 we
have a classification of all the possibilities for G/N when this is non-trivial, with
specific presentations for G/N in each case.

Here we drop the assumption that G is XY -disjoint, to allow the possibility that
N is non-trivial. Let n = |N | and h = |G/N |, and then let k = rn and m = sn, so
that r and s are the orders of the images of X and Y in the quotient G/N . When
G/N is of type (A2), we may suppose without loss of generality that v = s/2 is odd,
and so can take v to be odd in all four of the first cases from Table 1 in Section 4.

With the above notation assumed, we will use the following:

Lemma 8.1 If h > 1 then XhY h = 1.

Proof. Consider the transfer homomorphism f : G → N , given by x 7→ x|G:N | = xh

for all x ∈ G. If h > 1 then h = |G/N | is even (by what we found in Section 4), and
as XY has order 2 it follows that 1 = (XY )h = f(XY ) = f(X)f(Y ) = XhY h. �

Lemma 8.2 Let C be a cyclic group of order ab, where a, b > 1, and let B be its
unique subgroup of order b and index a. Suppose C has an (involutory) automorphism
that fixes B and inverts each element of the quotient C/B. Then gcd(a, b) = 1 or 2.
Hence, in particular, if a or b is odd then gcd(a, b) = 1. If, however, b is even and a
is divisible by 4, then b/2 is odd and gcd(a, b/2) = 1.

Proof. The given automorphism α of C takes x 7→ xe (for all x ∈ C) for some e
coprime to |C| = ab. Since α fixes B we have ae ≡ a mod ab, and since α inverts each
element of C/B we have e ≡ ja− 1 mod ab for some j. From these two congruences
we find that (ja − 2)a ≡ (e − 1)a ≡ 0 mod ab, and hence ja − 2 is a multiple of b.
This implies that gcd(a, b) divides 2, and the rest follows easily. �
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Corollary 8.3 If G/N is of type (A1), (A2), (B1) or (B2), as in Table 1 (with
v odd in case (A2)), then gcd(v, n) = 1; moreover, if G/N is of type (A2), then
gcd(u, n) = 1 whenever u or n is odd.

Proof. In each case, v is odd, and 〈Y 〉 contains a normal cyclic subgroup of order
vn, containing N . Call this subgroup C. Then since X = (XY )Y −1, conjugation
by X is an involutory automorphism of C, that induces the inversion mapping on
C/N (since G/N is dihedral in case (A1), and XY 2X−1 = Y −2 mod N in case (A2),
and XY 3X−1 = Y −3 mod N in cases (B1) and (B2)). As N is central, Lemma 8.2
applies, with B = N and (a, b) = (v, n), and since v is odd, this gives gcd(v, n) = 1.
Similarly, if u or n is odd in case (A2), then gcd(u, n) = 1. �

We can now proceed to the full classification:

Theorem 8.4 Suppose M is an orientably-regular map of type {k,m} and genus g
with orientation-preserving automorphism group G = Auto(M), having the property
that |G| is coprime to g − 1. Then up to duality, one of the following holds:
(A0) k = m = n, |G| = n, and g = n/4, for some n ≡ 0 mod 8,
(A1) k = 2n, m = vn, |G| = 2vn, and g = v(n− 1)/2, for some v and n such

that v is odd, n ≡ 1 mod 4, and gcd(v, n) = gcd(v + 2, n) = 1,
(A2) k = 2un, m = 2vn, |G| = 4uvn, and g = uvn− (u + v) + 1, for some u, v

and n such that gcd(u, v) = gcd(u + v, n) = 1, and either n is odd and
gcd(uv, n) = 1, or n ≡ 2 mod 4 and gcd(uv, n/2) = 1,

(B1) k = 4n, m = 3vn, |G| = 24vn, and g = 6vn− 3v − 3 for some v and n
such that v is odd, and gcd(3v, n) = gcd(3v + 4, n) = 1, and n 6≡ 0 mod 4,

(B2) k = 8n, m = 3vn, |G| = 48vn, and g = 12vn− 3v − 7 for some v and n
such that v and n are both odd, and gcd(3v, n) = gcd(3v + 8, n) = 1,

(C) k = m = 3n, |G| = 12n, and g = 3n− 3 for some odd n,
(D) k = 3n, m = 5n, |G| = 60n, and g = 15n− 15 for some n coprime to 30.

Moreover, there is just one such map for every choice of the parameters in each case,
and all of these maps are reflexible. Presentations for G are given in Table 2.

Type Additional relations in defining presentation for G

(A0) {n, n} XY = Y n/2

(A1) {2n, vn} X2vY 2v = 1

(A2) {2un, 2vn} [X2, Y 2] = X4uvY 4uv = 1, if n is odd,

or [X2, Y 2] = X4uvY 4uv = 1, Xun = Y vn, if n ≡ 2 mod 4

(B1) {4n, 3vn} [X2, Y 3] = X24vY 24v = 1, if n is odd,

or [X2, Y 3] = X24vY 24v = 1, X2n = Y 3vn/2, if n ≡ 2 mod 4

(B2) {8n, 3vn} [X4, Y ] = [X2, Y 3] = X48vY 48v = 1

(C) {3n, 3n} X12Y 12 = 1

(D) {3n, 5n} X60Y 60 = 1
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Table 2: Presentations for G = Auto(M) when |G| is coprime to g − 1

Proof. First, suppose |G/N | = h = 1. Then G = N is cyclic, and k = m = n = |G|,
and the Euler-Poincaré formula gives g − 1 = (m/2 − 1 − 1)/2 = m/4 − 1, so m/4
is even, say m = 8t. Hence the map has type {8t, 8t} and genus 2t. Also XY = Y 4t

and hence X = Y 4t−1, so clearly there is one such map for each positive integer t.
This accounts for item (A0).

From now on, we suppose h > 1. In all cases, the genus g can be calculated
from the Euler-Poincaré formula, and many of the conditions on the parameters
follow immediately from that (and the assumption that |G| is coprime to g). Also a
relation of the form XhY h = 1 in each case follows from Lemma 8.1, and the relations
[X2, Y 2] = 1 (in case (A2)) and [X2, Y 3] = 1 (in cases (B1) and (B2)) follow from
Lemma 2.6.

In case (A1) from Section 4, we have h = 2v and (r, s) = (2, v), where v is odd.
In this case 2(g− 1) = v(n− 1)− 2, and as this must be twice an odd integer, we find
n ≡ 1 mod 4. Also Corollary 8.3 tells us that gcd(v, n) = 1. The relation X2vY 2v = 1
(from Lemma 8.1) can be rewritten as (X2)v = (Y v)2, and because gcd(n, 2v) = 1,
this expresses X2 as a power of Y v in N and vice versa.

In case (A2), we have h = 4uv and (r, s) = (2u, 2v), with gcd(2u, v) = 1.

If n is odd, then Corollary 8.3 gives gcd(u, n) = gcd(v, n) = 1, so gcd(uv, n) = 1.
Accordingly, the relation X4uvY 4uv = 1 rewritten as (X2u)2v(Y 2v)2u = 1 expresses
X2u as a power of Y 2v in N , and vice versa. On the other hand, if n is even, then
gcd(v, n) = 1 by Corollary 8.3, and also u is even, since gcd(u + v, n) = 1 by the
genus calculation. Next, as the 2-part of |G| divides 2un, some power of X generates
a cyclic group C of index 2 in a Sylow 2-subgroup H of G, and conjugation by an
element z of H\C is an involutory automorphism α of C that centralizes B = C ∩N .
Moreover, in the dihedral quotient G/〈Y 2〉, the image of z inverts all elements of
the image of C, which is C〈Y 2〉/〈Y 2〉 ∼= C/(C ∩ 〈Y 2〉) = C/B. Thus Lemma 8.2
applies, with a = |C/B| divisible by 4 since u is even, and with b as the 2-part
of n. It follows that b/2 is odd, so n/2 is odd, hence gcd(2u, n/2) = 1, and thus
gcd(h, n/2) = gcd(2uv, n/2) = 1. When taken together with the obvious relation
Xun = Y vn (giving the central involution of N), the relation X4uvY 4uv = 1 rewritten
as (X2u)2v(Y 2v)2u = 1 is now enough to express X2u and Y 2v in terms of each other
in N . This gives the presentations for type (A2) in Table 2.

In case (B1), we have h = 24v and (r, s) = (4, 3v), where v is odd. The relation
X24vY 24v = 1 tells us that (X4)6v and (Y 3v)8 are inverse elements of N . As these have
orders n/gcd(n, 6v) and n/gcd(n, 8) respectively, we find that gcd(n, 6v) = gcd(n, 8),
which must be at most 2. In particular, this implies that gcd(n, 3v) = 1. If n is odd,
then X24vY 24v = 1 expresses X4 as a power of Y 3v and vice versa. On the other
hand, if n is even, then as in case (A2) some power of X generates a cyclic group C
having index 2 in a Sylow subgroup H of G, and conjugation by an element of H\C
is an involutory automorphism α of C that centralizes B = C ∩N . Here α inverts all
elements of C/B since a Sylow 2-subgroup of the quotient G/N ∼= S4 is dihedral. By
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Lemma 8.2 with a = |C/B| = 4, we find that n/2 is odd. When taken together with
the obvious relation X2n = Y 3vn/2 (giving the central involution of N), the relation
(X4)6v(Y 3v)8 = 1 is now enough to express X4 and Y 3v in terms of each other in N .

In case (B2), we have h = 48v, with r = 8 and s = 3v, where v is odd. The relation
1 = X48vY 48v = (X8)6v(Y 3v)16 tells us that gcd(n, 6v) = gcd(n, 12), which must be
at most 2, and hence gcd(n, 3v) = 1. Here Co(X) = 〈X4〉 and Co(Y ) = 〈Y 3〉, and
Lemma 2.6 shows that Y 2 centralizes Co(X) and X2 centralizes Co(Y ). It follows
that X4 commutes with both Y 2 and Y 3, and so commutes with Y . Thus X4 is
central. Now we can use Lemma 8.2 applied to a Sylow 2-subgroup C of 〈X〉 and a
subgroup B of index 4 in C (containing C ∩〈X4〉), with b as the 2-part of 2n, and get
gcd(4, b/2) = 1, from which it follows that n is odd. In particular, Y has odd order,
so X48vY 48v = 1 expresses X8 as a power of Y 3v and vice versa.

In case (C), we have h = 12 and r = s = 3. The genus calculation shows n is odd,
and the relation X12Y 12 = 1 tells us that X3 and Y 3 are elements of N whose 4th
powers are mutually inverse (and in fact implies X3Y 3 = 1). This gives item (g).

Similarly, in case (D), where h = 12 and (r, s) = (3, 5), and n is odd (by the
genus calculation). The relation X60Y 60 = 1 gives (X3)20 = (Y 5)−12 (and in fact
implies X15Y 15 = 1). This expresses X3 and Y 5 in terms of each other in N , and
also gives gcd(n, 5) = 1 and gcd(n, 3) = 1, so gcd(n, 30) = 1. In particular, by
Schur-Zassenhaus, G ∼= Cn × A5.

This completes the classification. Reflexibility of the maps follows from the fact
that the relations in the defining presentations for the group G = Auto(M) in each
case are all preserved by replacing X and Y by their inverses. �

Finally we have the following consequence of this classification:

Corollary 8.5 Suppose M is an orientably-regular map of genus p + 1 where p is
prime. Then up to duality:
(a) M is one of the chiral maps described in Theorem 3.1, or
(b) M is one of the reflexible maps described in Theorem 8.4, or
(c) M is one of the reflexible maps of genus 3, 4, 6, 8, 12 or 14 listed in [7] and

not already included in case (b).
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[2] A.B. d’Azevedo, R. Nedela and J. Širáň, Classification of regular maps of negative
prime Euler characteristic, Trans. Amer. Math. Soc. 357 (2005), 4175–4190.

[3] M. Belolipetsky and G.A. Jones, Automorphism groups of Riemann surfaces of
genus p + 1, where p is prime, Glasg. Math. J. 47 (2005), 379–393.

22



[4] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The
User Language, J. Symbolic Computation 24 (1997), 235–265.

[5] H.R. Brahana, Regular maps and their groups, Amer. J. Math. 49 (1927), 268–
284.

[6] M.D.E. Conder, Regular maps and hypermaps of Euler characteristic −1
to −200, preprint, with associated lists of computational data available at
http://www.math.auckland.ac.nz/∼conder/hypermaps.html.
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