On vertex-transitive non-Cayley graphs

Jin-Xin Zhou

Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China

SODO, Queenstown, 2012

Definitions

- Vertex-transitive graph: A graph is vertex-transitive if its automorphism group acts transitively on its vertices.
- Cayley graphs: Given a finite group *G* and an inverse closed subset *S* ⊆ *G* \ {1}, the Cayley graph Cay(*G*, *S*) on *G* with respect to *S* is defined to have vertex set *G* and edge set {{*g*, *sg*} | *g* ∈ *G*, *s* ∈ *S*}.
- Every Cayley graph is vertex-transitive.

Definitions

- It is well known that a vertex-transitive graph is a Cayley graph if and only if its automorphism group contains a subgroup acting regularly on its vertex set (see, for example, [17, Lemma 4]).
- There are vertex-transitive graphs which are not Cayley graphs and the smallest one is the well-known Petersen graph. Such a graph will be called a vertex-transitive non-Cayley graph, or a VNC-graph for short.

Related problems

Marušič (1983) posed the following problem.

Problem 1

Determine the set *NC* of non-Cayley numbers, that is, those numbers for which there exists a VNC-graph of order *n*.

To settle this question, a lot of VNC-graphs were constructed by Marušič, McKay, Royle, Praeger, Miller, Seress etc. in 1990's.

Related problems

Feng (2002) considered the following question.

Problem 2

Determine the smallest valency for VNC-graphs of a given order.

He solved this problem for the graphs of odd prime power order.

Related problems

In [11, Table 1], for $n \le 26$, the total number of vertex-transitive graphs of order n and the number of VNC-graphs of order n are listed. It seems that, for small orders at least, the great majority of vertex-transitive graphs are Cayley graphs. This is particularly true for small valent vertex-transitive graphs (see [14]). This may suggest the following problem.

Problem 3

Classify small valent VNC-graphs with given order.

The main purpose of this talk is to introduce some work about this problem.

Strategy in classification

Let X be a connected graph with a vertex-transitive automorphism group G. Let \mathcal{B} be a G-invariant partition of V(X).

- Quotient graph X_B: vertex set B, and for any two vertices B, C ∈ B, B is adjacent to C if and only if there exist u ∈ B and v ∈ C which are adjacent in X.
- Normal quotient: when \mathcal{B} is a set of orbits of some normal subgroup of G.

Strategy in classification

- The quotient theory was developed by Praeger etc., and it can be used to reduce a large vertex-transitive graph to a small one. This reduction enables us to analysis the structure of various families of vertex-transitive graphs.
- This strategy also works in the classification of small valent VNC-graphs.

Interesting cases in classification

- Cubic VNC-graphs.
- Tetravalent VNC-graphs.

A well-known class of graphs

Generalized Petersen graphs

Let $n \ge 3$ and $1 \le t < n/2$. The generalized Petersen graph P(n, t) is the graph with vertex set $\{x_i, y_i \mid i \in \mathbb{Z}_n\}$ and edge set the union the out edges $\{\{x_i, x_{i+1}\} \mid i \in \mathbb{Z}_n\}$, the inner edges $\{y_i, y_{i+t} \mid i \in \mathbb{Z}_n\}$ and the spokes $\{\{x_i, y_i\}, |i \in \mathbb{Z}_n\}$.

It is known that P(n, t) is VNC if and only if either $t^2 \equiv -1 \pmod{n}$ or (n, t) = (10, 2).

Cubic VNC-graphs of order a product of three primes

Theorem (Zhou, J. Sys. Sci. & Math. Sci., 2008)

Let *p* be a prime. A connected cubic graph of order 4*p* is a VNC-graph if and only if it is isomorphic to one of the following: P(10, 2), the Dodecahedron, the Coxeter graph, or $P(2p, k)(k^2 \equiv -1 \pmod{2p})$.

Theorem (Zhou, Adv. Math. (China), 2008)

Let *p* be a prime. A connected cubic graph of order $2p^2$ is a VNC-graph if and only if it is isomorphic to $P(p^2, t)(t^2 \equiv -1 \pmod{p^2})).$

Cubic VNC-graphs of order a product of three primes

Theorem (Zhou & Feng, J. Graph Theory, 2010)

Let p > q be odd primes and X a connected cubic vertex-transitive non-Cayley graph of order 2pq. Then

- (1) X is symmetric if and only if $X \cong$ F030, F102, F182*C*, F182*D*, F506*A*, or F2162;
- (2) X is non-symmetric if and only if $X \cong \mathcal{VNC}_{30}^1, \mathcal{VNC}_{30}^2, P(pq, t)$, where $t^2 \equiv -1 \pmod{pq}$, and $\operatorname{Aut}(\mathcal{VNC}_{30}^1) \cong S_5$ and $\operatorname{Aut}(\mathcal{VNC}_{30}^2) \cong A_5$.

Cubic VNC-graphs of order 4 times a prime power

Theorem (Kutnar, Marušič & Zhang, J. Graph Theory, 2012)

Every cubic VNC-graphs of order $4p^2$, p > 7 a prime, is a generalized Petersen graph.

Are there infinite family of cubic VNC-graphs different from generalized Petersen graph?

Two families of cubic vertex-transitive graphs

We modify the generalized Petersen graph construction slightly so that the subgraph induced by the out edges is a union of two *n*-cycles.

Double generalized Petersen graphs

Let $n \ge 3$ and $t \in \mathbb{Z}_n - \{0\}$. The double generalized Petersen graph DP(n, t)(DGPG for short) is defined to have vertex set $\{x_i, y_i, u_i, v_i \mid i \in \mathbb{Z}_n\}$ and edge set the union of the *out edges* $\{\{x_i, x_{i+1}\}, \{y_i, y_{i+1}\} \mid i \in \mathbb{Z}_n\}$, the *inner edges* $\{\{u_i, v_{i+t}\}, \{v_i, u_{i+t}\} \mid i \in \mathbb{Z}_n\}$ and the *spokes* $\{\{x_i, u_i\}, \{y_i, v_i\} \mid i \in \mathbb{Z}_n\}$.

DP(10,2) and P(8,3)

An interesting problem

Problem

Determining all vertex-transitive graphs and all VNC-graphs among DGPGs.

The complete solution of this problem may be a topic for our future effort. Here, we just give a sufficient condition for a DGPG being vertex-transitive non-Cayley.

A sufficient condition

Sufficient condition

Let *p* be a prime such that $p \equiv 1 \pmod{4}$. Then $DP(2p, \lambda)$ is a connected cubic VNC-graph of order 8*p*, where λ is a solution of $x^2 \equiv -1 \pmod{p}$ in \mathbb{Z}_{2p} .

The second family

Definition 1

For integer $n \ge 2$, let X(n, 2) be the graph of order 4n and valency 3 with vertex set $V_0 \cup V_1 \cup \ldots V_{2n-2} \cup V_{2n-1}$, where $V_i = \{x_i^0, x_i^1\}$, and adjacencies $x_{2i}^r \sim x_{2i+1}^r (i \in \mathbb{Z}_n, r \in \mathbb{Z}_2)$ and $x_{2i+1}^r \sim x_{2i+2}^s (i \in \mathbb{Z}_n; r, s \in \mathbb{Z}_2)$.

Remark Note that X(n, 2) is obtained from $C_n[2K_1]$ by expending each vertex into an edge, in a natural way, so that each of the two blown-up endvertices inherits half of the neighbors of the original vertex.

The second family

The second family

Let EX(n, 2) be the graph obtained from X(n, 2) by blowing up each vertex x_i^r into two vertices $x_i^{r,0}$ and $x_{i^{r,1}}^{r,1}$. The adjacencies are as the following: $x_{2i}^{r,s} \sim x_{2i+1}^{r,t}$ and $x_{2i+1}^{r,s} \sim x_{2i+2}^{s,r}$, where $i \in \mathbb{Z}_n$ and $r, s, t \in \mathbb{Z}_2$ (see Fig. 1 for EX(5,2)).

A picture of EX(5,2)

Figure: The graph EX(5,2)

Dobson et al. (2007) showed that EX(n, 2) is vertex-transitive for each $n \ge 2$. However, EX(n, 2) is not necessarily a Cayley graph.

Sufficient condition

Let p > 3 be a prime. Then the graph EX(p, 2) is a connected cubic VNC-graph of order 8*p*.

Cubic VNC-graphs of order 8p

Recently, we classified cubic VNC-graphs of order 8p.

Theorem (Zhou & Feng, 2011, submitted to Elec. J. Combin.)

A connected cubic graph of order 8*p* for a prime *p* is a VNC-graph if and only if it is isomorphic to F56B, F56C, $DG(2p, \lambda)$ or EX(p, 2).

Cubic VNC-graphs of square-free order

Li, Lu & Wang (2012) classified cubic vertex-transitive graphs of square-free order. From their result, one may pick out all cubic VNC-graphs of square-free order.

Tetravalent VNC-graphs

Tan (1996) constructed three families of tetravalent vertex-transitive non-Cayley graphs which are metacirculant graphs.

Recently, we classified all tetravalent VNC-graphs of order 4p for each prime p.

Theorem (Zhou, to appear in J. Graph Theory)

There are one sporadic and five infinite families of tetravalent VNC-graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p > 3, two families exist if and only if $p \equiv 1 \pmod{8}$ and the other two families exist if and only if $p \equiv 1 \pmod{4}$. For each family there is a unique graph for a given order. (Examples 1-6).

Example 1

Let p > 3 be a prime. The graph VNC_{4p}^1 has vertex set $\mathbb{Z}_p \times (\mathbb{Z}_2 \times \mathbb{Z}_2)$ and its edges are defined by $\{(i, (x, y)), (i + 1, (y, z))\} \in E(VNC_{4p}^1)$ for all $i \in \mathbb{Z}_p$ and $x, y, z \in \mathbb{Z}_2$.

Example 2

Let *p* be a prime and let $r \in \mathbb{Z}_p^*$ satisfy $r^4 = -1$. The graph VNC_{4p}^2 is defined to have vertex set $\{x_i^j \mid i \in \mathbb{Z}_4, j \in \mathbb{Z}_p\}$ and edge set $\{\{v_i^j, v_{i+1}^{j+r^i}\}, \{v_i^j, v_{i+1}^{j-r^i}\} \mid i \in \mathbb{Z}_4, j \in \mathbb{Z}_p\}$.

Example 3

Let *p* be a prime and let $r \in \mathbb{Z}_p^*$ satisfy $r^4 = -1$. The graph VNC_{4p}^3 is defined to have vertex set $\{x_j^j \mid i \in \mathbb{Z}_4, j \in \mathbb{Z}_p\}$ and edge set $\{\{x_{i-1}^j, x_j^j\}, \{x_0^{j-1}, x_0^j\}, \{x_1^j, x_1^{j+r}\}, \{x_2^j, x_2^{j+r^2}\}, \{x_3^j, x_3^{j+r^3}\} \mid i \in \mathbb{Z}_4, j \in \mathbb{Z}_p\}.$

Example 4

Let *p* be a prime and let $t \in \mathbb{Z}_{2p}^*$ satisfy $t^2 = -1$. The graph VNC_{4p}^4 is defined to have vertex set $\{x_i, y_i \mid i \in \mathbb{Z}_{2p}\}$ and edge set $\{\{x_i, x_{i+1}\}, \{x_i, x_{i+p}\}, \{x_i, y_i\}, \{y_i, y_{i+t}\}, \{y_i, y_{i+p}\} \mid i \in \mathbb{Z}_{2p}\}$.

Example 5

Let *p* be a prime and let $t \in \mathbb{Z}_{2p}^*$ satisfy $t^2 = -1$. The graph VNC_{4p}^5 is defined to have vertex set $\{x_i, y_i \mid i \in \mathbb{Z}_{2p}\}$ and edge set $E = \{\{x_i, x_{i+2}\}, \{x_i, x_{i+p}\}, \{x_i, y_i\}, \{y_i, y_{i+2t}\}, \{y_i, y_{i+p}\} \mid i \in \mathbb{Z}_{2p}\}.$

Example 6

Let $G = A_5$ be the alternating group of degree 5. Let $H = \langle (1 \ 2 \ 3) \rangle$, $d_1 = (1 \ 4)(2 \ 5)$ and $d_2 = (1 \ 2)(4 \ 5)$. Then $Cos(G, H, Hd_1H \cup Hd_2)$ is a connected tetravalent VNC-graph of order 20, denoted by VNC_{20}^6 , and $Aut(VNC_{20}^6) \cong S_5$.

Thanks!

- H.-W. Cheng, A note on cubic symmetric graphs of order $2p^n$, Austral. J. Combin. (2010) to appear.
- Y.-Q. Feng, On vertex-transitive graphs of odd prime-power order, Discrete Math. 248 (2002) 265–269.
- Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice prime power, J. Austral. Math. Soc. 81 (2006) 153–164.
- A. Hassani, M.A. Iranmanesh, C.E. Praeger, On vertex-imprimitive graphs of order a product of three distinct odd primes, J. Combin. Math. Combin. Comput. 28 (1998) 187–213.
- C.H. Li, A. Seress, On vertex-transitive non-Cayley graphs of square-free order, Designs, Codes and Cryptography 34 (2005) 265–281.
- D. Marušič, Cayley properties of vertex symmetric graphs, Ars Combin. 16B (1983) 297–302.
- D. Marušič, Vertex transitive graphs and digraphs of order *p*^{*k*}, Ann. Discrete Math. 27 (1985) 115–128.

D. Marušič, R. Scapellato, Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup, J. Graph Theory 16 (1992) 375–387.

- D. Marušič, R. Scapellato, Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14 (1994) 187–201.
- D. Marušič, R. Scapellato, B. Zgrablič, On quasiprimitive *pqr*-graphs, Algebra Colloq. 2 (1995) 295–314.
- B.D. McKay, C.E. Praeger, Vertex-transitive graphs which are not Cayley graphs I, J. Austral. Math. Soc. 56 (1994) 53–63.
- B.D. McKay, C.E. Praeger, Vertex-transitive graphs which are not Cayley graphs II, J. Graph Theory 22 (1996) 321–334.
- B.D. McKay, G.F. Royle, The transitive graphs with at most 26 vertices, Ars Combin. 30 (1990) 161–176.

B.D. McKay, G.F. Royle, Cubic transitive graphs, http://units.maths.uwa.edu.au /gordon/remote/cubtrans/index.html.

- A.A. Miller, C.E. Praeger, Non-Cayley vertex-transitive graphs of order twice the product of two odd primes, J. Algebraic Combin. 3 (1994) 77–111.
- A. Seress, On vertex-transitive non-Cayley graphs of order *pqr*, Discrete Math. 182 (1998) 279–292.
- G. Sabidussi, On a class of fix-point-free graphs, Proc. Amer. Math. Soc. 9 (1958) 800–804.
- K. Kutnar, D. Marušič, C. Zhang, On cubic non-Cayley vertex-transitive graphs, J. Graph Theory 69 (2012) 77–95.
- J.-X. Zhou, Cubic vertex-transitive graphs of order 4*p* (Chinese), J. Sys. Sci. & Math. Sci. 28 (2008) 1245–1249.
- J.-X. Zhou, Cubic vertex-transitive graphs of order $2p^2$ (Chinese), Advance in Math. 37 (2008) 605–609.

- J.-X. Zhou, Tetravalent vertex-transitive graphs of order 4*p*, J. Graph Theory, 2011 DOI 10.1002/jgt.20653.
- J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive graphs of order 2*pq*, J. Graph Theory, 65 (2010) 285–302.
- J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order 8*p*, (2011) submitted.