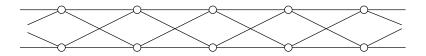
Fixity of graphs

Presented by Primož Potočnik University of Ljubljana; also: Institute of Mathematics, Physics and Mechanics

> Based on joint work with Pablo Spiga and Florian Lehner and also with: Gabriel Verret, Martin Mačaj, ...

> > Rotorua, 13th February 2020

Question



Suppose $g \in Aut(\Gamma)$, $g \neq id$, fixes "a lot" of vertices. What can we say about the graph?

Fixity: $\operatorname{Fx}(\Gamma) := \max\{|\operatorname{Fix}(g)| : g \in \operatorname{Aut}(\Gamma) \setminus \{\operatorname{id}\}\}\$ Motion: $m(\Gamma) := \min\{|\operatorname{Supp}(g)| : g \in \operatorname{Aut}(\Gamma) \setminus \{\operatorname{id}\}\}\$

 $\operatorname{Fx}(\Gamma) = |\nabla \Gamma| - m(\Gamma)$

Historical context for permutation goups: $G \leq S_n$

$$\operatorname{Fx}(G) := \max\{|\operatorname{Fix}(g)| : g \in G, g \neq \operatorname{id}\}.$$

Fx(G) = n - "minimal degree of G".

Jordan: If *G* is primitive:

•
$$\operatorname{Fx}(G) = n - 2 \Rightarrow G = S_n;$$

•
$$\operatorname{Fx}(G) = n - 3 \Rightarrow G = A_n;$$

▶ for every *c*, there is a finite set of exceptions E_c , such that $Fx(G) = n - c \Rightarrow G = A_n, S_n$ or $G \in E_c$.

Babai, Liebeck, Saxl, Guralnick, Magaard,...:

All primitive groups G with $Fx(G) > \frac{1}{2}n$ are known.

Less known for imprimitive permutation groups.

Back to graphs

Motivation:

- Groups acting arc-transitively on connected (di)graphs generalise primitive permutation groups.
- "Large fixity" is related to "large automorphism group".

(Conder, Tucker) G transitive $\Rightarrow |G| \ge \frac{n}{2} 2^{\frac{1}{1-\operatorname{RelFx}(G)}}$

where $\operatorname{RelFx}(G) := \operatorname{Fx}(G)/n$.

- Related to distinguishing number.
- Can be useful for "polycirculant conjecture".
- Pure curiosity!

Question

Can we somehow non-trivially bound the fixity?

NO

►
$$Fx(K_n) = n - 2$$
, $Fx(K_{a,b}) = (a + b) - 2$.

► $\operatorname{Fx}(\Gamma) = n - 2 \iff \exists u, v : \Gamma(u) \setminus \{v\} = \Gamma(v) \setminus \{u\}.$

- Corollary: Suppose Γ is arc-transitive and $Fx(\Gamma) = n 2$.
 - If 3-valent, then: $\Gamma \cong K_4$ or $K_{3,3}$.
 - If 4-valent, then: $\Gamma \cong K_5$ or $C_m[2K_1]$.

Problem: Suppose we are given a class of graphs \mathcal{G} . Find a a function $f: \mathbb{N} \to \mathbb{N}$ (as slowly growing as possible) such that all (but finitely many) graphs $\Gamma \in \mathcal{G}$ satisfy

 $\operatorname{Fx}(\Gamma) \leq f(|V(\Gamma)|)$

Let us look at existing datasets of VT graphs; for example:

- 3-valent arc-transitive graphs up to 10.000 vertices (Conder & Dobcsanyi, Conder);
- 4-valent arc-transitive graphs up to 640 vertices; (PSV)
- 4-valent $\frac{1}{2}$ -arc-transitive graphs up to 1.000 vertices; (PSV)
- 3-valent vertex-transitive graphs up to 1.280 vertices; (PSV)

3-valent arc-transitive graphs

3-valent arc-transitive graphs

Let Γ be cubic arc-transitive and $G = Aut(\Gamma)$. By Tutte:

 $|G| \le 48 |V\Gamma|.$

This allows construction of a complete census up to a much larger order; up to order 10 000 at the moment – record holder:

Marston Conder

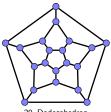
10, Petersen graph

14, Heawood

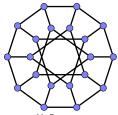
8, Q₃

16, Mbius-Kantor

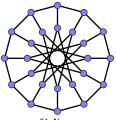
18, Pappus



20, Dodecahedron



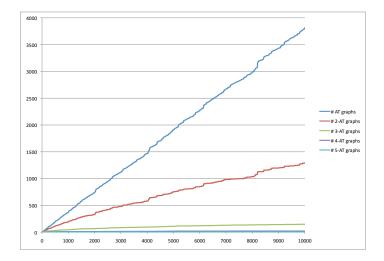
20, Desargues



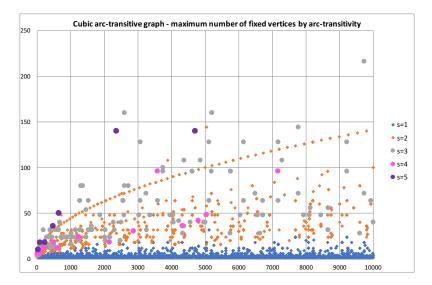
24, Nauru

Number of cubic arc-transitive graphs

There are 3815 cubic arc-transitive graphs of order up to 10000.



Fixicity of cubic arc-transitive graphs



 $f(n)=\sqrt{2n}$

Cubic arc-transitive graphs with fixity $\sqrt{2n}$

Construction by Gabriel:

 $G = \langle u, v, t \mid u^{m}, v^{m}, t^{2}, [u, v], u^{t} = u^{-1}, v^{t} = v^{-1} \rangle \cong \mathbb{Z}_{m}^{2} : \mathbb{Z}_{2}$ $a = ut, b = vt, c = u^{-1}v^{-1}t \quad \text{(three involutions)}$ $\Gamma = \operatorname{Cay}(G; \{a, b, c\})$ $\sigma : u \mapsto v \mapsto u^{-1}v^{-1}, t \mapsto t$ $\sigma \in \operatorname{Aut}(G), a \mapsto b \mapsto c \mapsto a \quad \sigma \in \operatorname{Aut}(\Gamma)_{1_{G}}$

Suppose there exists $\lambda \in \mathbb{Z}_m^*$ such that $\lambda^2 + \lambda + 1 = 0$. Then σ fixes pointwise $\langle u^{-1}v^{\lambda}, t \rangle \cong \mathbb{Z}_m : \mathbb{Z}_2$, hence:

 $\operatorname{Fx}(\Gamma) \geq 2m = \sqrt{2n}$

Fixity of cubic arc-transitive graphs

Conjecture: Apart from a finite set of exceptions, if Γ is a connected cubic arc-transitive graph, then

 $\operatorname{Fx}(\Gamma) \leq \sqrt{2|V\Gamma|}.$

Theorem (Spiga, Lehner, PP)

There exists a sublinear function f(n), such that if Γ is a large enough connected cubic arc-transitive graph, then

 $\operatorname{Fx}(\Gamma) \leq f(|\nabla \Gamma|).$

Essential assumptions for the proof

- G_v acts primitively on $\Gamma(v)$;
- $|G_v|$ is bounded by a constant.

We can in fact prove a more general version:

Theorem (Spiga, Lehner, PP)

For every d, there exists a sublinear function f(n), such that if Γ is a large enough connected 2-arc-transitive graph of valency d, then

 $\operatorname{Fx}(\Gamma) \leq f(|\nabla \Gamma|).$

Theorem (Spiga, Lehner, PP)

For every quasi-primitive and graph-restrictive permutation group L there exists a sublinear function f(n), such that if Γ is a large enough connected G-arc-transitive graph with $G_v^{\Gamma(v)} \cong L$, then

 $\operatorname{Fx}(G) \leq f(|V\Gamma|).$

Some lemmas from the proof

L1: Let $G \leq \operatorname{Sym}(\Omega)$ be transitive and $G^+ = \langle G_\omega : \omega \in \Omega \rangle$, then

 $\exp(G)$ divides $|G:Z(G)| |\Omega/G^+|$.

Proof: Clever use of a transfer theorem.

L2: There exists a function $f : \mathbb{N} \to \mathbb{N}$, such that: If Γ is regular *G*-locally-primitive not complete bipartite graph, then

 $|G| \leq f(|G:Z(G)|).$

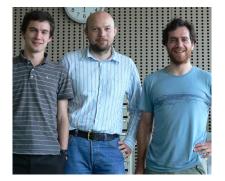
Proof: By L1 and using $\operatorname{rank}(Z) \leq \beta(\Gamma/Z)$.

L3: If Γ is cubic *G*-locally-arc-transitive and $g \in G$, then

$$\frac{C_G(g)}{|G|} \leq \frac{|\operatorname{Fix}(g)|}{|\Omega|} \leq \frac{|G_{\omega}| |C_G(g)| |\Omega/G|}{|G|}$$

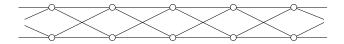
Proof: Double counting.

4-valent arc-transitive graphs



Census of 4-valent arc-transitive graphs

Difficulty: Automorphism group can be very large.

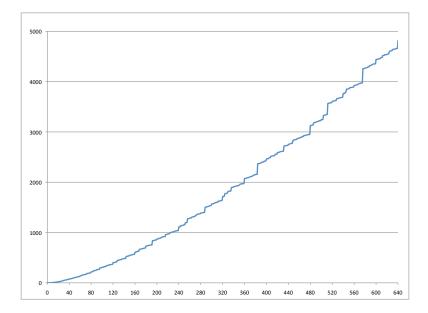


Theorem (P. Spiga, G. Verret, PP)

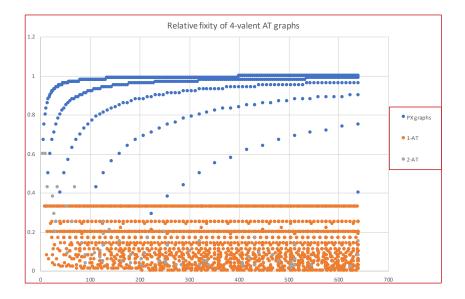
Let Γ be a connected 4-valent arc-transitive graph. Unless Γ belongs to a well-defined infinite family of graphs, or to an explicit list of small exceptions, the order of $\operatorname{Aut}(\Gamma)$ is bounded by a subquadratic function of $|V(\Gamma)|$.

All 4-valent arc-transitive graphs of order \leq 640 are known! There are 4820 of them. (More that cubic AT with \leq 10000 vertices.)

The number of 4-valent arc-transitive graphs

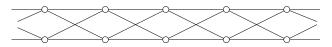


Relative fixity of tetravalent arc-transitive graphs



Praeger-Xu graphs PX(r, s)

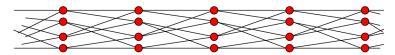
For s = 1: $PX(r, 1) := C_r[2K_1]$.



For $s \ge 2$:

- Vertices:= "traversing" (s-1)-paths;
- Adjacency:= "maximal overlap of paths".

PX(*r*, 2):



Praeger-Xu graphs PX(r, s)

•
$$|V(PX(r,s))| = r2^s;$$

 $|\operatorname{Aut}(\operatorname{PX}(r,s)| = |\operatorname{Aut}(\operatorname{PX}(r,1)| = r2^{r+1}; \quad (\text{unles } r = 4)$

•
$$\operatorname{Fx}(\operatorname{PX}(r,s)) = (r-s)2^s;$$

► RelFx(PX(
$$r, s$$
)) = $\frac{r-s}{r} = 1 - \frac{s}{r}$.

Characterisation:

Theorem [Praeger, Xu; (PSV)] Let Γ be a connected 4-valent *G*-arc-transitive graph (but not *G*-arc-regular). Then

$$\Gamma \cong \mathrm{PX}(r,s) \iff \exists N \lhd G, \ N_v \neq 1, \ N \text{ abelian.}$$

Fixity of 4-valent arc-transitive graphs

Theorem [Spiga, PP; 2019] Let Γ be a connected 4-valent arc-transitive graph. If $Fx(\Gamma) > \frac{1}{3}$, then either:

•
$$\Gamma \cong \mathrm{PX}(r,s)$$
 with $1 \leq s < 2r/3$; or

Γ is one of six 2-arc-transitive exceptions.

Remarks:

- The theorem holds also for half-arc-transitive graphs;
- Due to relationship between 4-valent arc-transitive graphs and 3-valent vertex- but not arc-transitive graphs, we get:

Theorem Let Γ be a connected 3-valent vertex-transitive graph. If ${\rm Fx}(\Gamma)>\frac{1}{3},$ then either:

- $\Gamma \cong \operatorname{Split}(\operatorname{PX}(r, s));$ or
- Γ is one of six arc-transitive exceptions.

A few words about the proof

▶ If
$$G \leq \operatorname{Sym}(\Omega)$$
, $N \lhd G$, $N_\omega = 1$, $g \in G$, then

$$\operatorname{RelFx}_{\Omega/N}(g) \ge \operatorname{RelFx}_{\Omega}(g)$$

This allows inductive approach by considering quotients.

- If G_{ω} is a 2-group and $O_2(G) = 1$, then $Fx(G) \le 1/3$.
- If Γ not 2-arc-transitive, there exists a minimal normal subgroup N ⊲ G with N ≅ Z₂^d.
 - If $N_{\omega} \neq 1$, then $\Gamma \cong \mathrm{PX}(r, s)$;
 - If N_ω = 1, then Γ → Γ/N is a covering projection, Fx(Γ/N) > 1/3, and by induction, Γ/N ≅ PX(r, s). The proof then follows by careful consideration of elementary abelian covers of PX(r, s).
- If Γ is 2-arc-transitive, we use the fact that |Aut(Γ)_ν| is bounded above by a constant. Plus subtle examination of almost simple groups.

Conclusion

• The proofs were almost entirely algebraic.

Can we use more graph theoretical approaches?

Datasets of graphs were essential in posing the conjectures!

- What happens with larger valence?
- Explore the relationship between $|Aut(\Gamma)|$ and $Fx(\Gamma)$.
- What can be said about graphs with small fixity? (GRRS, FGR, ...)