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Abstract

We prove the existence of a compact non-orientable hyperbolic 4-
manifold of volume 3272/3 and a compact orientable hyperbolic 4-
manifold of volume 6472/3, obtainable from torsion-free subgroups
of small index in the Coxeter group [5,3,3,3]. At the time of writ-
ing these are the smallest volumes of any known compact hyperbolic
4-manifolds.
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1 Introduction

The smallest volume (area) of a compact orientable hyperbolic 2-manifold is
47 and is achieved by any closed hyperbolic surface of genus 2 and so Eu-
ler characteristic —2. For non-compact orientable 2-manifolds, the smallest
volume is 27, achieved by a once-punctured torus which has Euler charac-
teristic —1. For hyperbolic 3-manifolds, the work of Thurston and Jgrgensen
(see [18, 2]) has shown the existence of a smallest volume for compact ori-
entable hyperbolic 3-manifolds which can be achieved by a finite number of
manifolds. The prime candidate is the Weeks-Matveev-Fomenko manifold
12(23%2) G4(2)
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where the Dedekind zeta function (j is over the field £ of degree 3 over

[21, 14], whose volume can be given by the closed formula

the rationals with one complex place and discriminant —23. This volume is
approximately 0.942707. In the case of non-compact orientable hyperbolic
12(3%/2) ¢ (2

M (=~ 2.029883)

_ 472
where k = Q(+/—3) and is achieved by the figure 8 knot complement and

3-manifolds, the minimal volume is known to be

its sister manifold [5]. These two manifolds and the Weeks manifold are
known to be arithmetic and if one restricts to arithmetic 3-manifolds, then
the minimum volume is known to be achieved by the Weeks manifold [6].

In the case of dimension 4, as with all even dimensions, the volume of a
hyperbolic manifold is a constant multiple of its Euler characteristic. In
dimension 4, this is given by Vol(M) = 4n%x(M)/3 (see [17, 11]). Further-
more the Euler characteristic of a compact orientable hyperbolic 4-manifold
is always even. It is known that there exist non-compact orientable hyper-
bolic 4-manifolds of minimal Euler characteristic 1 [15, 9]. A well-studied
example of a compact orientable hyperbolic 4-manifold is the Davis manifold
[8, 10, 16], which has Euler characteristic 26.

In this paper, we establish the existence of a compact non-orientable hy-
perbolic 4-manifold of Euler characteristic 8, and an orientable double cover
of this manifold, of Euler characteristic 16. These examples give the small-
est known volumes so far in the compact case. Furthermore, these two 4-
manifolds and the Davis manifold are all arithmetic, and have the same



arithmetic structure, and hence are commensurable in that they then have a
common finite cover (see comments in §2). We will not make use of this fact
here, but remark that, following the identification of the compact arithmetic
hyperbolic 4-orbifold of smallest volume in [1] as the quotient H*/T';, where
I’y is defined in §2, it follows, as is shown in [1], that the as-yet-unknown
compact arithmetic orientable hyperbolic 4-manifold of smallest volume has
the form H* /To where Ty is a torsion-free subgroup of I'; of finite index. This
is precisely how our manifolds are obtained.

C ® e
A, (E)—O<
A, ©
C —0O
A2
C )
Aj

As

Figure 1: Five compact Coxeter simplices in hyperbolic 4-space

2 Preliminaries

In hyperbolic 4-space H*, there are five compact Coxeter simplices — that
is, simplices whose faces are geodesic and whose dihedral angles between
faces of codimension 1 are submultiples of 7 (see [13, 19]). If I is the group
generated by reflections in the 3-dimensional faces of such a simplex, then I'
is a discrete subgroup of Isom H*, and the simplex is a fundamental domain
for I' so that its images under T tessellate H* (see [19]). The Coxeter symbols
A; representing these simplices are given in Figure 1, and the corresponding
reflection groups, in the same numbering, are denoted by I'; (i =1,2....,5).
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The group I'; is also conveniently denoted as [5, 3, 3, 3]. Each of these reflec-
tion groups I' has a torsion-free subgroup 'y of finite index, so that one can

r

define a rational Euler characteristic for I' by x(T') = [if( IO‘) ] where x(T)
Lo

is the Euler characteristic of the manifold H*/I'y. This is well-defined, and

furthermore, x(I") can be computed directly from the simplex by the formula

-1 dim T
x(0=2 <E(St)ab 7)

T

where the sum is over all the cells 7 of the simplex (see [4] for example). The
resulting Euler characteristics in the five compact cases are:

1 17 26
)= _—— )= ry— 26
XU =150 X2 =500 X(Ts) = 15505
17 11
F = — d F - —— -
XT4) = 1000 20 X(Ts) = 5265

Any torsion-free subgroup inside one of these reflection groups will give rise
to a compact hyperbolic manifold, so that, for minimal volume, we endeavour
to find torsion-free subgroups of as small an index as possible. The manifold
will be orientable if and only if the torsion-free subgroup is contained in the
index 2 subgroup generated by products of pairs of the generating reflections
(or equivalently, contains no element expressible as a word of odd length in
the generating reflections). For a systematic approach to Coxeter groups in
dimensions 4 and higher, see [9].

Note that if H is a finite subgroup of the reflection group T', then for any
torsion-free subgroup Iy, the index [I" : T'g] must be divisible by the order
of H (since H N Ty has to be trivial). Thus for each of the five groups
concerned, any resulting compact orientable manifold H* /To will have Euler
characteristic a multiple of 2, 34, 26, 34 or 22 respectively. For details on Iy,
see §3. The Davis manifold arises from a normal torsion-free subgroup of I's
of index precisely 14400 — indeed the unique such subgroup — so has Euler
characteristic 26 (see [8, 10, 16]). We also note that the groups I', ..., T'5 are
arithmetic, the first four have the same arithmetic structure and are hence
commensurable [20, 12]. Thus any subgroups of finite index in these four
groups will also be pairwise commensurable.
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3 Torsion elements of the group I'y = [5, 3, 3, 3]

In order to find torsion-free subgroups of finite index in the Coxeter group Iy,
we first determine representatives of conjugacy classes of torsion elements of
prime order in I[';. Let a, b, ¢, d, e represent the reflections in the faces labelled
A, B,C, D, E in the symbol A; in Figure 2.

Figure 2: Coxeter symbol for the group I'; = [5, 3, 3, 3]

Note that if a subgroup contains a torsion element z, of order n, say, and p
is any prime divisor of n, then 2"/? is a torsion element of order p lying in
the same subgroup, and hence we may restrict our attention to prime orders.

Every element of finite order in I'; has a fixed point in H* and so is conjugate
in T'; to an element stabilising a vertex. The vertex stabilisers are the five
4-generator subgroups obtained by deleting one generator, namely (a, b, c, d),
(a,b,c,e), {(a,b,d,e), {a,c,d,e) and (b,c,d,e). These five subgroups are all
finite, of orders 14400, 240, 60, 48 and 120 respectively, and their structure is
well known (and also can be found with the help of the MAGMA system [3]).
The conjugacy classes of the elements of prime order in each of these finite
subgroups is given in the table below (where in some cases, for information,
we have included more than one representative).

(i) Subgroup (a, b, c,d), the group of the 120-cell, of order 14400:

Order of element Class size  Class representative(s)
2 1 (abed)®
2 60 a, b, c,d
2 60 (abc)®
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450
40
400
24
24
144
144
288

ac, ad, bd
(abed)™®
be, cd
(abed)®
(abed) 1
ab

(ab)”

(abed) ™ (abc) 2

(ii) Subgroup (a,b,c,e) = A5 x Cy x Cy, of order 240:

Order of element

2

Gt O W NN NN NN

Class size  Class representative(s)

1

1

1
15
15
15
15
20
12
12

e
(abc)®
(abc)’e
a, b, c

ac

ae, be, ce
ace
be

(ab)?

(iii) Subgroup (a,b,d, e) = D5 x Dj, of order 60:

Order of element

2

Tt O W NN

Class size  Class representative(s)

)
3
15
2
2
2

a, b
d, e

ad, ae, bd, be
de

(ab)”



(iv) Subgroup (a,c,d,e) = Sy x Cy, of order 48:

Order of element Class size  Class representative(s)
2 1 a
2 3 ce
2 3 ace
2 6 ac, ad, ae
2 6 c, d, e
3 8 cd, de

(v) Subgroup (b, c,d, e) = S5, of order 120:

Order of element Class size  Class representative(s)
2 10 b, c, d,e
2 15 bd, be, ce
3 20 be, cd, de
5 24 bede

From these observations the following theorem follows easily:

Theorem 1 A subgroup of the Coxeter group I'1 is torsion-free if and only

iof it contains no element that is conjugate to one of the elements in the list
L =[a, ab, ac, bc, ace, (abc)®, (abc)’e, (abed)'®, (abed)'®, (abed)®, bede,

(abed) ™ (abe) 2.

Note that the subgroup (a, b, ¢, d) is isomorphic to the Coxeter group [5, 3, 3],

also known as the automorphism group of the 120-cell. Any torsion-free

subgroup of I'; must intersect this subgroup trivially, and therefore its index
in I'; has to be divisible by 14400. The torsion-free subgroup ¥ we find in

section 5 has index 8 x 14400.



4 Subgroups of small index in I';

Using the LowIndexSubgroups command in MAGMA [3], it is very easy to
find conjugacy classes of small index in the group I';. In fact there are 24
classes of subgroups of index up to 240: one of index 1, one of index 2, two of
index 85, two of index 120, two of index 136, two of index 156, four of index
170, and ten of index 240.

Of particular interest to us are the two conjugacy classes of index 120.

One of these contains the subgroup H; generated by a, b, ¢, dcbabacebabed,
dedcbabacbabedcbabeababeded and edcbabacbabdcbaebedabeababede. Now in
the permutation representation of I'; on (right) cosets of this subgroup of in-
dex 120 by (right) multiplication, the elements of the list L in Theorem 1 have
cycle structures 132244, 110522, 18256 16338 18956 32944 132944 1120 340
524 52* and 5%* respectively. (Note: here the notation 7 indicates c, cycles
of length r.) Asan element g € I'; fixes the coset H;z in this permutation rep-
resentation if and only if zgz~! € H, it follows that H; contains conjugates of
each of the torsion elements a, ab, ac, be, ace, (abc)®, (abe)®e and (abed)™®, but
contains no conjugates of any of the torsion elements (abcd)!'®, (abed)8, bede
or (abed) (abe)™2.

The other class of subgroups of index 120 contains the subgroup H, generated
by ac, bd, ababcdedcababa, adcedcbabedeba and ababacbaebedaba, and in the
permutation representation on cosets of this subgroup the elements of the
list L have cycle structures 260, 52 182% 340 1825 960 960 1120,
16338 119522 524 and 52* respectively.

Now consider the subgroup H; N Hy. This has index 120? = 14400 in I’
and in the permutation representation on its cosets the elements of the list
L have cycle structures 27200, 52880 16497168 34800 16497168 7200 97200

114400 34800~ 52880 52880 and 52880 respectively. Hence this intersection
contains conjugates of each of the torsion elements ac, ace and (abed)'®, but
not of any of the other elements of the list L.

In order to eliminate conjugates of the three elements ac, ace and (abed)'®,

we need to dig deeper into the subgroup lattice of I'y. Another good can-



didate subgroup is a subgroup Hj of index 2 in H, (and index 240 in I'y),
generated by ac, bd, ababcdedcababa and ababcbabadcbabede. In the permu-

tation representation of I'; on the 240 cosets of this subgroup, the elements
of the list L in Theorem 1 have cycle structures 220 5% 1162112 380

2120 9120 9120+ 1240 112376 = 120544 = 548 and 5% respectively.

Y Y

The subgroup H; N H3 has index 28800 in '}, and in the permutation repre-

sentation on its cosets the elements of the list L have cycle structures 214490,

55760, 1128214336, 39600 214400 214400 214400 128800, 39600’ 55760, 55760 and

bl bl 7 I’

55760 respectively. Hence this intersection still contains conjugates of each

of ac and (abed)'®, but none of any of the other elements of the list L.

Similar observations can be made for other subgroups of index 240, although
the outcome is best for H; and Hj.

5 Construction of the 4-manifolds

A further application of the LowIndexSubgroups command in MAGMA [3]
to the subgroup Hj3 described in section 4 produces a subgroup H, of in-
dex 4 in Hj (and index 960 in I'y), generated by ababcbabadcbabede and
abacbdcbaedecbabcaba. In the permutation representation of I'y on the 960
cosets of this subgroup, the elements of the list L in Theorem 1 have cycle
structures 2480’ 5192 2480 3320’ 2480 2480 2480 2480 1483304 1805176’

bl b b b bl b b

5192 and 5'9% respectively.

The intersection ¥ = H; N H, is a subgroup of index 115200 in I'y, and in
the permutation representation on its cosets the elements of the list L have

cycle structures 257600’ 523040’ 257600’ 338400, 257600, 257600’ 257600’ 257600’

338400 39600 = 523040 523040 apd 523040 respectively. In particular, none
of the elements of the list L fix any points, and hence by Theorem 1, this

subgroup is torsion-free.

Thus we have found a torsion-free subgroup > of index 8 x 14400 in I'y, and
therefore of Euler characteristic 8, giving a compact hyperbolic 4-manifold
of volume 47?/3 x 8 = 327%/3.



This manifold is non-orientable. In fact the subgroup ¥ = H; N H, is gener-
ated by the elements cbdcbabededcbabeda (of length 18), babacbabacbabedcbabe
dedcbabedab (length 31), ababacdedcbabacbabedcbabeababeded (length 33), and
bedcbabacbabdcbabacbadcbaedcbabedabeababedbabebaba (length 50). Its unique
subgroup of index 2 containing only words of even length is a torsion-free sub-
group X° of index 16 x 14400 in I';, giving a compact hyperbolic 4-manifold
of Euler characteristic 16 and volume 6472/3.

Our findings can be summed up in the following theorem:

Theorem 2 In the Cozeter group T'y = [5,3,3,3], the intersection ¥ of
the index 120 subgroup generated by the elements a, b, c, dcbabacebabced,
dedcbabacbabedcbabeababeded and edcbabacbabdcbaebedabeababede with the in-
dex 960 subgroup generated by ababcbabadcbabede and abacbdcbaedecbabeaba
is torsion-free and of index 115200 in T'y, and the quotient space ]H4/E 18
a compact but non-orientable hyperbolic 4-manifold of volume 3272/3 and
Euler characteristic 8. Furthermore, ¥ has a subgroup >° of index 2 such
that the quotient space ]H4/E" 15 a compact orientable hyperbolic 4-manifold
of volume 6472 /3 and Euler characteristic 16.

6 Closing remarks

There may still be torsion-free subgroups in I'y of smaller index than the sub-
groups we have described above, however we have not been able to find any
using the computational methods available and a number of new approaches
to this question. There is certainly no torsion-free subgroup of smaller index
that is obtainable as an intersection of two subgroups of index up to 480 in
I'1, or as an intersection of two subgroups of index up to 4 in any of these, but
of course there may be other subgroups, possibly maximal in 'y, or otherwise
lying inside some maximal subgroup of index larger than 480.

The abelianisations of the subgroups H,, Hy, H3 and H, are Zo & 7y & 7o,
o @ 2y, 7o @7 and 7Z respectively, while those of the intersections
HlmHQ, HlﬂHg andZ=H1HH4 are ZZ@ZQ@ZQ@Z;l, ZQ@ZQ@
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DU and 7y & 7y & 7 & 7 respectively. Finally, the abelianisation of
Y is Z* @ %4 ® 5. These were found with the help of the Rewrite and
AQInvariants commands in MAGMA [3]. From this we obtain the integral

homology of M = H*/%° using Poincaré duality and the Euler characteristic.
Thus H\(M) = > © %, D5, Hy(M) = Z® © U, ® %5, and Hy(M) = 7Z*.
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