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Introduction

Definitions

@ Vertex-transitive graph: A graph is vertex-transitive if its
automorphism group acts transitively on its vertices.

@ Cayley graphs: Given a finite group G and an inverse
closed subset S C G\ {1}, the Cayley graph Cay(G, S) on
G with respect to S is defined to have vertex set G and
edge set {{g,s9} | g € G,s € S}.

@ Every Cayley graph is vertex-transitive.
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Definitions

@ It is well known that a vertex-transitive graph is a Cayley
graph if and only if its automorphism group contains a
subgroup acting regularly on its vertex set (see, for
example, [17, Lemma 4]).

@ There are vertex-transitive graphs which are not Cayley
graphs and the smallest one is the well-known Petersen
graph. Such a graph will be called a vertex-transitive
non-Cayley graph, or a VNC-graph for short.
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Related problems

Marusic¢ (1983) posed the following problem.

Problem 1

Determine the set NC of non-Cayley numbers, that is, those
numbers for which there exists a VNC-graph of order n.

To settle this question, a lot of VNC-graphs were constructed by
Marusi¢, McKay, Royle, Praeger, Miller, Seress etc. in 1990’s.
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Related problems

Feng (2002) considered the following question.

Problem 2

Determine the smallest valency for VNC-graphs of a given
order.

He solved this problem for the graphs of odd prime power order.
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Related problems

In [11, Table 1], for n < 26, the total number of vertex-transitive
graphs of order n and the number of VNC-graphs of order n are
listed. It seems that, for small orders at least, the great majority
of vertex-transitive graphs are Cayley graphs. This is
particularly true for small valent vertex-transitive graphs (see
[14]). This may suggest the following problem.

Problem 3
Classify small valent VNC-graphs with given order.

The main purpose of this talk is to introduce some work about
this problem.
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Strategy in classification

Let X be a connected graph with a vertex-transitive
automorphism group G. Let B be a G-invariant partition of
V(X).
@ Quotient graph Xp: vertex set B, and for any two vertices
B, C € B, Bis adjacent to C if and only if there exist u € B
and v € C which are adjacent in X.
@ Normal quotient: when B is a set of orbits of some normal
subgroup of G.
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Strategy in classification

@ The quotient theory was developed by Praeger etc., and it
can be used to reduce a large vertex-transitive graph to a
small one. This reduction enables us to analysis the
structure of various families of vertex-transitive graphs.

@ This strategy also works in the classification of small valent
VNC-graphs.
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Interesting cases in classification

@ Cubic VNC-graphs.
@ Tetravalent VNC-graphs.
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A well-known class of graphs

Generalized Petersen graphs

Letn >3 and 1 <t < n/2. The generalized Petersen graph P(n, t) is the
graph with vertex set {x;, y; | i € Z,} and edge set the union the out edges
{{xi, Xit1} | i € Zn}, the inner edges {y;, yi+: | i € Zn} and the spokes
i, yi}, 17 € Zn}.

1 Xo
It is known that P(n, t) is VNC if and only if either #* = —1 (mod n) or
(n,t)=(10,2).
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Cubic VNC-graphs of order a product of three primes

Theorem (Zhou, J. Sys. Sci. & Math. Sci., 2008)

Let p be a prime. A connected cubic graph of order 4p is a
VNC-graph if and only if it is isomorphic to one of the following:
P(10,2), the Dodecahedron, the Coxeter graph, or

P(2p, k)(k? = —1 (mod 2p)).

Theorem (Zhou, Adv. Math. (China), 2008)

Let p be a prime. A connected cubic graph of order 2p? is a
VNC-graph if and only if it is isomorphic to
P(p?, 1)(f? = —1(mod p?)).
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Cubic VNC-graphs of order a product of three primes

Theorem (Zhou & Feng, J. Graph Theory, 2010)

Let p > q be odd primes and X a connected cubic

vertex-transitive non-Cayley graph of order 2pg. Then

(1) X is symmetric if and only if X = F030, F102, F182C,
F182D, F506A, or F2162;

(2) X is non-symmetric if and only if X = VN CL,, VN'C3,,
P(pg, t), where t> = —1(mod pq), and Aut(VNCL,) = Ss
and Aut(VNC3,) = As.
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Cubic VNC-graphs of order 4 times a prime power

Theorem (Kutnar, Marusi¢ & Zhang, J. Graph Theory, 2012)

Every cubic VNC-graphs of order 4p?, p > 7 a prime, is a
generalized Petersen graph.
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A question

Are there infinite family of cubic VNC-graphs different from
generalized Petersen graph?
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Two families of cubic vertex-transitive graphs

We modify the generalized Petersen graph construction slightly
so that the subgraph induced by the out edges is a union of two
n-cycles.

Double generalized Petersen graphs

Letn >3 and t € Z, — {0}. The double generalized Petersen graph DP(n, t)
(DGPG for short) is defined to have vertex set {x;, yi, Ui, Vi | i € Zn} and edge
set the union of the out edges {{xi, Xi+1}, {Vi, ¥i+1} | i € Zn}, the inner edges
{{ui, Vizt}, {Vi, Uit} | | € Zn} and the spokes {{x;, ui}, {yi, vi} | i € Zn}.
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Classification:

DP(10,2) and P(8,3)
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An interesting problem

Problem
Determining all vertex-transitive graphs and all VNC-graphs
among DGPGs.

The complete solution of this problem may be a topic for our
future effort. Here, we just give a sufficient condition for a
DGPG being vertex-transitive non-Cayley.
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A sufficient condition

Sufficient condition

Let p be a prime such that p = 1 (mod 4). Then DP(2p, \) is a
connected cubic VNC-graph of order 8p, where X is a solution
of X2 = —1 (mod p) in Zyp..
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The second family

Definition 1
For integer n > 2, let X(n, 2) be the graph of order 4n and valency 3 with
vertex set Vo U V3 U ... Von_o U Vo,_1, Where V; = { x,-‘}, and adjacencies

Xé‘,‘ ~ X2r,'+1 (I E Zn, r e Zz) and X2,'+1 i~ X2,'+2(I E Zn, I’, S E Zz)

Remark Note that X(n, 2) is obtained from C,[2K;] by expending each
vertex into an edge, in a natural way, so that each of the two blown-up
endvertices inherits half of the neighbors of the original vertex.

Cs[2Ki] X(5,2)

R, XX
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The second family

The second family

Let EX(n,2) be the graph obtained from X (n, 2) by blowing up each vertex x;
into two vertices x/"° and x"'. The adjacencies are as the following:

Xy ~ Xoity and x5, ~ x5i7,, where i € Znand r, s, t € Z (see Fig. 1 for
EX(5,2)).
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A picture of EX(5,2)

Figure: The graph EX(5,2)
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Dobson et al. (2007) showed that EX(n,2) is vertex-transitive
for each n > 2. However, EX(n,2) is not necessarily a Cayley
graph.

Sufficient condition

Let p > 3 be a prime. Then the graph EX(p, 2) is a connected
cubic VNC-graph of order 8p.
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Cubic VNC-graphs of order 8p

Recently, we classified cubic VNC-graphs of order 8p.

Theorem (Zhou & Feng, 2011, submitted to Elec. J. Combin.)

A connected cubic graph of order 8p for a prime p is a
VNC-graph if and only if it is isomorphic to F56B, F56C,

DG(2p, \) or EX(p,2).
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Cubic VNC-graphs of square-free order

Li, Lu & Wang (2012) classified cubic vertex-transitive graphs of
square-free order. From their result, one may pick out all cubic
VNC-graphs of square-free order.
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Tetravalent VNC-graphs

Tan (1996) constructed three families of tetravalent
vertex-transitive non-Cayley graphs which are metacirculant
graphs.
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Tetravalent VNC-graphs of order 4p

Recently, we classified all tetravalent VNC-graphs of order 4p
for each prime p.

Theorem (Zhou, to appear in J. Graph Theory)

There are one sporadic and five infinite families of tetravalent
VNC-graphs, of which the sporadic one has order 20, and one
infinite family exists for every prime p > 3, two families exist if
and only if p = 1 (mod 8) and the other two families exist if and
only if p =1 (mod 4). For each family there is a unique graph
for a given order. (Examples 1-6).
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Tetravalent VNC-graphs of order 4p

Let p > 3 be a prime. The graph VNClp has vertex set
Zp x (Zp x Zy) and its edges are defined by
{(,(x,y)), (i+1,(y,2))} € E( VNClp) forall / € Zp and
X,Y,Z € Zo.

Let p be a prime and let r € Zj, satisfy r* = —1. The graph
VNCfp is defined to have vertex set {x! | i € Za,j € Z,} and

edge set {{v/, v[/{ },{V/,v[ [} | i € Z4,j € Zp}.
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Tetravalent VNC-graphs of order 4p

Let p be a prime and let r € Z}, satisfy r* = —1. The graph
VNCfp is defined to have vertex set {x/'| i€ Z4,j € Zp}and
edge set {{x]_y, [}, x5 g} (¥, X,

{x, x/“ 1 (X, x’“ Y| i€ Zy,jE Zp}

Example 4

Let p be a prime and let t € Z3, satisfy t* = —1. The graph
VNCZ‘ is defined to have vertex set {x;, y; | i € Zop} and edge
set {{Xi, Xit1}, {Xi, Xixp}, {Xi, Yi}s Vis Vit Vis Yiap) | 1 € Zop}.
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Tetravalent VNC-graphs of order 4p

Let p be a prime and let t € Z, satisfy t* = —1. The graph
VNC;? is defined to have vertex set {x;, y; | i € Zp} and edge
set E = {{X;, Xir2}, {Xi, Xiyp}, {Xi, Vi}s

Wi Yivoth, Wi Yigp) | 1 € Zop}.

Example 6

Let G = As be the alternating group of degree 5. Let
H=((1283)),di =(14)(25)and d» = (12)(45). Then
Cos(G, H, HdyH U Hd,) is a connected tetravalent VNC-graph of
order 20, denoted by VNCS,, and Aut(VNCS;) = Ss.
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Thanks!
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