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Abstract

This paper gives a brief summary of various aspects of combinatorial group theory
and associated computational methods, with special reference to finitely-presented
groups and their applications, found useful in the study of graphs, maps and poly-
topes having maximal symmetry. Recent results include the determination of all
arc-transitive cubic graphs on up to 2048 vertices, and of all regular maps of genus
2 to 100, and construction of the first known examples of finite chiral 5-polytopes.
Moreover, patterns in the maps data have led to new theorems about the genus spec-
trum of chiral maps and regular maps with simple underlying graph.

2000 Mathematics Subject Classification: 20B25 (primary), 05C25, 20F05,
52B15, 57M60 (secondary).

1 Introduction

This paper is intended to give a brief summary of various aspects of combinatorial group
theory and associated computational methods that have proved useful (to the author, at
least) in the study of graphs, maps and polytopes having maximum possible symmetry
under certain conditions. It extends (and updates) an earlier summary given in [9], but is
not intended to be a comprehensive survey, by any means. Our aim is to provide examples
of potential interest to students and others wishing to learn about the use of such theory
and methods, together with some references to places where further details are available.
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Special focus is given to finitely-presented groups and means of investigating them (and
their subgroups of finite index and quotients of finite order), with numerous applications.

We begin by giving some background on symmetries of discrete structures and their
connection with certain finitely-presented groups, in Section 2. Then in Section 3 we briefly
describe some ways in which Schreier coset diagrams can be used to depict and construct
homomorphic images of these groups, and give some applications to exhibit the remarkable
power of such an approach. We summarise a number of computational procedures for
handling finitely-presented groups in Section 4, and then look at the particular case of
methods for finding subgroups of small index and quotient of small order, in Section 5.
Finally, we describe a theorem of Schur about centre-by-finite groups and its use in these
contexts in Section 6, and complete the paper by announcing some recent results about
the genus spectra of various classes of arc-transitive maps in Section 7.

2 Background: symmetries of discrete structures, and
connections with finitely-presented groups

2.1 Symmetric graphs

An automorphism of a (combinatorial) graph X = (V| E) is any permutation of its vertices
that preserves adjacency. Under composition, the set of all automorphisms of X forms a
group known as the automorphism group of X and denoted by Aut X. A graph X is called
vertex-transitive, edge-transitive or arc-transitive automorphism group Aut X has a single
orbit on the set of vertices, edges or arcs (ordered edges) of X, respectively. Graphs which
are arc-transitive are also called symmetric, and any graph that is edge-transitive but not
vertex-transitive is called semisymmetric.

More generally, for any positive integer s, an s-arc in a graph X is a directed walk
of length s which never includes the reverse of an arc just crossed — that is, an ordered
(s+1)-tuple of vertices (vg, v1, V2, . .., Vs_1, Us) such that any two consecutive v; are adjacent
in X and any three consecutive v; are distinct. A graph X is then called s-arc-transitive
if Aut X has a single orbit on the set of arcs of X. For example, circuit graphs are s-arc-
transitive for all s, while the Petersen graph and all complete graphs on more than three
vertices are 2-arc-transitive but not 3-arc-transitive.

The situation for arc-transitive 3-valent graphs (also called symmetric cubic graphs) is
particularly interesting. In [32, 33] Tutte proved that if G is the automorphism group of
a finite symmetric cubic graph, then G is sharply-transitive on the set of s-arcs of X for
some s < 5 (in which case X is called s-arc-reqular). The smallest example of a finite
5-arc-regular cubic graph is Tutte’s 8-cage, on 30 vertices, depicted in Figure 1.

By further theory of symmetric cubic graphs (developed by Tutte, Goldschmidt, et al),
it is now known that if X is a 5-arc-regular cubic graph, then Aut X is a homomorphic



image of the finitely-presented group

G5 = (h,a,p,q,r,s|h3:a2=p2:q2:7“2282:1,
pq =qp, pr =71p, pS =8P, qr =714, 4S5 = 8¢, ST = Pqrs,
ap = qa, ar = sa, h™'ph =p, h='qh =r, h='rh =pqr, shs =h"'),
with the subgroups H = (h,p,q,r,s), A={a,p,q,r,s) and HN A= (p,q,r,s) mapping
to the stabilizers of a vertex, edge and arc, respectively.

Figure 1: Tutte’s 8-cage

Conversely, given any epimorphism #: G5 — G to a finite group G, with torsion-free
kernel K, a cubic graph X may be constructed on which G acts 5-arc-regularly: Take
as vertices the right cosets of V' = HK in G5, and join Vx to Vy by an edge whenever
xy~ !t € VaV. Under right multiplication by G35, the stabilizer of the vertex V is V, which
induces Ss on the neighbourhood {Ha, Hah, Hah™'} of H, and the group induced on X is
Gs/K = G. Thus 5-arc-regular cubic graphs correspond to non-degenerate homomorphic
images of the group Gs. See [18] for further details.

Tutte’s work for symmetric 3-valent graphs was extended by Richard Weiss to the study
of finite symmetric graphs of arbitrary valency, using the classification of doubly-transitive
permutation groups. In particular, Weiss proved the following generalisation of Tutte’s
theorem in [34, 35]:

Theorem 1 (Weiss, 1981 & 1987) There are no finite k-arc-transitive graphs of degree > 2
for k > 8. Moreover, if X is a finite T-arc-transitive graph of degree d > 2, then d = 3t +1
for some positive integer t, and G = Aut X is obtainable as a homomorphic image of a
certain finitely-presented group Rgr.

For example, R47 has a presentation in terms of generators p, q,r, s, t, u, v, h, b subject
to defining relations that include h* = p3 = @@ =13 = s =3 = u® = 02 = b = 1,
(hu)? = (wv)? = (huv)? = [h?,u] = [h*,v] = 1, [s,t] = p, [¢,7] = 1, and so on, and
the automorphism group of every finite 7-arc-transitive 4-valent graph is a non-degenerate
homomorphic image of this group Ry ;.



2.2 Regular maps

A map is a 2-cell embedding of a connected (multi)graph in a surface, and an automorphism
of a map M is any permutation of its edges that preserves indicence. A map M is called
reqular if its automorphism group Aut M is sharply-transitive (regular) on flags, that is,
on incident vertex-edge-face triples. Similarly, a map M on an orientable surface is called
rotary (or orientably-regular) if the group of all its orientation-preserving automorphisms
is transitive on the ordered edges of M.

If M is rotary or regular then every face has the same number of edges (say p) and
every vertex has the same valency (say ¢), and M has type {p,q}. Regular maps of
type {p, q} correspond to non-degenerate homomorphic images of the full (2, p, ¢) triangle
group A = (a,b,c | a®> = b* = ¢ = (ab)? = (bc)? = (ac)? = 1); the image of {(a,b)
gives the stabilizer of a vertex v, the image of (a, ) gives the stabilizer of an edge e, and
the image of (b, c) gives the stabilizer of a face f, where (v, e, f) is a flag, and incidence
corresponds to non-empty intersection of cosets. Similarly, rotary maps of type {p,q}
correspond to non-degenerate homomorphic images of the ordinary (2, p, ¢) triangle group
N = (z,y,z| 2P =y? =22 =xyz = 1), which has index 2 in A (when z,y, 2 are taken as
ab, be, ca respectively). See [12] for further details.

If the rotary map M of type {p,q} admits no orientation-reversing automorphisms,
then M is said to be irreflexible, or chiral, and Aut M is a quotient of the ordinary (2, p, q)
triangle group A° but not the full (2,p,q) triangle group A. In that case, the kernel K
of the corresponding epimorphism 6 : A° — Aut M is not normal in A. Indeed if M is
rotary and 6: A — Aut M is the corresponding non-degenerate homomorphism, then M
is reflexible if and only if K is normalized by any element a € A\ A’

A = {(a,b,c)

A° = {ab, bc, ca)

Ka

KnNnK*

Figure 2: Chirality in terms of normal subgroups of A°

If the subgroup K is not so normalized, then the rotary map M is chiral and K¢ is the
kernel of the corresponding epimorphism for the mirror image of M.
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2.3 Abstract polytopes

An abstract polytope of rank n is a partially ordered set P endowed with a strictly monotone
rank function having range {—1,...,n}. The elements of rank 0,1 and n — 1 are called
the vertices, edges and facets of the polytope, respectively. For —1 < j7 < n, elements of P
of rank j are called the j-faces, and a typical j-face is denoted by [F;. We require that P
have a smallest (—1)-face F;, and a greatest n-face F,,, and that each maximal chain (or
flag) of P has length n + 2, and is of the foorm F, — Fy— Fy — Fo —---— F,_1 — F,.

-1

Figure 3: Partial illustration of a 3-polytope

This poset P must satisfy certain combinatorial conditions which generalise the prop-
erties of geometric polytopes. One requirement is a kind of homogeneity property, called
the diamond condition: whenever F' < G, with rank(F') = j—1 and rank((G) = j+1,
there are exactly two j-faces H; such that F' < H; < G. It is further required that P be
strongly flag-connected, which means that any two flags ® and ¥ of P can be joined by a
sequence of flags ® = &y, ®1,..., P, = ¥ such that each two successive faces ®; | and P,
are adjacent (that is, differ in only one face), and @ NW¥ C P, for all i.

An automorphism of an abstract polytope P is an order-preserving bijection P — P.
A polytope P is regular if the automorphism group I'(P) is transitive on the flags of P.

When P is regular, I'(P) can be generated by n involutions pg, p1, - - ., pn_1, Where each
p; maps a given base flag ® to the adjacent flag ®* (differing from ® only in its i-face).
These generators satisfy (among others) the defining relations for the Coxeter group of
Schlafli type [p1, ..., pn-1], where p; = o(p;_1p;) for 1 < i < n.

Po Pn—2 Pn—1

P1
O O—O—------ O O
p1 D2 Pn—1

ORN

Figure 4: Dynkin diagram for the Coxeter group [p1, ..., pn_1]



The generators p; for I'(P) also satisfy an extra condition known as the intersection condi-
tion, namely (p; i€ I)N{(p;:i€J) = (p; i€ INJ) forevery I,J C{0,1,...,n—1}.

Conversely, if I" is a permutation group generated by n elements py, p1, ..., pr—1 Which
satisfy the defining relations for a Coxeter group of rank n and satisfy the intersection
condition, then there exists a polytope P with I'(P) = T.

Similarly, chiral polytopes of rank n are obtainable from certain non-degenerate homo-
morphic images of the ‘even-word’ subgroups (p;_1p; : 1 < i < n) of these n-generator
Coxeter groups. The automorphism group of a chiral polytope has two orbits on flags,
with adjacent flags always lying in different orbits.

See [15, 29] (and references therein) for further details.

3 Schreier coset diagrams

Given a transitive permutation representation of a finitely-generated group G on a set (2,
the effect of the generators of G on {2 can be depicted by a graph with Q2 as vertex-set, and
edges joining a to o for each point a € ) and every element z in some generating set for G.
Such a graph is known as a Schreier coset graph (or coset diagram) because, equivalently,
given a subgroup H of GG, the effect of the generators of G by right multiplication on right
cosets of H can be depicted by the same graph, with 2 taken as the coset space (G: H),
and edges joining Hg to Hgx for every generator x. (The correspondence is obtained by
letting H be the stabilizer of any point of €2.) See [25, 8] for further details.

For example, the following is a coset diagram for an action of the ordinary (2,3,7)
triangle group (x,y | > = y* = (zy)" = 1) on 7 points, in which the triangles and heavy
dot depict 3-cycles and the fixed point of the permutation induced by the generator y:

x— (3,4)(6,7)

4 y+— (1,2,3)(4,5,6)

Figure 5: Example of a coset diagram

Often two Schreier coset diagrams for the same group G on (say) m and n points can be
composed to produce a transitive permutation representation of larger degree m +n. This
technique (attributable to Graham Higman) can be used in some instances to construct
families of epimorphic images of the given group G (and interesting objects on which they
act), and to prove that G is infinite. For example, one method of composition of coset
graphs for the ordinary (2, 3,7) triangle group is illustrated in Figure 6 below.



=
Figure 6: Composition of coset graphs for the ordinary (2,3,7) triangle group

This method was used to prove, for example, that for every integer m > 7, all but
finitely alternating and symmetric groups are epimorphic images of the (2,3, m) triangle
group — and hence for all but finitely many n, there exists a rotary map M of type {3, m}
with A, or S, as its orientation-preserving group of automorphisms (see [5]). In fact all
those maps are regular, but the same method can be adapted to prove that for all m > 7
and for all but finitely many n (for each m), there exists a chiral map M of type {3, m}
with Aut(M) = A, (see [3]). More generally, Brent Everitt has proved that every Fuchsian
group has all but finitely many A, among its epimorphic images; see [27].

A variant of this method of composition can be used to prove that there are infinitely
many 5-arc-transitive connected finite cubic graphs [6], and infinitely many 7-arc-transitive
connected finite 4-valent graphs [24]. A more careful analysis shows even that there are
infinitely many 5-arc-transitive 3-valent finite Cayley graphs, and that every such Cayley
graph is a cover of one of just six examples, and that for every positive integer ¢, there are
infinitely many 7-arc-transitive finite Cayley graphs of valency 143" (see [10]).

4 Computational procedures

The last 40 years have seen the development of a wide range of efficient computational
procedures for investigating groups with a small number of generators and defining rela-
tions. Here we give a brief description of some of those which are very useful in the kinds
of contexts mentioned earlier in this paper. All of these procedures are available in the
MacMA package [1]. For further details and references, see the very helpful books on
computational group theory by Sims [31] and Eick, Holt & O’Brien [28].

e Todd-Coxeter coset enumeration: This attempts to determine the index of a given
finitely-generated subgroup H in a given finitely-presented group G' = (X | R), by system-
atically enumerating the right cosets of H in G; when it succeeds, the output can given
in the form of a coset table (in which the (7, j)th entry indicates the number of the coset
obtained by multiplying the ith coset of H by the jth generator of GG), or as permutations
induced by the generators of GG on right cosets of H.
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e Reidemeister-Schreier algorithm: This gives a defining presentation for a subgroup H of
finite index in a finitely-presented group G = (X | R), when the coset table is known; the
generators for H are Schreier generators (obtainable from a Schreier transversal for H in
G, which can be identified with a rooted spanning tree for the corresponding coset graph
for (G:H)), and the relations are easily derived from the coset table and the relations for
G (or by ‘chasing’ each relation for G around the coset diagram).

e Abelian quotient algorithm: This produces the direct factors of the abelianisation
G/G" = G/|G, G| of a finitely-presented group G = (X | R), in Smith normal form. When
taken together with a variant of the Reidemeister-Schreier algorithm, it can also determine
the abelianisation H/H' of a subgroup H of finite index in G, when the coset table for H
in G is known.

e Low index subgroups algorithm: This finds a representative of each conjugacy class of
subgroups of up to a given index n in a finitely-presented group G = (X | R), and will be
explained further in the next Section.

e p-quotient algorithm: This finds, for a given prime p and a given positive integer ¢, the
largest possible quotient P of the finitely-presented group G' = (X | R) with the property
that P is a p-group of class at most ¢; for example, when ¢ = 1 or 2 this is the largest
abelian or metabelian p-quotient, respectively.

e Nilpotent quotient algorithm: This finds, for a given positive integer ¢, the largest
possible nilpotent quotient of the finitely-presented group G = (X | R) of class at most ¢;
for example, when ¢ = 1 or 2 this is the largest abelian or metabelian quotient, respectively.

5 Low index subgroups methods

Given a finitely-presented group G = (X | R) and a (small) positive integer n, all subgroups
of index up to n in G can be found (up to conjugacy) by a systematic enumeration of coset
tables with up to n rows. In practice, this is achieved by using an extended coset table,
which includes the effect of multiplying cosets of the (pseudo-)subgroup by the inverses of
the elements of the generating set X for GG, as depicted below:

ry T2 o o... mfl x;l
1 2 3 4
2 1
3 1
4 1

Figure 7: An extended coset table



Such tables are assumed to be in normal form, which means that lexicographically,
no coset number j appears for the first time before a coset number k less than j. The
enumeration procedure usually defines more than n cosets, and then coincidences are forced
between cosets. As cosets Hv and Hw of a subgroup H are equal if and only if vw™! € H,
forcing any coincidence gives rise to a new element of the subgroup, which is then taken
as an additional generator of the subgroup. The fact that every subgroup of finite index in
G is finitely-generated (by Schreier’s theorem) ensures that this procedure will terminate,
given sufficient time and memory. See [31, 28, 14] for further details and references.

A key point about the low index subgroups algorithm is that it can be used to find
‘small’ finite epimorphic images of a finitely-presented group G: for each subgroup H of
index n in GG, the permutations induced by generators of GG on right cosets of H generate
the factor group G/K where K is the core of H (the intersection of all conjugates of H)
in GG, as a subgroup of S,,.

These images can often be used as the ‘building blocks’ for the construction of larger
images (as in Section 3), or produce interesting examples in their own right. For instance,
the first known examples of arc-transitive cubic graphs admitting no edge-reversing auto-
morphisms of order 2, and first known 5-arc-transitive cubic graph having no s-arc-regular
group of automorphisms for s < 5, were found in this way (see [18]). The same approach
was used to help construct infinite family of 4-arc-transitive connected finite cubic graphs
of girth 12, and then (unexpectedly) to a new symmetric presentation for the special lin-
ear group SL(3,7Z); see [7]. Similarly, it enabled the construction of a infinite family of
vertex-transitive but non-Cayley finite connected 4-valent graphs with arbitrarily large
vertex-stabilizers in their automorphism groups [23], the first known example of a finite
half-arc-transitive (vertex- and edge-transitive but not arc-transitive) 4-valent finite graph
with non-abelian vertex-stabilizer [20], and the first known examples of finite chiral poly-
topes of rank 5 [15].

Two drawbacks of the (standard) low index subgroups algorithm are the fact that the
finite quotients it produces can have large order but small minimal degree (as permuta-
tion groups), and the fact that it tends to be very slow for large index n or complicated
presentations. (Also for some groups, like the modular group {z,y | z%,¥*), the number
of subgroups grows exponentially, making it impossible to search very far.)

It is not difficult, however, to adapt the algorithm so that it produces only normal
subgroups (of up to a given index), and this adaptation runs much more quickly (for given
maximum) index, and hence can produce all quotients of up to a given order, not just
those which have faithful permutation representations of small degree.

Such an adaptation was developed by the author and Peter Dobcsanyi (as part of
Peter’s PhD thesis project), and applied to find all rotary and regular maps on orientable
surfaces of genus 2 to 15, all regular maps on non-orientable surfaces of genus 2 to 30, and
all arc-transitive cubic graphs on up to 768 vertices; see [12, 13]. It was also subsequently
used to help find all semisymmetric cubic graphs on up to 768 vertices [19], and to assist
in obtaining a refined classification of arc-transitive group actions on finite cubic graphs



(by types of arc-transitive subgroups) [21].

Recently, a new method for finding normal subgroups of small index has been developed
by Derek Holt and his student David Firth. This systematically enumerates the possibil-
ities for the composition series of the factor group G/K (for any normal subgroup K of
small index in G), and works much faster, for index up to 100,000 in many groups with
straightforward presentations. It too has been implemented in the MAGMA package [1].

This new method has enabled the determination of all rotary and regular maps (and
hypermaps) on orientable surfaces of genus 2 to 101, all regular maps on non-orientable
surfaces of genus 2 to 202, and all arc-transitive cubic graphs on up to 2048 vertices (and
thereby the accidental discovery of largest known cubic graph of diameter 10); see [11].
Consequences of finding patterns in the list of maps of small genus will be described in
Section 7.

6 Schur’s theorem

A particularly useful (but not so well known) piece of combinatorial group theory is Schur’s
theorem on centre-by-finite groups.

Theorem 2 (Schur) If the centre Z(G) of the group G has finite index |G : Z(G)| = m
in G, then the order of every element of G' = [G, G| is finite and divides m.

Closely tied to the Schur-Zassenhaus theorem, this theorem can be proved easily using
the transfer homomorphism 7: G — Z(G) (which takes g — ¢™ for all g € G), once it is
noted that ker 7 contains G'. See [30] for further background and details.

The author is grateful to Peter Neumann for pointing out the usefulness of Schur’s
theorem in order to obtain the following in some work with Ravi Kulkarni on families of
automorphism groups of compact Riemann surfaces:

Theorem 3 ([16]) Let p,q and d be positive integers, with ged(p, q) = 1. Then there are
only finitely many finite groups which can be generated by two elements x and y of orders
p and q respectively such that xy generates a subgroup of index at most d.

In turn, the above helps disprove the possibility that certain cyclic-by-finite groups
might be rotation groups of orientably-regular maps. For example, suppose the map M
is a ‘central cover’ of the octahedral map, of type {3,4t} for some ¢, with rotation group
G = Aut’M = (z,y,2 | 2° = y* = (2y)? = 1, [v,9?] = 1). How large can t be? Here
we may note that Z(G) contains N = (y!), with G/N = Sy, so |G : Z(G)| divides 24.
Also G/G" = Cy, and G' = {(x,y 'wy,y*). Hence by Schur’s theorem, the order of 1>
divides 24, so t divides 12. (But furthermore, we can use Reidemeister-Schreier theory
to obtain presentations (and hence the orders) of subgroups of G: the index 6 subgroup
H = (y? (zy~')?) has order dividing 24, so |G| = |G: H||H| divides 144, so t divides 6.)
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7 More recent results

Some new discoveries have been made (and proved) very recently as a result of observations
made about the data produced from the computations described at the end of Section 5.
Two major breakthroughs in the study of rotary and regular maps were made possible
by noticing that there is no orientably-regular but chiral map of genus 2, 3, 4, 5, 6, 9, 13,
23, 24, 30, 36, 47, 48, 54, 60, 66, 84 or 95, and similarly that there is no regular orientable
map of genus 20, 32, 38, 44, 62, 68, 74, 80 or 98 with simple underlying graph. A lot of
these exceptional genera are of the form p 4+ 1 where p is prime — a phenomenon that was
not so easy to observe until the rotary maps of genus 2 to 100 were known — and this
observation led to the following (proved in joint work with Jozef Sirdn and Tom Tucker):

Theorem 4 [22] If M is an irreflexible (chiral) orientably-reqular map of genus p + 1
where p is prime, then
either p =1 mod 3 and M has type {6,6},
or  p=1modb and M has type {5,10},
or  p=1mod8 and M has type {8,8}.
In particular, there are no such maps of genus p+ 1 whenever p is a prime such that p—1
15 not divisible by 3, 5 or 8.

Theorem 5 [22] There is no reqular map M with simple underlying graph on an orientable
surface of genus p + 1 whenever p is a prime congruent to 1 mod 6, for p > 13.

In fact, what was achieved in [22] is a complete classification of all regular and orientably-
regular maps M for which |Aut M| is coprime to the map’s Euler characteristic x (if x is
odd) or to x/2 (if x is even), and that leads not only to the above two theorems, but also
to a simpler proof of the following theorem of Breda, Nedela & Siran:

Theorem 6 [2] There is no reqular map M on a non-orientable surface of genus p + 1
whenever p is a prime congruent to 1 mod 12, for p > 13.

Here is a sketch proof of the classification leading to these three results. First, let
M be a rotary map on an orientable surface of genus g, let G = Aut°M be its group
of orientation-preserving automorphisms, and suppose |G| is coprime to g — 1. Then by
the Euler-Poincaré formula, the type {k,m} of M is restricted (by arithmetic) to one of
five different families. Moreover, the group G = Aut°M is almost Sylow-cyclic, meaning
that every Sylow subgroup of odd order in G is cyclic, and every Sylow 2-subgroup of
G contains a cyclic subgroup of index 2. The Suzuki-Wong classification of non-solvable
almost Sylow-cyclic groups can be used to deduce that G = Aut®M is solvable, except in
the case of one of the five families. It is then possible to classify those cases where the
vertex-stabilizer and face-stabilizer intersect trivially, and use Ito’s theorem and Schur’s
transfer theory to deal with the more general case. What is remarkable is that the map M
turns out to be reflexible whenever the coprime condition is satisfied.
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Another outcome concerns reflexibility of Cayley maps. Briefly, a Cayley map for a
group (G is an embedding of a Cayley graph for G in a surface as a rotary map — or
equivalently, a rotary map which admits the action of G as a group of automorphisms
acting regularly (sharply-transitively) on vertices. From an inspection of the rotary maps
of genus 2 to 100 in [11], it was noticed that for small genus, a rotary Cayley map for
a cyclic group is reflexible if and only if it is anti-balanced (that is, if and only if the
embedding of the Cayley map sees the neighbours of the identity element ordered in a way
that is reversed by their inversion), and then this was proved in general in a piece of joint
work with Jozef Sirdn and Young Soo Kwon [17] just a few months before this paper was
written.
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