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Question

Suppose g € Aut(l), g # id, fixes “a lot” of vertices.

What can we say about the graph?

Fixity: Fx(I') := max{|Fix(g)| : g € Aut(I') \ {id}}
Motion: m(T") := min{|Supp(g)| : g € Aut(I') \ {id}}

Fx() = |Vl — m(T)



Historical context for permutation goups: G < S,

Fx(G) := max{|Fix(g)| : g € G, g #id}.
Fx(G) = n— “minimal degree of G".
Jordan: If G is primitive:

» Fx(G)=n—-2= G =5,

» Fx(G)=n—-3= G=A,;

» for every c, there is a finite set of exceptions E., such that
Fx(G)=n—c= G=A,,S,0r G € E..

Babai, Liebeck, Saxl, Guralnick, Magaard,...:
All primitive groups G with Fx(G) > %n are known.

Less known for imprimitive permutation groups.



Back to graphs

Motivation:

» Groups acting arc-transitively on connected (di)graphs
generalise primitive permutation groups.

> “Large fixity" is related to “large automorphism group”.
n.__1___
(Conder,Tucker) G transitive = |G| > 5 21-RelFx(¢)

where RelFx(G) := Fx(G)/n.
> Related to distinguishing number.
» Can be useful for “polycirculant conjecture”.

» Pure curiosity!



Question

Can we somehow non-trivially bound the fixity?

NO
» Fx(K,) =n—2, Fx(K,p) = (a+ b) — 2.
» Fx(MN =n—-2 <= Fu,v:T(u)\{v}=T(v)\{u}.

» Corollary: Suppose I is arc-transitive and Fx(I') = n — 2.
» If 3-valent, then: I = K or K3 3.
» If 4-valent, then: T = Ks or Cp[2K1].

Problem: Suppose we are given a class of graphs G. Find a a
function f: N — N (as slowly growing as possible) such that all
(but finitely many) graphs I' € G satisfy

Fx(F) < F(IV(D)))



Look at the data

Let us look at existing datasets of VT graphs; for example:

» 3-valent arc-transitive graphs up to 10.000 vertices
(Conder & Dobcsanyi, Conder);

» 4-valent arc-transitive graphs up to 640 vertices; (PSV)
» 4-valent %—arc—transitive graphs up to 1.000 vertices; (PSV)

» 3-valent vertex-transitive graphs up to 1.280 vertices; (PSV)



3-valent arc-transitive graphs




3-valent arc-transitive graphs
Let I be cubic arc-transitive and G = Aut(l'). By Tutte:

|G| < 48|VT|.

This allows construction of a complete census up to a much larger
order; up to order 10000 at the moment — record holder:

Marston Conder
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6, K33 8,Q3 10, Petersen graph
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14, Heawood 16, Mbius-Kantor 18, Pappus

20, Dodecahedron 20, Desargues 24, Nauru



Number of cubic arc-transitive graphs

There are 3815 cubic arc-transitive graphs of order up to 10 000.
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Fixicity of cubic arc-transitive graphs

Cubic arc-transitive graph - maximum number of fixed vertices by arc-transitivity
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Cubic arc-transitive graphs with fixity v/2n

Construction by Gabriel:

G=(uv,t|um vm t? [uv],ut =u "t vi=v1) =72

a=ut, b=vt, c=u"tv !t (three involutions)

= Cay(G;{a, b,c})

ocru—visu vl st

o€ Aut(G), a— b—c—a oec Aut(l),
Suppose there exists A € Z¥, such that A> + A\ +1 = 0.

Then o fixes pointwise (u=*v*, t) = 7Z,, : Z>, hence:

Fx(I) > 2m=+2n



Fixity of cubic arc-transitive graphs

Conjecture: Apart from a finite set of exceptions, if [ is a
connected cubic arc-transitive graph, then

Fx(I) < /2[VT].

Theorem (Spiga, Lehner, PP)

There exists a sublinear function f(n), such that if T is a large
enough connected cubic arc-transitive graph, then

Fx(T) < f(|VrI)).



Essential assumptions for the proof

» G, acts primitively on ['(v);
» |G, | is bounded by a constant.

We can in fact prove a more general version:

Theorem (Spiga, Lehner, PP)

For every d, there exists a sublinear function f(n), such that if " is
a large enough connected 2-arc-transitive graph of valency d, then

Fx(I) < f(|Vvr)).

Theorem (Spiga, Lehner, PP)

For every quasi-primitive and graph-restrictive permutation group
L there exists a sublinear function f(n), such that if T is a large

enough connected G-arc-transitive graph with G\f(v) = [, then

Fx(G) < f(|Vl)).



Some lemmas from the proof
L1: Let G < Sym(Q) be transitive and G = (G, : w € Q), then

exp(G) divides |G : Z(G)| |/G™|.
Proof: Clever use of a transfer theorem.

L2: There exists a function f: N — N, such that: If [ is regular
G-locally-primitive not complete bipartite graph, then

Gl < (G : Z(G))).
Proof: By L1 and using rank(Z) < g(I'/Z). .

L3: If I is cubic G-locally-arc-transitive and g € G, then

Cele) _ [Fix(g)| _ |Gl [Ce(e)] 12/G
6 =R < 4

Proof: Double counting.



4-valent arc-transitive graphs




Census of 4-valent arc-transitive graphs

Difficulty: Automorphism group can be very large.

LN o o o

Theorem (P. Spiga, G. Verret, PP)

Let I be a connected 4-valent arc-transitive graph. Unless I
belongs to a well-defined infinite family of graphs, or to an explicit
list of small exceptions, the order of Aut(I') is bounded by a
subquadratic function of |V/(T')].

All 4-valent arc-transitive graphs of order < 640 are known! There
are 4820 of them. (More that cubic AT with < 10000 vertices.)



The number of 4-valent arc-transitive graphs
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Relative fixity of tetravalent arc-transitive graphs

Relative fixity of 4-valent AT graphs
12
1
eeee "
4 cesess®e
s & o0 I
08 & & oo 3 e
o o ° °° .
. . o |
* ° o o °
) . . .
. e .
06 e L] . ©
L] ) °
o o . .
e o o . °
0.4 = o .
L[] L]

® pXgraphs

®1AT

®2AT




Praeger-Xu graphs PX(r, s)

Fors=1: PX(r,1):= C[2K1].

For s > 2:

» Vertices:= “traversing” (s — 1)-paths;
» Adjacency:= “maximal overlap of paths”.

PX(r,?2):

===~ =




Praeger-Xu graphs PX(r, s)

> |[V(PX(r,s))| = r2s;
> |Aut(PX(r,s)| = |[Aut(PX(r,1)| = r2r*1; (unles r = 4)

» Fx(PX(r,s)) = (r—

0n
~—
N
[V}

> RelFx(PX(r,s)) = =2 =1— 2,

r

Characterisation:

Theorem [Praeger, Xu; (PSV)] Let I be a connected 4-valent
G-arc-transitive graph (but not G-arc-regular). Then

=PX(r,s) <= IN<G, N, #1, N abelian.



Fixity of 4-valent arc-transitive graphs

Theorem [Spiga, PP; 2019] Let I' be a connected 4-valent
arc-transitive graph. If Fx(I') > £, then either:

» [ =2 PX(r,s) with 1 <s<2r/3; or

» [ is one of six 2-arc-transitive exceptions.

Remarks:

» The theorem holds also for half-arc-transitive graphs;

» Due to relationship between 4-valent arc-transitive graphs and
3-valent vertex- but not arc-transitive graphs, we get:

Theorem Let [ be a connected 3-valent vertex-transitive graph. If
Fx(T) > % then either:
» [ = Split(PX(r,s)); or

» [ is one of six arc-transitive exceptions.



A few words about the proof

» If G <Sym(Q2), N G, N, =1, g € G, then
Rell'xq/n(g) > RelFxq(g)
This allows inductive approach by considering quotients.

» If G, is a 2-group and O2(G) =1, then Fx(G) < 1/3.
» If [ not 2-arc-transitive, there exists a minimal normal
subgroup N <1 G with N = Z{.
» If N, # 1, then I = PX(r,s);
» If N, =1, then I — /N is a covering projection,
Fx(I'/N) > 1/3, and by induction, ['/N = PX(r,s). The proof
then follows by careful consideration of elementary abelian
covers of PX(r, s).

» If [ is 2-arc-transitive, we use the fact that |[Aut(l"),| is
bounded above by a constant. Plus subtle examination of
almost simple groups.



Conclusion

» The proofs were almost entirely algebraic.

Can we use more graph theoretical approaches?
» Datasets of graphs were essential in posing the conjectures!
» What happens with larger valence?
» Explore the relationship between |Aut(I)| and Fx(I).

» What can be said about graphs with small fixity? (GRRS,
FGR, ...)



