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Group Actions
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Disclaimer

Throughout this talk, assume groups are finite. Some things may apply to
infinite groups also, but this hasn’t been studied much to my knowledge.
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Groups and their actions

Often we introduce group theory to students with pictures like the
following, and ask:

What are all the symmetries of this object?
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Groups and their actions

Often we introduce group theory to students with pictures like the
following, and ask:

What are all the symmetries of this object?

This provides us with some intuitive understanding of the group.
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Regular action of a group

Sometimes that intuition is limited. For example, many people struggle to
understand the interactions between rotations and reflections.

Given any group G , it admits a natural permutation action on the set of
elements of G , by right- (or left-) multiplication.

{τg : g ∈ G}, where τg (h) = hg for every h ∈ G

is called the right-regular action of G .
[Cayley’s Theorem: G is isomorphic to a subgroup of Sym(|G |).]

Notice that this action is regular: for any x , y ∈ G , there is a unique
g ∈ G such that τg (x) = y : namely, g = x−1y .
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Regular action and intuition

The regular action can sometimes help our intuition more than other
group representations.
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Regular action and intuition

The regular action can sometimes help our intuition more than other group
representations. For example, we can think of D8 (the dihedral group of
order 8) as the symmetries (automorphisms) of a square or of this object:
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History and Definitions
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History

Question [König, 1936]

Given an abstract group G , is there a graph whose automorphism group is
isomorphic to G?

Answer [Frucht, 1938]

Yes; in fact, there are infinitely many such graphs for any group G .

General constructions, though, did not have regular group actions – they
required far more than |G | vertices.

Example: Z5
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Definitions

Definition

A graph is a collection of vertices, with edges joining some of them.

Definition

A digraph is a collection of vertices, with arcs (directed edges) joining
some of them. If we have arcs in both directions between two vertices, we
often represent this by an edge.

Definition

An oriented graph is a directed graph that does not have arcs in both
directions between any two vertices.

Definition

For any of these objects, an object of that type whose full automorphism
group is the regular representation of some group G , is called a [object
type] regular representation of G . (GRR, DRR, ORR.)
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Examples

is not a DRR, GRR, or ORR for any group. Its full automorphism group is
D8, but the action of D8 is not regular on the vertices of this graph.
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Examples

is a GRR, for D12. Its full automorphism group is D12, and the action of
D12 is regular on the vertices of this graph. It is also a digraph, so it is a
DRR, but it is not an oriented graph, so is not an ORR.
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Cayley graphs

Definition

The Cayley (di)graph Γ = Cay(G,S) is the (di)graph whose vertices are
the elements of G , with an arc from g to sg if and only if s ∈ S .

g

sg

Notice

Γ will be a graph if and only if S = S−1;

right-multiplication by any element of G is necessarily an
automorphism of this (di)graph (there is an arc from gh to sgh).

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 15 / 41



Cayley graphs

Definition

The Cayley (di)graph Γ = Cay(G,S) is the (di)graph whose vertices are
the elements of G , with an arc from g to sg if and only if s ∈ S .

g

sg

Notice

Γ will be a graph if and only if S = S−1;

right-multiplication by any element of G is necessarily an
automorphism of this (di)graph (there is an arc from gh to sgh).

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 15 / 41



Cayley graphs

Definition

The Cayley (di)graph Γ = Cay(G,S) is the (di)graph whose vertices are
the elements of G , with an arc from g to sg if and only if s ∈ S .

g

sg

Notice

Γ will be a graph if and only if S = S−1;

right-multiplication by any element of G is necessarily an
automorphism of this (di)graph (there is an arc from gh to sgh).

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 15 / 41



Cayley graphs and Regular Representations

Proposition (Sabidussi)

A (di)graph is Cayley on the group G if and only if its group of
automorphisms contains the (right-)regular representation of G .

So, a DRR/GRR/ORR must be a Cayley digraph that happens to not have
any extra automorphisms.
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Obstructions
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Obstructions for GRRs

Observation

For any Cayley (di)graph Γ = Cay(G, S), if α is an automorphism of the
group G that fixes S setwise, then the map defined by α on the vertices of
Γ is an automorphism of Γ.

Proof.

Suppose that there is an arc from g to sg , so s ∈ S . Since α is a group
automorphism, (sg)α = sαgα. Since α fixes S , sα ∈ S , so there is an arc
from gα to sαgα = (sg)α.

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 18 / 41



Obstructions for GRRs

Observation

For any Cayley (di)graph Γ = Cay(G, S), if α is an automorphism of the
group G that fixes S setwise, then the map defined by α on the vertices of
Γ is an automorphism of Γ.

Proof.

Suppose that there is an arc from g to sg , so s ∈ S .

Since α is a group
automorphism, (sg)α = sαgα. Since α fixes S , sα ∈ S , so there is an arc
from gα to sαgα = (sg)α.

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 18 / 41



Obstructions for GRRs

Observation

For any Cayley (di)graph Γ = Cay(G, S), if α is an automorphism of the
group G that fixes S setwise, then the map defined by α on the vertices of
Γ is an automorphism of Γ.

Proof.

Suppose that there is an arc from g to sg , so s ∈ S . Since α is a group
automorphism, (sg)α = sαgα.

Since α fixes S , sα ∈ S , so there is an arc
from gα to sαgα = (sg)α.

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 18 / 41



Obstructions for GRRs

Observation

For any Cayley (di)graph Γ = Cay(G, S), if α is an automorphism of the
group G that fixes S setwise, then the map defined by α on the vertices of
Γ is an automorphism of Γ.

Proof.

Suppose that there is an arc from g to sg , so s ∈ S . Since α is a group
automorphism, (sg)α = sαgα. Since α fixes S , sα ∈ S , so there is an arc
from gα to sαgα = (sg)α.

Joy Morris (University of Lethbridge) Regular Reps February 10, 2020 18 / 41



Obstructions for GRRs

Abelian groups

A group G is abelian if and only if the map gα = g−1 is a group
automorphism.

Since S = S−1 for a graph, this map fixes S , so a Cayley
graph on G can never be a GRR unless α is the identity map.

Generalised Dicyclic Groups

The generalised dicyclic group Dic(A, y) where A is an abelian group of
even order and y has order 2 in A, is 〈A, x〉 where x /∈ A, x2 = y , and
x−1ax = a−1 for every a ∈ A.
In the generalised dicyclic group D =Dic(A, y), the map ι defined by
aι = a for a ∈ A, and g ι = g−1 for g ∈ D − A is a group automorphism.
Again S ι = S , so a Cayley graph on D can never be a GRR.

Theorem (Nowitz 1968, Watkins 1971)

Abelian groups containing a non-involution (i.e. of exponent greater than
2); and generalised dicyclic groups cannot have GRRs.
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Obstructions for ORRs

Observation

The Cayley (di)graph Cay(G ,S) is connected if and only if 〈S〉 = G .

Observation

A disconnected Cayley (di)graph on G with more than 2 vertices is never a
regular representation.

Proof.

If the graph has no edges and n > 2 vertices, its automorphism group is
Sym(n) which does not act regularly on the n vertices.
So we may assume that S 6= ∅, but 〈S〉 6= G . Let s ∈ S .
Define α by gα = g if g ∈ 〈S〉, and gα = gs otherwise. Since
right-multiplication by s fixes 〈S〉, this is an automorphism of the graph.
The automorphism group of the graph has more than one element fixing e,
so is not regular.
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Obstructions for ORRs

Observation

The Cayley (di)graph Cay(G ,S) is connected if and only if 〈S〉 = G .

Observation

A disconnected Cayley (di)graph on G with more than 2 vertices is never a
regular representation.

Obstruction

If |G | > 2 and G cannot be generated without elements of order 2, it
cannot have an ORR. (In fact, it has no connected oriented Cayley
digraph.)
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Obstructions for ORRs

Obstruction

If |G | > 2 and G cannot be generated without elements of order 2, it
cannot have an ORR.

Definition

For an abelian group A, the generalised dihedral group Dih(A) is the group
〈A, x〉 with x2 = 1 and x−1ax = a−1 for every a ∈ A. (If A is cyclic this is
a dihedral group.)

Note...

... that in Dih(A), every element ax of Ax has
(ax)2 = axax = aa−1x2 = e. Thus, generalised dihedral groups cannot be
generated without an element of order 2.

So generalised dihedral groups do not admit ORRs. [Babai, 1980]
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Obstructions for DRRs

Observations

Every ORR is a special kind of DRR.

Every GRR is a special kind of DRR.
So an obstruction for DRRs would have to be an obstruction for ORRs and
for GRRs.

There are none.
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Obstructions for bipartite GRRs

Obstruction

If the group G has a subgroup M of index 2 and there is a non-identity
automorphism ϕ of G that maps every element g of G −M to either g or
g−1,

then G cannot admit a bipartite GRR with the cosets of M as the
bipartition sets.
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Obstructions for bipartite GRRs

Theorem (Du, Feng, Spiga 2020+)

The groups G and subgroups M that have such an automorphism satisfy
one of:

M is abelian and G is not generalised dihedral over M;

M contains an abelian subgroup Z of index 2, and there is some
g ∈ G −M such that g2 6= 1, g2 ∈ Z ∩ Z (G ), and zg = z−1 for
every z ∈ Z ; or

Z (M) has index 4 in M; there is some g ∈ G −M such that:

g has order 4;
g inverts every element of Z (M);
there is some m ∈ M − Z (M) such that gm does not have order 2; and
the commutator subgroup of M is 〈g2〉.
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There are no other significant obstructions

Theorem (Hetzel 1976, Godsil 1981)

With the exception of abelian groups that do not have exponent 2, and
generalised dicyclic groups, and 13 other groups of order at most 32, every
group has a GRR.

Theorem (Babai, 1980)

With 5 small exceptions of order at most 16, every group has a DRR.

Theorem (M., Spiga, 2018)

With the exception of generalised dihedral groups, and 11 other groups of
order at most 64, every group has an ORR.

Conjecture (Du, Feng, Spiga, 2020+)

With 59 exceptions of order at most 64, the groups classified by the
obvious obstruction are the only groups not admitting bipartite GRRs.
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Related Results

Theorem (Babai and Imrich, 1979)

Every group of odd order admits a tournament regular representation (and
so an ORR), except C3 × C3 which does not admit a DRR.

Theorem (Du, Feng, Spiga, 2020+ (arXiv))

Every group that has an abelian subgroup M of index 2 admits a bipartite
DRR (with the cosets of M as the bipartition sets), or is one of 22 small
exceptions of order at most 64.

Remark

The major techniques for finding DRRs involve looking at the subgraph
induced on the neighbours of a vertex and trying to make it asymmetric;
this does nothing for bipartite graphs.

Conjecture (Du, Feng, Spiga, 2020+)

“abelian” is not a necessary hypothesis.
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Theme/Lesson

With the exception of some “small noise”, regular representations exist as
long as obvious structural obstructions are avoided.
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Asymptotics
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Theorem (Erdös–Rényi, 1963)

Almost every (di)graph is asymmetric.

Idea

Symmetry is rare. “Extra” symmetry may also be rare.

Question

If we force a (di)graph to have some symmetry (automorphisms), is it still
true that almost every such (di)graph has no symmetry beyond what we
force?
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Theorem (Babai, 1980)

With 5 small exceptions, every group has a DRR.

Conjecture (Babai, Godsil 1981–2)

As r (the number of vertices) tends to infinity, the number of DRRs on r
vertices tends to 1 as a proportion of the number of Cayley digraphs on r
vertices.
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Conjecture (Babai, Godsil 1981–2)

As r (the number of vertices) tends to infinity, the number of DRRs on r
vertices tends to 1 as a proportion of the number of Cayley digraphs on r
vertices.

Remarks

loops are irrelevant so we can take the number of Cayley digraphs on
a group of order r to be 2r (choose the connection set);

Does every group of order r have this property, or is it only true over
all groups of order r , as r →∞;

We can look at labelled digraphs, or digraphs up to isomorphism;

They made a similar conjecture about GRRs and Cayley graphs.
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Theorem (Babai, Godsil 1982)

Within the class of nilpotent groups R of odd order r , as r →∞ the
proportion of DRRs on R from all Cayley digraphs on R tends to 1.

Theorem (M., Spiga 2020+)

Let R be a group of order r , where r is sufficiently large. The number of
subsets S of R such that Cay(R,S) is not a DRR is at most

2
r− br0.499

(4 log2(r))
3+2

,

where b is an absolute constant that does not depend on R.

Corollary

As r →∞, if R is a group of order r , the proportion of DRRs on R (up to
isomorphism) out of all Cayley digraphs on R (up to isomorphism) tends
to 1.
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Main tools - Blocks

Definition

Let G be a permutation group acting transitively on a set X . Then B ⊆ X
is a block under the action of G if ∀g ∈ G , g(B) ∩ B 6= ∅ implies
g(B) = B.

Example – action on the corners of a cube
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is a block under the action of G if ∀g ∈ G , g(B) ∩ B 6= ∅ implies
g(B) = B.

Example – action on the corners of a cube

The set of all blocks partitions X .
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Broad strategy

Oddly, existing results covered all cases except where the group of
automorphisms was exponential in the number of vertices.

It felt like this
should be easy to finish, but it wasn’t.

A permutation group that admits blocks is imprimitive and has actions on
the set of blocks, and on each block. Induction can be used.

A permutation group that does not admit blocks is primitive. The
O’Nan-Scott Classification of primitive groups can be applied.
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One key lemma

Lemma

Let G be a transitive permutation group acting on r points. If G is not
regular, then there are at most 23r/4 digraphs on these r points whose
automorphism group contains G .

Proof.

A digraph on r points whose automorphism group contains G is uniquely
determined by the out-neighbours of the vertex x . These out-neighbours
must be a union of orbits of Gx .

Consider the stabiliser subgroup Gx of one of the points. Let ∆ be the set
of all points fixed by Gx . Then ∆ is a block for G , so |∆| | r . Since G is
not regular, |∆| ≤ r/2. So the number of orbits of Gx is at most
|∆|+ (r − |∆|)/2 ≤ 3r/4. So there are at most 23r/4 digraphs.

This has no obvious useful generalisation to the case of undirected graphs,
and is the main reason our proofs do not generalise to that situation.
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Related Work and Open Problems
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Related work

Bipartite DRRs

If the index-2 subgroup is abelian, Du, Feng and Spiga (2020+) have also
proved that almost every bipartite Cayley digraph is a DRR.

Related Question [first reference Alspach, 1974]

Given a particular representation of a permutation group G , is there a
graph Γ whose automorphism group is isomorphic to G as permutation
groups?

Graphical Frobenius Representations

A number of researchers including Watkins, Tucker, Conder, and Spiga
have proved results about Frobenius representations of permutation
groups.
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graph Γ whose automorphism group is isomorphic to G as permutation
groups?
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Open problems

Is the Babai-Godsil Conjecture true for GRRs?

Are the Du-Feng-Spiga Conjectures true for bipartite GRRs and bipartite
DRRs?
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Thank you!
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