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Abstract

In this paper, properties of reflexible Cayley maps for abelian groups are in-

vestigated, and as a result, it is shown that a regular Cayley map of valency

greater than 2 for a cyclic group is reflexible if and only if it is anti-balanced.
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1 Introduction

Let G be a finite group and let X be a symmetric and unit-free generating set of G,

by which we mean that X contains the inverse of each of its elements, but does not
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contain the identity element of G. The Cayley graph C(G,X) for the pair (G,X) has

vertex set G, with any two vertices g, h ∈ G joined by an edge whenever g−1h ∈ X,

or, equivalently, h−1g ∈ X. It follows that the Cayley graphs considered in this article

are finite, connected, undirected, and simple (with no loops or multiple edges).

We will be interested in particular embeddings of Cayley graphs on surfaces. In

general, it is well known that to cellularly embed a connected simple graph on a compact

orientable surface, one just needs to specify, at every vertex, a cyclic ordering of edges

emanating from the vertex. The resulting embedding is often simply called a map.

A graph automorphism that also preserves 2-cells (faces) of the embedding and the

orientation of the surface is a map automorphism. If the group of orientation-preserving

automorphisms of an embedding acts transitively on incident vertex-edge pairs, then

this action must be regular and, accordingly, the embedding (map) is called regular

(or sometimes rotary). In addition, the map is said to be reflexible if it admits an

automorphism that reverses the orientation of the surface.

In the case of a Cayley graph C(G,X), all edges incident to a vertex g ∈ G have

the form {g, gx} where x ∈ X. Hence to describe an embedding of a Cayley graph in

an orientable surface, it is sufficient to specify a cyclic order of the generators at each

vertex. If this cyclic order is the same at each vertex, given by a cyclic permutation p of

the set X, then the embedding is called a Cayley map, and is denoted by CM(G,X, p).

Since left multiplication by any fixed element of G induces an orientation-preserving

automorphism of CM(G,X, p), Cayley maps are automatically vertex-transitive, with

the group G acting regularly on vertices. Such a map may, of course, admit additional

automorphisms.

The study of maps that are both Cayley and regular has been very fruitful from

both combinatorial as well as group-theoretic perspectives. A substantial survey paper

about Cayley maps and their role in the study of embeddings with a ‘high level of

symmetry’ can be found in [9].

Properties of the permutation p which (from the point of view of the entire map)

may be considered ‘local’, can often induce important ‘global’ properties of the Cayley

map. For example, regularity of a Cayley map is equivalent to p satisfying a certain

system of identities [4], subsequently re-stated in terms of so-called skew morphisms

[5] (which we will introduce later). Such characterizations simplify greatly under addi-

tional and quite natural assumptions on p. As an important example of such a situation,

we have the family of Cayley maps CM(G,X, p) that are balanced [10], meaning that

p satisfies p(x−1) = (p(x))−1 for all x ∈ X. By the main result of [10], a regular Cayley

map CM(G,X, p) is balanced if and only if some automorphism of G coincides with p

when restricted to the set X, which is equivalent to the condition that G is a normal
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subgroup of the map automorphism group of the Cayley map. A result of a similar

type was proved in [11] for Cayley maps satisfying p(x−1) = (p−1(x))−1 for all x ∈ X,

and these maps are called anti-balanced.

Historically, the first important class of regular Cayley maps was obtained in the

course of construction and classification of regular embeddings of complete graphs;

see [1] and references therein. By later findings [6] we know that, in fact, all regular

embeddings of complete graphs are balanced Cayley maps (for additive groups of finite

fields). Investigation of balanced Cayley maps for abelian groups was later taken quite

far in [2], and led to a complete characterization of their existence (in terms of ‘balanced

automorphisms’) in [7]. Further extensions of the theory to not necessarily balanced

Cayley maps on abelian groups can be found in [8]. Based on the evidence from these

three papers, we would like to emphasise that, even for cyclic groups, questions about

existence of regular Cayley maps with specified properties are far from trivial.

In this paper we investigate in detail properties of reflexible Cayley maps for abelian

groups. As the main (and rather surprising) result, we prove that a regular Cayley map

of valency at least three on a cyclic group is reflexible if and only if it is anti-balanced.

2 Preliminaries

Let G be a finite group. Consider a permutation ϕ of G of order d (in the full symmetric

group Sym(G)) and a function π from G to the cyclic group Zd. The function ϕ is

said to be a skew-morphism of G, with associated power function π, if ϕ fixes the unit

element of G and

ϕ(ab) = ϕ(a)ϕπ(a)(b) for all a, b ∈ G.

Here ϕj stands for the composition ϕ ◦ · · · ◦ ϕ consisting of j terms. Skew-morphisms

and power functions were introduced in [5], where it was also proved that a Cayley

map CM(G,X, p) is regular if and only if there exists a skew-morphism ϕ of G such

that ϕ(x) = p(x) for each x ∈ X.

From now on, all Cayley graphs will be assumed to have valency greater than 2,

since Cayley graphs of valency 2 are just simple cycles, and the corresponding Cayley

maps are of genus 0 and reflexible. For a given finite group G with a symmetric, unit-

free generating set X, and for a regular Cayley map M = CM(G,X, p), we will always

use ϕ and π to denote respectively the skew-morphism of M with the property that the

restriction of ϕ to X is p, and the associated power function. We will use d to denote

the valency of M, and identify the integers 0, 1, . . . , d − 1 with their residue classes

modulo d when the context permits. In particular, it follows from [5] that we may view

the power function π as a function from G to Zd. Also, if p = (x0, x1, . . . , xd−1), then
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we will let c(k) ∈ Zd be the subscript of x−1
k , so that x−1

k = xc(k) for any k ∈ Zd. Then

for all k ∈ Zd we have 1G = ϕ(1G) = ϕ(xkx
−1
k ) = ϕ(xk)ϕ

π(xk)(x−1
k ) = xk+1ϕ

π(xk)(xc(k)),

which implies ϕπ(xk)(xc(k)) = x−1
k+1 = xc(k+1); and thus π(xk) = c(k + 1) − c(k) for all

k ∈ Zd.

By an arc of a Cayley graph C(G,X) we will mean any pair of the form (g, gx)

for g ∈ G and x ∈ X, which represents just an ‘edge with a direction’. The following

observation will be useful later on.

Lemma 2.1 Let M = CM(G,X, p), with p = (x0, x1, . . . , xd−1), be a d-valent reflex-

ible Cayley map for the finite group G, and let ψ be an orientation-reversing auto-

morphism of M. If ψ takes the arc (g, gxi) to the arc (h, hxj), then ψ takes gxixk to

hxjxc(j)+c(i)−k for all k ∈ Zd.

Proof: This is easily seen from the following diagram, using the fact that the rotation

p = (x0, x1, . . . , xd−1) of edge-labels is the same at each vertex:
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Note that the (k−c(i))th power of the rotation at vertex gxi takes g = gxixc(i) to

gxixk, while the (c(i)−k)th power of the rotation at vertex hxj takes h = hxjxc(j) to

hxjxc(j)+c(i)−k, which must therefore be the image of gxixk under ψ.

It follows from [5] that all values of a power function π are non-zero. Although

the power function need not be a group homomorphism, we will still use the notation

ker π, but here for the set of all g ∈ G such that π(g) = 1. Note that by another result

from [5], ker π is always a subgroup of G.

Power functions also lead to an important generalization of the concepts of balanced

and anti-balanced Cayley maps. We say [2] that a Cayley map CM(G,X, p) is t-

balanced if the associated power function π satisfies π(x) = t for all x ∈ X. Balanced
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and anti-balanced Cayley maps turn out to be special cases of this definition for t = 1

and t = −1, respectively.

We continue with the following observation, which can be obtained from the proof

of [3, Theorem 5.4]:

Proposition 2.2 Let M = CM(A,X, p) be a regular Cayley map for the finite abelian

group A, with associated skew-morphism ϕ. If the power function π takes ℓ distinct

values on the generating set X, then ℓ divides |X|, and for any x ∈ X the ℓ elements

x, ϕ(x), ϕ2(x), . . . , ϕℓ−1(x) belong to mutually distinct cosets of ker π, while ϕi(x) and

ϕi+ℓ(x) belong to the same coset of ker π for all i; in particular, if p = (x0, x1, . . . , xd−1)

then the values π(x0), π(x1), . . . , π(xd−1) repeat with period ℓ.

Note that in the special case where ℓ = 1 (so that π is constant on X), either M is

balanced, or M is t-balanced for some t 6= 1 (with π(x) = t for all x ∈ X).

In the next Section, we will investigate the properties of certain orientation-reversing

automorphisms (reflections) of a reflexible Cayley map M = CM(A,X, p) for a finite

abelian group A, and then in the subsequent Section, we will prove that if A is cyclic

then ℓ = 1 and π(x) = d− 1 for all x ∈ X, so that M is anti-balanced.

3 Reflexible Cayley maps for abelian groups

In this Section we make the following critical observation:

Proposition 3.1 Let M = CM(A,X, p) be a regular Cayley map for the abelian

group A, and suppose M is reflexible. Let ψ : A → A be any orientation-reversing

automorphism of the map M that fixes the identity vertex 1A, and takes x to x−1 for

some x ∈ X. Then ψ induces a group automorphism of the vertex-regular subgroup A

of Aut(M).

Proof: First let p = (x0, x1, . . . , xd−1), and without loss of generality, let x = x0.

Also let u = c(0), so that xu = x−1
0 = x−1, and then from the choice of ψ it follows

that ψ(xk) = xu−k for all k ∈ Zd. Moreover, inspection of the rotations at vertices x0

and xu (using Lemma 2.1) shows that ψ takes x0xk to xuxu−k, and then inspection of

the rotations at those two vertices shows that

ψ(x0xkxu) = ψ(x0xkxc(k)+(u−c(k))) = xuxu−kxc(u−k)−(u−c(k)) = xuxu−kxc(u−k)−u+c(k).

But x0xkxu = x0xkx
−1
0 = xk (since A is abelian), so this implies that

xu−k = ψ(xk) = ψ(x0xkxu) = xuxu−kxc(u−k)−u+c(k),
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and hence x0 = x−1
u = xc(u−k)−u+c(k), which gives c(u − k) = u − c(k), for all k ∈ Zd.

In particular, ψ(x−1
k ) = ψ(xc(k)) = xu−c(k) = xc(u−k) = x−1

u−k = ψ(xk)
−1 for all k ∈ Zd.

But further, by Lemma 2.1 with g = h = 1A we find that

ψ(xixk) = xu−ixc(u−i)+c(i)−k = xu−ixu−c(i)+c(i)−k = xu−ixu−k = ψ(xi)ψ(xk)

for all i, k ∈ Zd, and it follows by induction (and Lemma 2.1) that ψ(axk) = ψ(a)ψ(xk)

for all a ∈ A and all k ∈ Zd, and hence that ψ induces an automorphism of A.

Note that in the above proof, x = x0 can be chosen as any of the elements of the

generating set X. In particular, if x is an involution, then c(0) = 0, and the ‘axis’ of

the reflection ψ contains the arc (1A, x). Hence if A is an elementary abelian 2-group

of order 2d, then the Cayley map M has many such reflections. On the other hand, if

A is cyclic, then the number of possible reflections (that take an element x ∈ X to its

inverse) is limited, as we will see at the beginning of the next Section.

It is also easy to prove the following:

Theorem 3.2 If M = CM(A,X, p) is an anti-balanced regular Cayley map for the

finite abelian group A, then M is reflexible.

Proof: If p = (x0, x1, . . . , xd−1) then since M is anti-balanced, we may suppose that

xi = x−1
d−1−i for all i ∈ Zd. It follows that the automorphism of A taking x to x−1 for

all x ∈ A gives an automorphism of the underlying graph of M compatible with p,

and hence an orientation-reversing automorphism of M.

4 Reflexible Cayley maps for cyclic groups

We begin by establishing a property of every regular Cayley map for a finite cyclic

group A, that needs only the fact that Aut(A) is abelian. (Recall that if A is cyclic

of order n, generated by a element w, then every automorphism of A is given by the

assignment w 7→ wα for some unit α ∈ Zn, and any two such automorphisms commute.)

Proposition 4.1 Let M = CM(A,X, p = (x0, x1, . . . , xd−1)) be a reflexible d-valent

regular Cayley map for a cyclic group A. Also let ψ be an orientation-reversing auto-

morphism of M that fixes the identity vertex 1A, and takes xi to xu−i for all i ∈ Zd,

where xu = x−1
0 (as in the proof of Proposition 3.1). Then if τ is any orientation-

reversing automorphism of M that takes some xs to its inverse x−1
s = xc(s), then

2(s+ c(s)) ≡ 2u mod d, so either s+ c(s) ≡ u mod d, or d is even and s+ c(s) ≡ u+ d
2

mod d; in particular, either τ = ψ, or d is even and τ takes xi to x d

2
+u−i for all i ∈ Zd.
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Proof: First since τ is an orientation-reversing automorphism fixing 1A and taking

xs to xc(s), we see that τ(xi) = xs+c(s)−i for all i ∈ Zd. Next, since Aut(A) is abelian, ψ

and τ commute, so xu−(s+c(s)−k) = ψ(τ(xk)) = τ(ψ(xk)) = xs+c(s)−(u−k) for all k ∈ Zd,

and it follows that 2(s+ c(s)) ≡ 2u mod d. The rest follows easily.

Corollary 4.2 Let M = CM(A,X, p) be a reflexible d-valent regular Cayley map for

the cyclic group A. Then either M is anti-balanced, or d is even and M is (d
2
−1)-

balanced, or d is even and the power function of the skew-morphism ϕ of A associated

with M takes just two values −1 and d
2
−1 on the generating set X, and these alternate

for π(xi) as i runs through Zd in the natural order 0, 1, 2, . . . , d−1. In particular, every

reflexible regular Cayley map of odd valency for a cyclic group A is anti-balanced.

Proof: Let p, u and ψ be as given in Proposition 4.1, and let π be the associated

power function of ϕ. Then we know that for any s ∈ Zd, either c(s) = u − s or
d
2

+ u − s (where d has to be even in the latter case). If c(s) = u − s for all s then

π(xk) = c(k+1) − c(k) = (u− (k+1)) − (u−k) = −1 for all k ∈ Zd, and so M

is anti-balanced. If not, then d is even, and π(xk) = c(k+1) − c(k) can differ from

(u− (k+1)) − (u−k) = −1 by d
2
. If π(xk) = d

2
−1 for all k ∈ Zd (which would

occur for example when c(s) = u − s for all even s and c(s) = d
2

+ u − s for all

odd s), then M is (d
2
−1)-balanced. Otherwise π takes both values −1 and d

2
−1 on

X, and by Proposition 2.2, the values π(x0), π(x1), . . . , π(xd−1) repeat with period 2.

Geometrically, when π takes values −1 and d
2
−1 on X, there are two reflections of

interest, viz. ψ : xi 7→ xu−i and τ : xi 7→ x d

2
+u−i, and these have orthogonal axes.

We will show that every reflexible regular Cayley map M = CM(Cn, X, p) of

valency greater than 2 for a cyclic group Cn (of order n) admits only one such reflection,

and is therefore anti-balanced. In doing this, we will use p = (x0, x1, . . . , xd−1) and

other notation as given in the previous Section. Also we will suppose that d is even,

and define two sets U and V as follows:

U = { xk ∈ X | k + c(k) ≡ u mod d } and V = { xk ∈ X | k + c(k) ≡ d
2
+u mod d }.

We are assuming that U is non-empty, and by Proposition 4.1, we know that X is

a disjoint union of U and V . Moreover, for each i ∈ Zd, either xi and x−1
i = xc(i) both

lie in U, or both lie in V . On the other hand, since d is even, and Cn contains at most

one element of order 2, we may suppose that x−1
i 6= xi (and so c(i) 6= i) for all i ∈ Zd.
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Also if U = X then M is anti-balanced, so we will assume that V is non-empty.

Then by Corollary 4.2, we know that either M is (d
2
−1)-balanced (with π(xi) = d

2
−1

for all i ∈ Zd), or the values π(x0), π(x1), . . . , π(xd−1) alternate between −1 and d
2
−1.

We are going to rule out each of these two possibilities.

Corresponding to U is a reflection ψ taking xi to xu−i for all i ∈ Zd, with the

property that ψ(xk) = xu−k = xc(k) = x−1
k whenever xk ∈ U . By Proposition 3.1,

this reflection ψ induces an automorphism of Cn = 〈w〉, and so there exists some unit

α ∈ Zn such that ψ(wi) = wiα for all i ∈ Zn. In particular, xα
k = ψ(xk) = x−1

k whenever

xk ∈ U . Also U cannot generate Cn, for otherwise ψ would invert every element of X,

and then we would find that xu−k = ψ(xk) = x−1
k = xc(k) for all xk ∈ X, giving U = X.

Similarly, corresponding to V is a reflection τ taking xi to x d

2
+u−i for all i ∈ Zd,

and there is a unit β ∈ Zn such that ψ(wi) = wiβ for all i ∈ Zn, with xβ
k = τ(xk) = x−1

k

whenever xk ∈ V , and it follows that V cannot generate Cn.

On the other hand, X = U ∪ V generates Cn, so at least one of 〈U〉 and 〈V 〉 has

odd index in Cn, and without loss of generality we may suppose this is true for 〈V 〉.

In particular, if x is any element of Cn for which x2 ∈ 〈V 〉, then also x ∈ 〈V 〉.

We are now ready to consider the two cases we wish to eliminate:

Case (1) π(xi) = d
2
−1 for all i ∈ Zd

Here we know that xi ∈ U (and c(i) = u− i) whenever i is even, while xj ∈ V (and

c(j) = d
2

+ u− j) whenever j is odd, in order for π to have constant value d
2
−1 on the

generating set X. In particular, the skew morphism ϕ associated with M interchanges

elements of U with elements of V .

If u is odd, then one of xu−1

2

and xu−1

2
+1 = xu+1

2

lies in U , but then since u−1
2

+ u+1
2

=

u, also the other one lies in U , which is impossible. Hence u is even.

Similarly, as X contains no involutions, we find that xu

2
= xu−u

2
cannot lie in U , so

xu

2
lies in V and c(u

2
) = d

2
+ u− u

2
.

Next, since M is (d
2
−1)-balanced, we know that (d

2
− 1)2 ≡ 1 mod d, and then

since d is even, it follows that d
2

must be even, so d ≡ 0 mod 4. Now consider c(d
4
+ u

2
).

Either c(d
4
+ u

2
) ≡ u−(d

4
+u

2
) ≡ u

2
− d

4
mod d, or c(d

4
+ u

2
) ≡ d

2
+u−(d

4
+u

2
) ≡ d

4
+ u

2
mod d,

depending on whether x d

4
+ u

2

lies in U or V . The latter is impossible since c(i) 6= i for

all i ∈ Zd, so c(d
4

+ u
2
) ≡ u

2
− d

4
mod d, and in particular, x d

4
+ u

2

must lie in U . As xu

2

lies in V , it follows that d
4

is odd, so d ≡ 4 mod 8. In particular, d
4
(d

2
− 1) ≡ d

4
mod d.

Accordingly, because π(x) = d
2
− 1 for all x ∈ X, we find that

ϕ
d

4 (xixj) = ϕ
d

4 (xi)ϕ
d

4
(d

2
−1)(xj) = ϕ

d

4 (xi)ϕ
d

4 (xj) for all xi, xj ∈ X,

and hence by induction that ϕ
d

4 is a group automorphism of Cn.
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But d
4

is odd, so ϕ
d

4 (like ϕ) interchanges elements of U with elements of V , and

hence U and V must generate the same proper cyclic subgroup of Cn; that, however,

is impossible since X = U ∪ V generates Cn. Hence this case can be eliminated.

Case (2) The values π(x0), π(x1), . . . , π(xd−1) alternate between −1 and d
2
−1

Here, since we have assumed that x0 lies in U , we may suppose without loss of

generality that xi ∈ U (and c(i) = u − i) whenever i ≡ 0 or 1 mod 4, while xj ∈ V

(and c(j) = d
2

+ u − j) whenever j ≡ 2 or 3 mod 4. In particular, d is divisible by 4.

Moreover, xu = xc(0) and xu−1 = xc(1) both lie in U (since x0 and x1 lie in U), so we

find that u− 1 ≡ 0 mod 4, and u ≡ 1 mod 4.

Now consider xi for any i ≡ 1 mod 4, so that xi−1 and xi lie in U while xi−2, xi+1

and xi+2 all lie in V . Then π(xi−1) ≡ c(i)− c(i−1) ≡ (u−i)− (u−(i−1)) ≡ −1 mod d,

and similarly π(xi+1) ≡ c(i+2)− c(i+1) ≡ (d
2
+u−(i+2))− (d

2
+u−(i+1)) ≡ −1 mod d,

so

x2
i = ϕ(xi−1)ϕ

−1(xi+1) = ϕ(xi−1xi+1) = ϕ(xi+1xi−1) = ϕ(xi+1)ϕ
−1(xi−1) = xi+2xi−2.

Thus x2
i = xi+2xi−2 ∈ 〈V 〉, and as 〈V 〉 has odd index in Cn, it follows that xi ∈ 〈V 〉.

On the other hand, xu−i = xc(i) and xu−i+1 = xc(i−1) both lie in U (since xi−1 and xi

lie in U), so u − i ≡ 0 mod 4 and u − i + 1 ≡ 1 mod 4, so by the above argument

〈V 〉 contains xu−i+1 = xc(i−1) = x−1
i−1. Thus 〈V 〉 contains both xi−1 and xi whenever

i ≡ 1 mod 4, so 〈V 〉 contains all elements of U , which is another contradiction, and

eliminates this case.

Hence we have proved the following:

Theorem 4.3 If M = CM(Cn, X, p) is a reflexible regular Cayley map of valency

greater than 2 for the cyclic group Cn, then M is anti-balanced.

Putting this together with Theorem 3.2, we have the following:

Theorem 4.4 A regular Cayley map of valency greater than 2 for a finite cyclic group

is reflexible if and only if it is anti-balanced.

5 Concluding remarks

An obvious question is how far these results extend to other groups, or at least to other

abelian groups. The answer appears to be “a very limited extent”. There exist reflex-

ible balanced regular Cayley maps for non-cyclic abelian groups, including elementary

abelian p-groups and other abelian groups of non-prime-power order (such as 18, 20,

9



24, 28, 36, 40, 44, 45, 48 and 50), and also there exist reflexible regular Cayley maps

for non-cyclic abelian groups that are t-balanced for some t 6= ±1, and others that

are not t-balanced for any t (such as unbalanced but reflexible regular Cayley maps

for abelian groups of order 32 and 64). On the other hand, there exist anti-balanced

regular Cayley maps for non-abelian groups that are chiral (irreflexible), such as non-

abelian groups of order 36, 40, 42, 60, 64, 72, 80 and 96. Hence it is difficult to see

how the above theorems can be taken further.
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