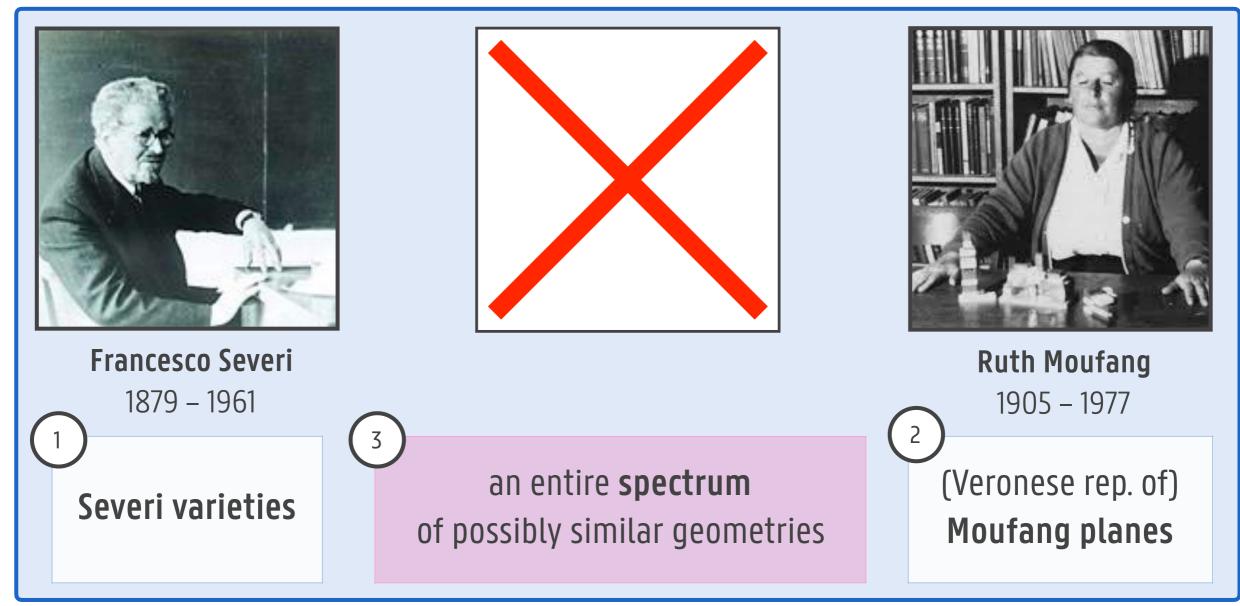
Symmetries Of Discrete Objects 2020, Rotorua

MOUFANG MEETS SEVERI

Anneleen **De Schepper** Joint work with: Jeroen **Schillewaert** and Hendrik **Van Maldeghem**

INTRODUCTION

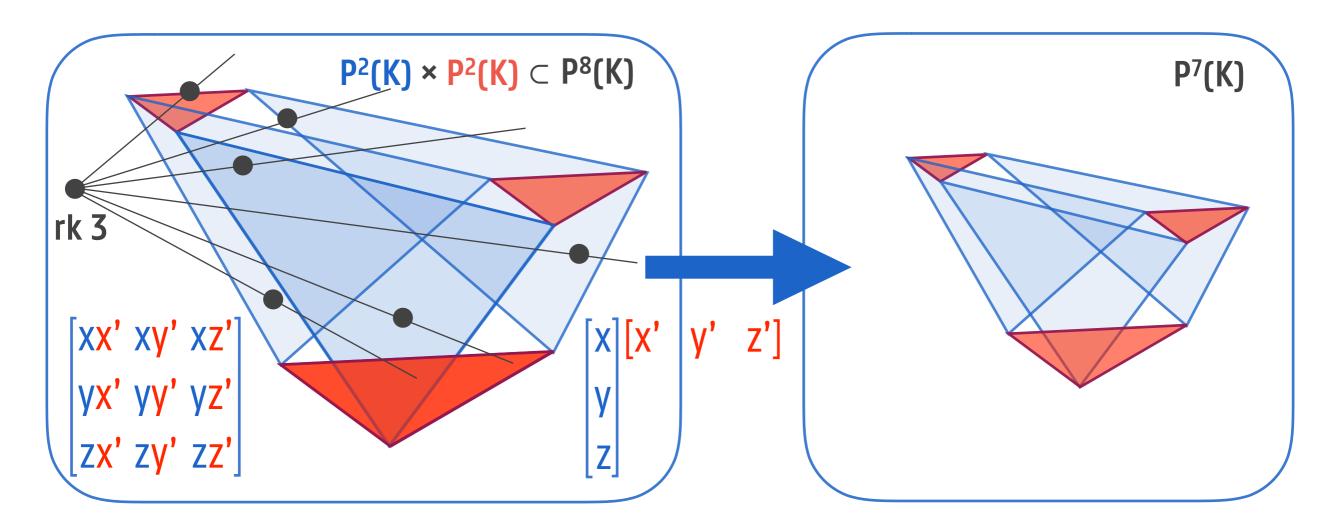
uniform geometric description



long-term motivation: understand the exceptional algebraic groups (over any field) GHENT UNIVERSITY

SEVERI VARIETIES

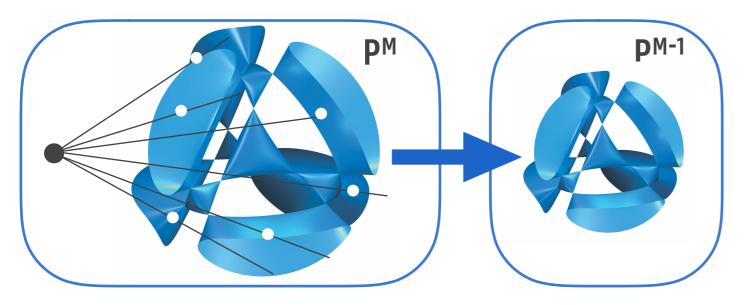
EXAMPLE: SEGRE VARIETY S2,2(K) (K FIELD)



The **rank 1 matrices** in the space of the **3x3 matrices** (mod scalars) $\simeq P^8(K)$

isomorphic image one dimension lower

SECANT-DEFECTIVE VARIETIES



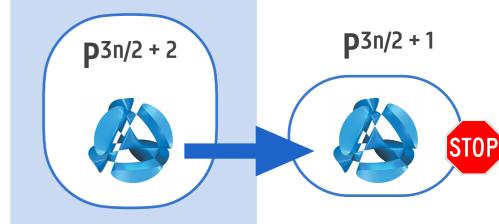
n-dim variety (spanning P^M)

GHFN1

UNIVERSITY

isomorphic 1 dimension lower

- Existence of projections depends on:
 - intrinsic properties of the variety
 - Hartshorne conjecture (Zak, 1981): M≥ 3n/2 + 2

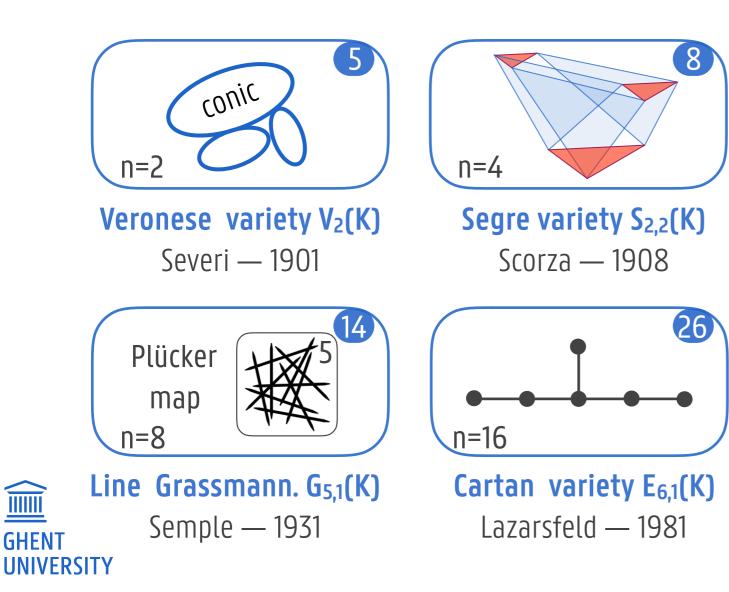


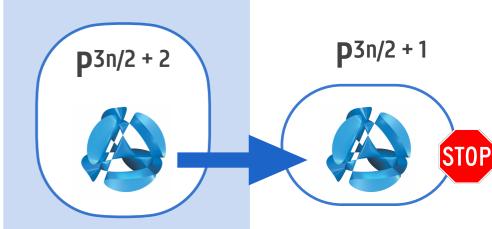
If projection is possible

Severi variety

SEVERI VARIETIES

Classification (Zak, 1985) Suppose X is an irreducible reduced n-dim Severi variety with <X>=P^{3n/2+2} over an algebraically closed field K of char O. Then:

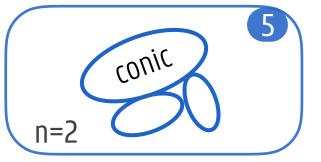


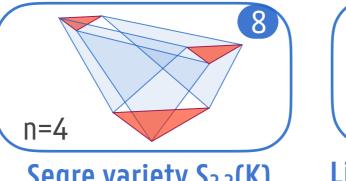


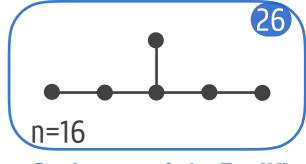
If projection is possible

Severi variety

UNIFORM DESCRIPTION (OVER ARBITRARY FIELDS)







Veronese variety V₂(K)

Line Grassmann. G_{5,1}(K)

Cartan variety E_{6,1}(K)

- Zak: "It is amusing that Severi varieties are in one-to-one correspondence with the (split) composition algebras A over K."
 - K-algebras A with a non-degenerate multiplicative norm form $N: A \rightarrow K$
 - e.q. **complex numbers**: $N(a+bi)=(a+bi)(a-bi)=a^2+b^2$
 - comes with an involution $A \rightarrow A: x \mapsto \underline{x}$ such that $N(x)=x\underline{x}$

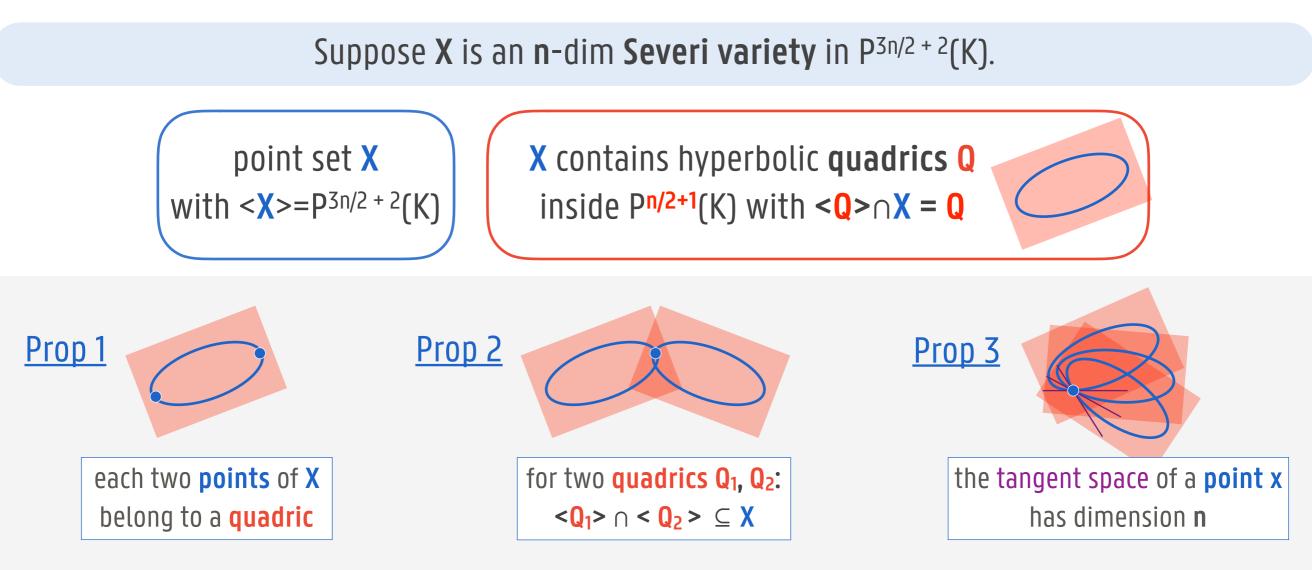
K	K × K	Mat _{2×2} (K)	split octonions
1-dim over K	2-dim over K	4-dim over K	8-dim over K

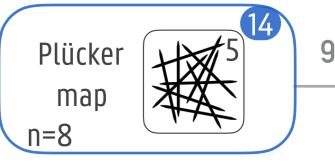
Veronese representation of a "plane" over A


```
(x,y,z) \mapsto (N(x), N(y), N(z); yz, zx, xy) \in P^{3d+2}(K) with d=n/2=dim_{K}A
```

1. SEVERI VARIETIES

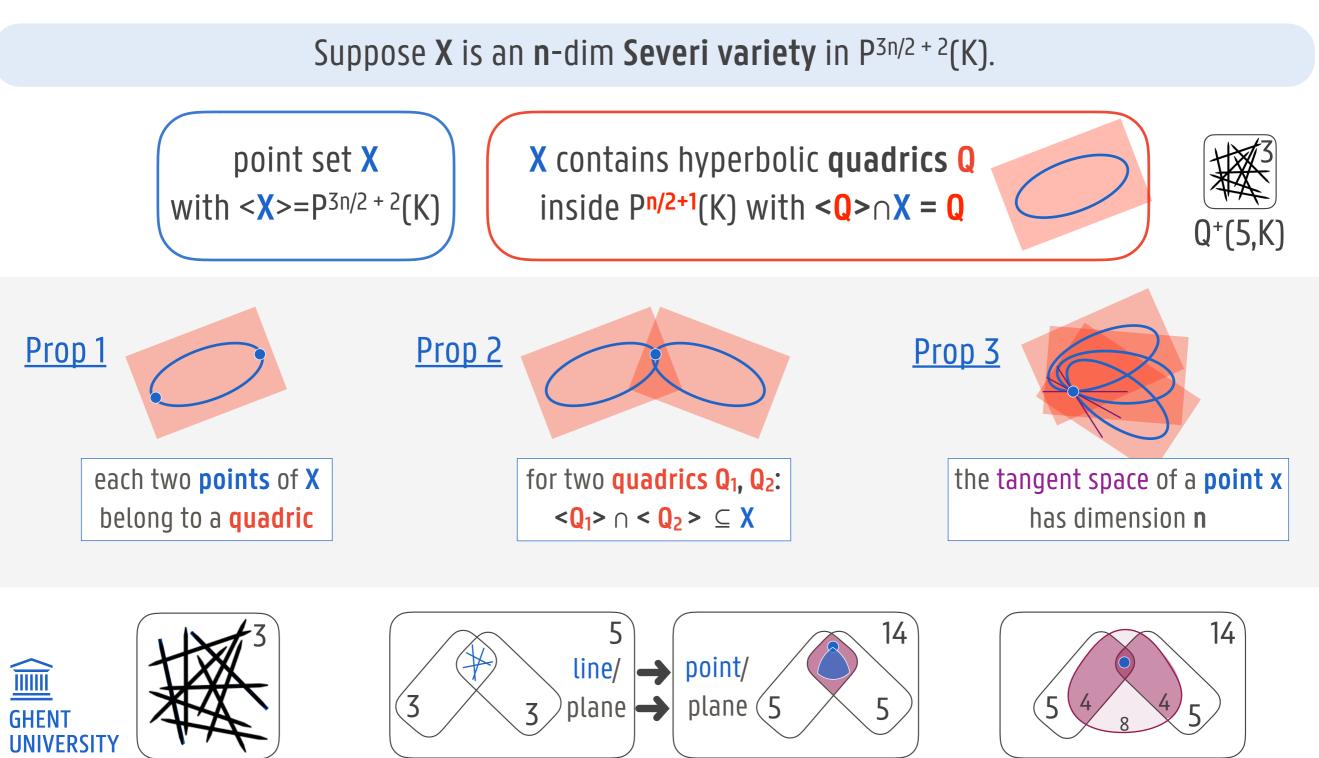
GEOMETRIC PROPERTIES



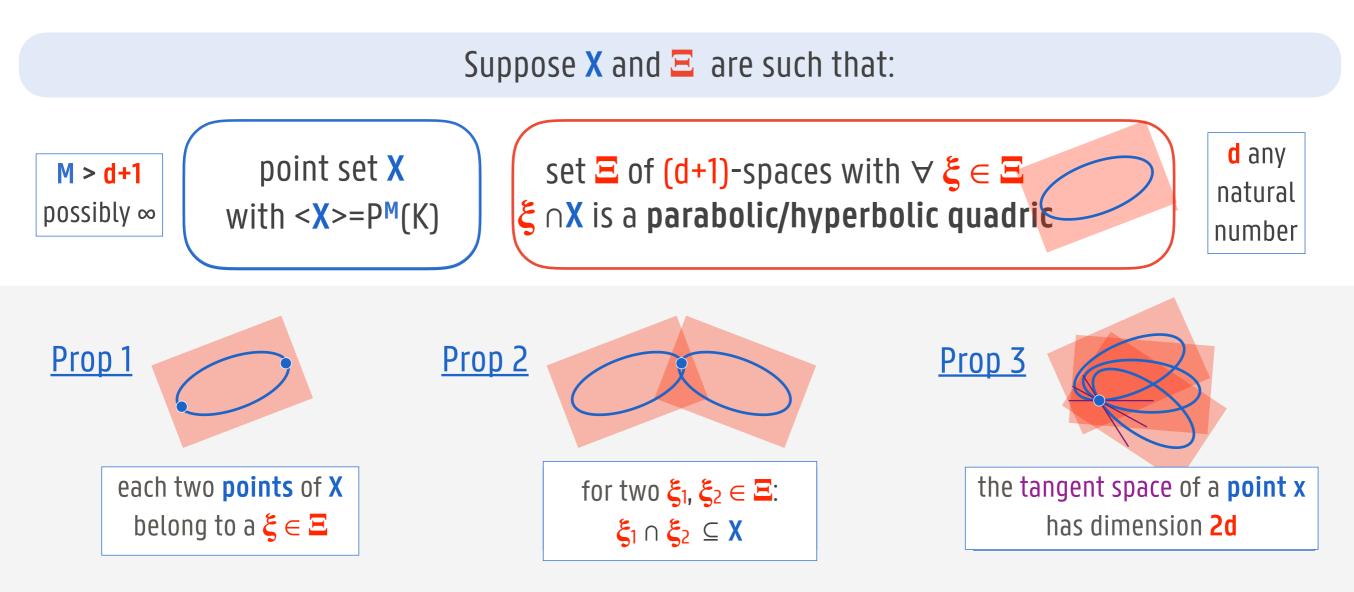


GEOMETRIC PROPERTIES

Line Grassmann. G_{5,1}(K)



CHARACTERISATION OF SEVERI VARIETIES OVER <u>ARBITRARY</u> FIELDS



<u>IIIII</u> GHENT UNIVERSITY **Theorem** (Schillewaert, Van Maldeghem; 2013/2017) **X** is a **2d**-dim Severi variety

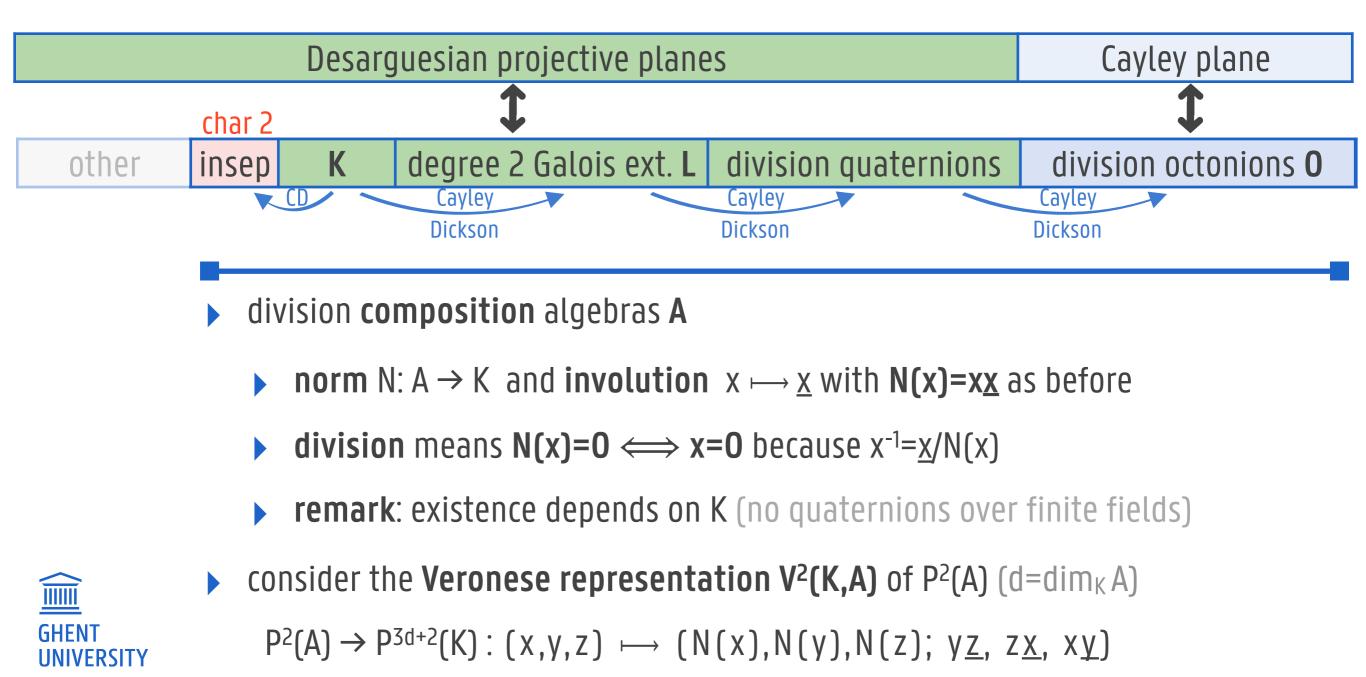
VERONESE REPRESENTATIONS OF

MOUFANG PLANES

ALTERNATIVE DIVISION RINGS

a(ab)=a²b and (ab)b=ab²

► Moufang planes ← projective planes coordinatised over <u>alternative</u> division rings

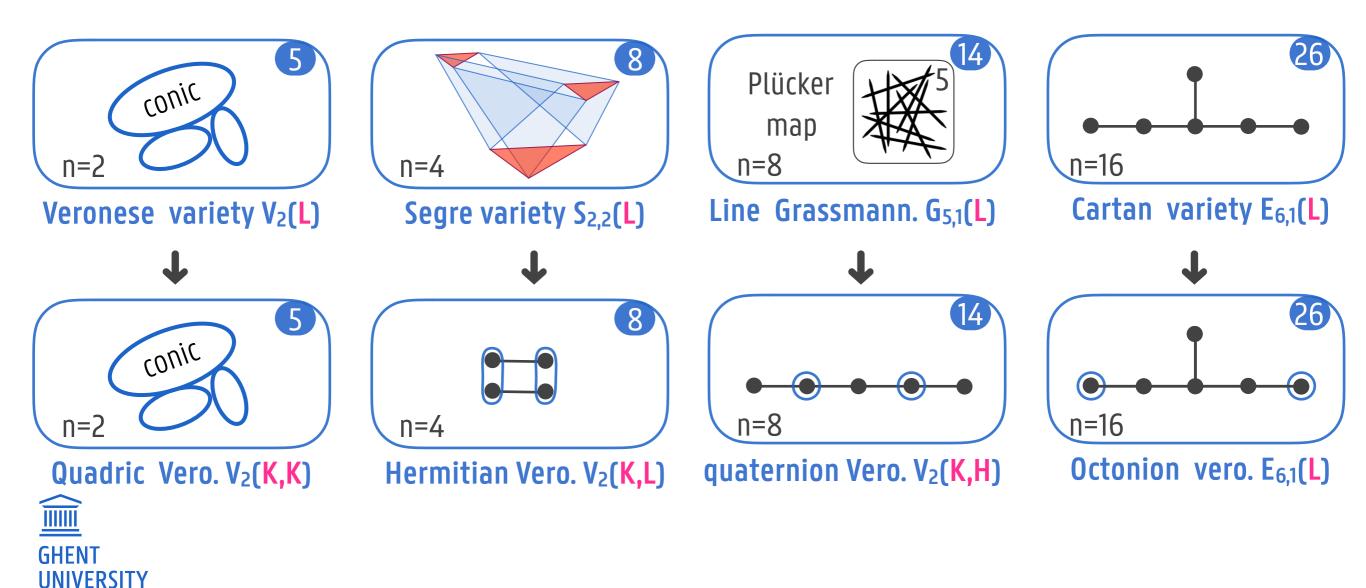


VERONESE VARIETIES V²(K,A)

char 2

insep K degree 2 Galois ext. L division quaternions	division octonions O			

▶ The Veronese variety V²(K,A) is contained in the (2d)-dim Severi variety over L



13

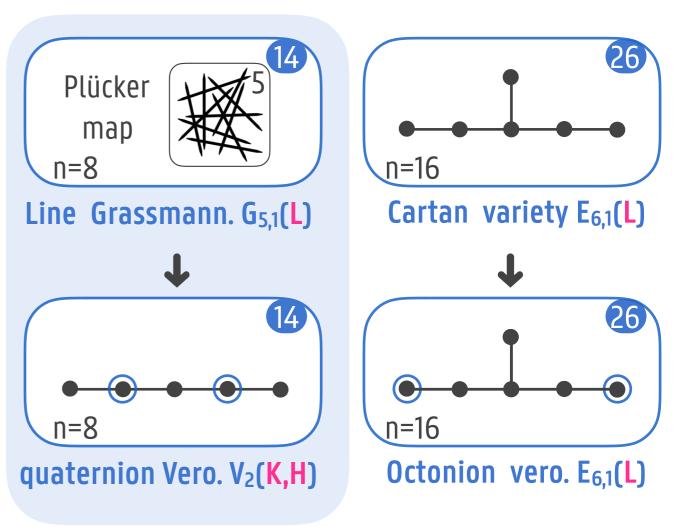
VERONESE VARIETIES V²(K,A)

char 2

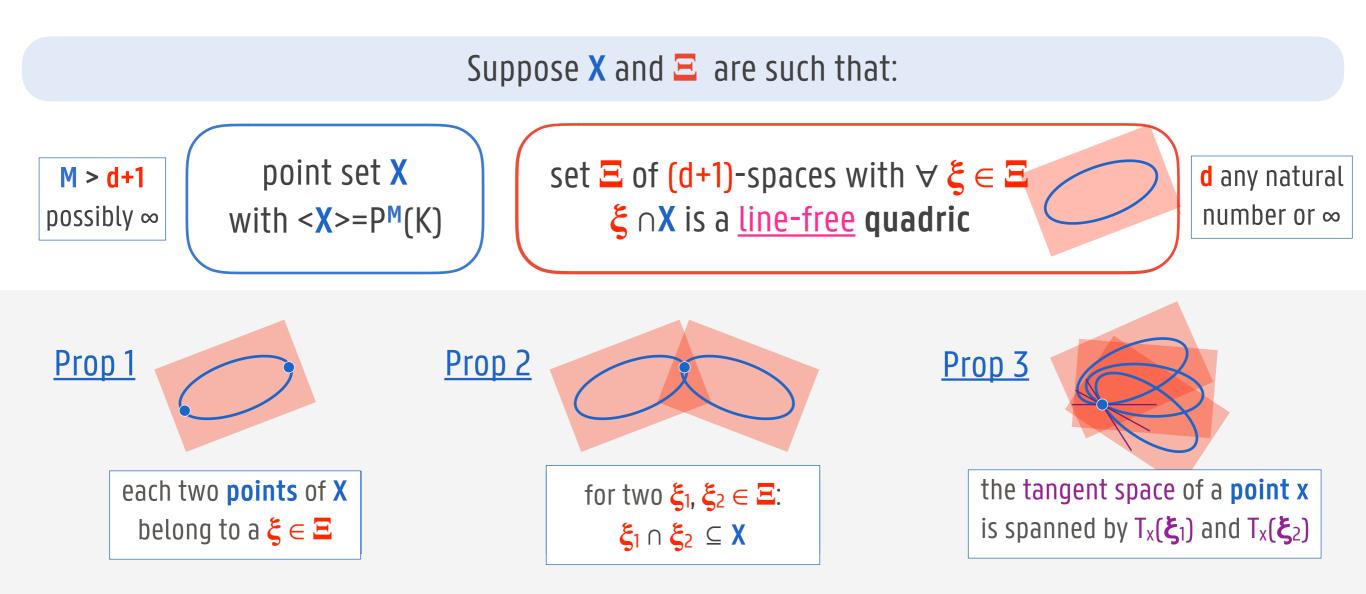
insep K degree 2 Galois ext. L division quaternions division octonions O

- The Veronese variety V²(K,A) is contained in the (2d)-dim Severi variety over L
- semi-linear involution σ on P⁵(L), no fixpoints
 - spread of fixed lines <p, σ(p)>
 - projective plane with lines and 3-spaces





CHARACTERISATION OF MOUFANG VERONESE VARIETIES OVER <u>ARBITRARY</u> FIELDS

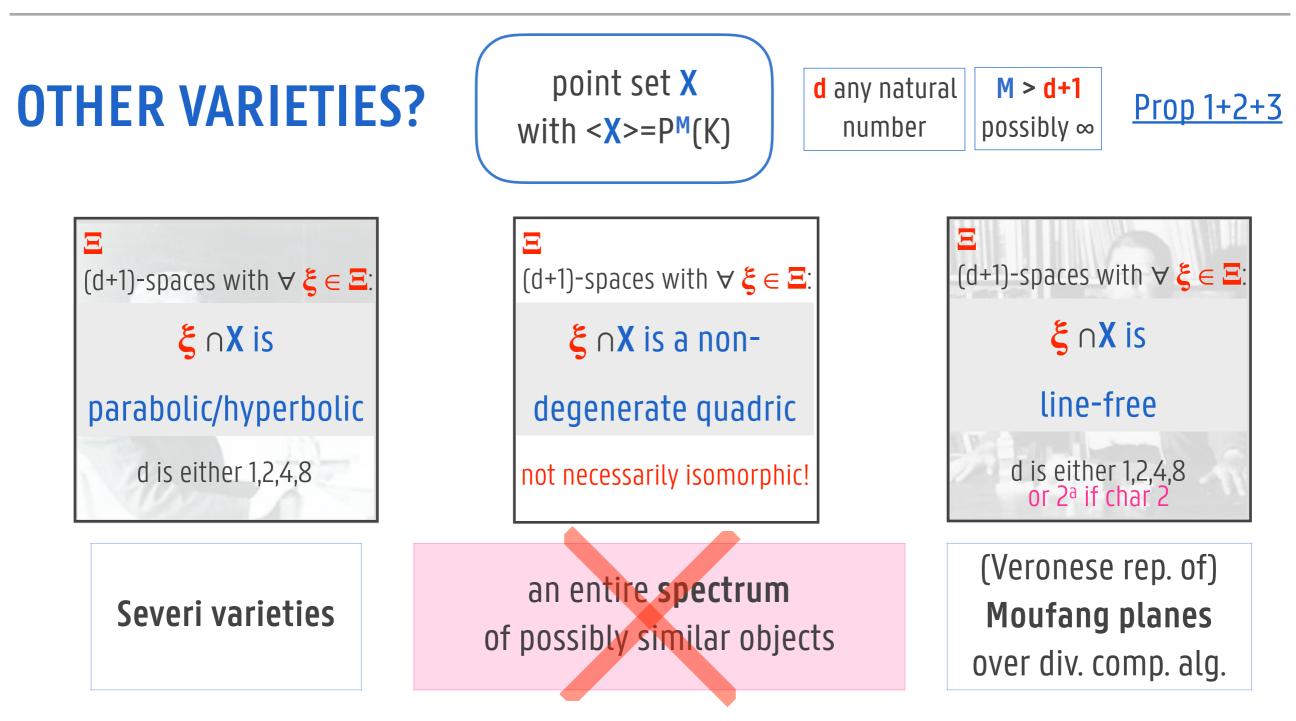


Theorem (Krauss, Schillewaert, Van Maldeghem; 2013/2015)
(X, Ξ) arises as the Veronese representation of P²(A) where A is a division composition algebra over K

THE MOUFANG-SEVERI DICHOTOMY

GHFNT

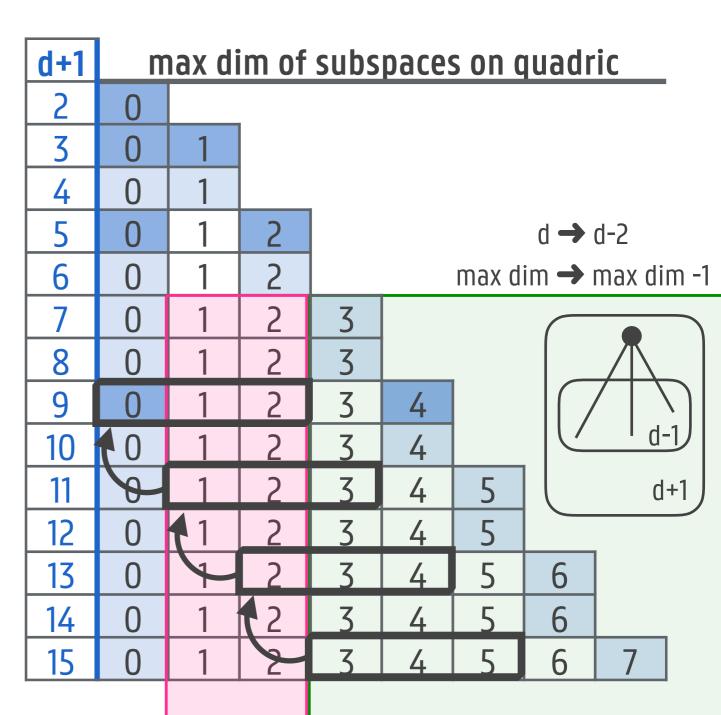
UNIVERSITY



- Conjecture (HVM, JS; 2012): there are no other such geometries
 - true! (ADS, JS, HVM; 2019+)
- Remark this reflects the situation for composition algebras

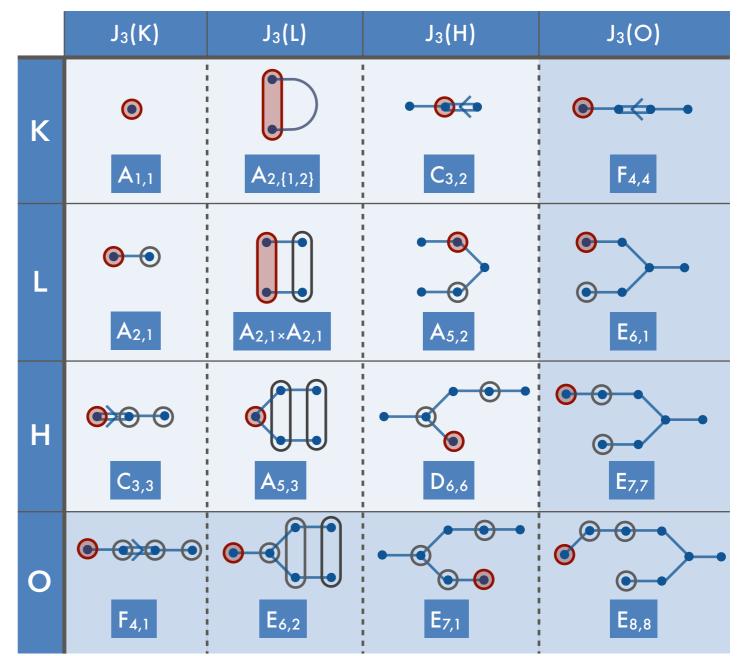
NO OTHER SUCH GEOMETRIES

- inductive approach, reducing the size of the quadrics through a point
- small index: cut off high d's
- remaining cases are quite hard as they are a mix of real cases



MOTIVATION

- The Freudenthal-Tits magic square (FTMS) is based on pairs of composition algebras
- Its second row consists of the Moufang/Severi varieties
- uniform characterisation of the second row
- goal: extend this to other rows



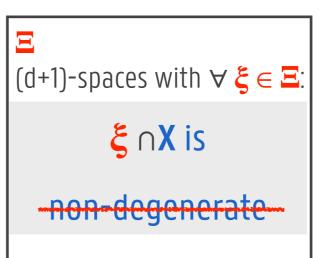
THE DEGENERATE CASE

HJELMSLEV PLANES

point set **X** with <**X**>=P^M(K)

d any naturalM > d+1numberpossibly ∞

<u>Prop 1+2+3</u>



not necessarily isomorphic

Severi varieties

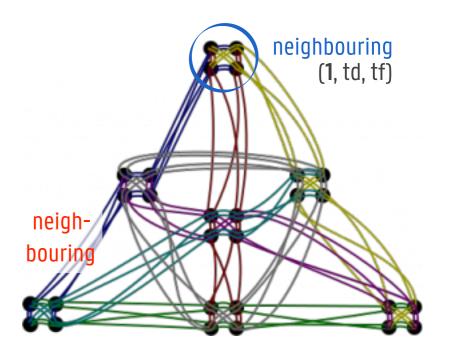
there actually are **other examples** satisfying Prop 1, 2 and 3 (Veronese rep. of) **Moufang planes** over div. comp. alg.

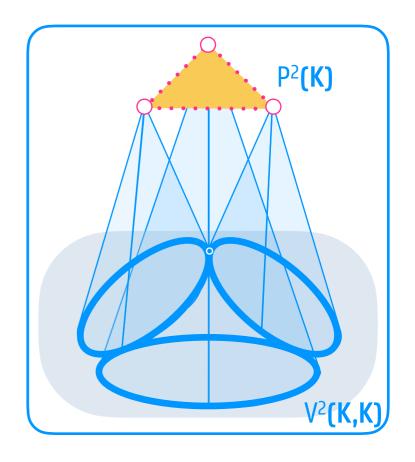
Hjelsmlev planes and other ring geometries

HJELSMLEV PLANES OF LEVEL 2

- A Hjelmslev plane (HP) of level 2 is a point-line geometry with a neighbouring relation in which
 - through two points at least one line
 - two lines meet in at least one point
 - ► there is a canonical epimorphism π to a projective plane with π(x)= π(y) ⇐⇒ x and y are neighbouring points/lines
- **Example**: HP over the **dual numbers** over K: given by $K \oplus tK$ with $t^2=0$
 - ▶ points (**a**+tb, **c**+td, **e**+tf) with (a,c,e) \neq (0,0,0) and π (**a**+tb, **c**+td, **e**+tf)=(a,c,e); lines similarly

► Veronese representation (<u>a+tb</u>=a-tb) satisfies Prop 1, 2, 3! GHENT $P^{2}(A) \rightarrow P^{3d+2}(K)$: $(x,y,z) \mapsto (x\underline{x},y\underline{y},z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$ UNIVERSITY





"DEGENERATE" COMPOSITION ALGEBRAS

"dual numbers" over division composition algebras

K	degree 2 Galois ext. L	division quaternions H	insep l
K⊕tK	L⊕tL	H⊕tH	I⊕tl

- (Hjelsmlev) Veronese variety has degenerate quadrics whose basis is line-free
- **similar behaviour**: also satisfies our axioms
- "dual numbers" over split composition algebras

L'=K × K		H'=Mat _{2 ×2} (K)	
ternions (tL'=K)	L'⊕tL'	sextonions (tH'=L')	H'⊕tH'

Veronese variety has two types of degenerate quadrics whose basis is hyperbolic

similar behaviour: also satisfies Prop 1, 2,3 ; except H'⊕tH'

char 2

Anneleen De Schepper Symmetries Of Discrete Objects 2020, Rotorua

line-free quadrics

all kinds of non-degenerate quadrics

