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Definitions

Vertex-transitive graph: A graph is vertex-transitive if its
automorphism group acts transitively on its vertices.
Cayley graphs: Given a finite group G and an inverse
closed subset S ⊆ G \ {1}, the Cayley graph Cay(G,S) on
G with respect to S is defined to have vertex set G and
edge set {{g, sg} | g ∈ G, s ∈ S}.
Every Cayley graph is vertex-transitive.



Introduction Classification=Understanding structure References

Definitions

It is well known that a vertex-transitive graph is a Cayley
graph if and only if its automorphism group contains a
subgroup acting regularly on its vertex set (see, for
example, [17, Lemma 4]).
There are vertex-transitive graphs which are not Cayley
graphs and the smallest one is the well-known Petersen
graph. Such a graph will be called a vertex-transitive
non-Cayley graph, or a VNC-graph for short.
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Related problems

Marušič (1983) posed the following problem.

Problem 1
Determine the set NC of non-Cayley numbers, that is, those
numbers for which there exists a VNC-graph of order n.

To settle this question, a lot of VNC-graphs were constructed by
Marušič, McKay, Royle, Praeger, Miller, Seress etc. in 1990’s.



Introduction Classification=Understanding structure References

Related problems

Feng (2002) considered the following question.

Problem 2
Determine the smallest valency for VNC-graphs of a given
order.

He solved this problem for the graphs of odd prime power order.



Introduction Classification=Understanding structure References

Related problems

In [11, Table 1], for n ≤ 26, the total number of vertex-transitive
graphs of order n and the number of VNC-graphs of order n are
listed. It seems that, for small orders at least, the great majority
of vertex-transitive graphs are Cayley graphs. This is
particularly true for small valent vertex-transitive graphs (see
[14]). This may suggest the following problem.

Problem 3
Classify small valent VNC-graphs with given order.

The main purpose of this talk is to introduce some work about
this problem.
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Strategy in classification

Let X be a connected graph with a vertex-transitive
automorphism group G. Let B be a G-invariant partition of
V (X ).

Quotient graph XB: vertex set B, and for any two vertices
B,C ∈ B, B is adjacent to C if and only if there exist u ∈ B
and v ∈ C which are adjacent in X .
Normal quotient: when B is a set of orbits of some normal
subgroup of G.
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Strategy in classification

The quotient theory was developed by Praeger etc., and it
can be used to reduce a large vertex-transitive graph to a
small one. This reduction enables us to analysis the
structure of various families of vertex-transitive graphs.
This strategy also works in the classification of small valent
VNC-graphs.
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Interesting cases in classification

Cubic VNC-graphs.
Tetravalent VNC-graphs.
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A well-known class of graphs

Generalized Petersen graphs
Let n ≥ 3 and 1 ≤ t < n/2. The generalized Petersen graph P(n, t) is the
graph with vertex set {xi , yi | i ∈ Zn} and edge set the union the out edges
{{xi , xi+1} | i ∈ Zn}, the inner edges {yi , yi+t | i ∈ Zn} and the spokes
{{xi , yi}, | i ∈ Zn}.
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It is known that P(n, t) is VNC if and only if either t2 ≡ −1 (mod n) or
(n, t) = (10, 2).
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Cubic VNC-graphs of order a product of three primes

Theorem (Zhou, J. Sys. Sci. & Math. Sci., 2008)
Let p be a prime. A connected cubic graph of order 4p is a
VNC-graph if and only if it is isomorphic to one of the following:
P(10,2), the Dodecahedron, the Coxeter graph, or
P(2p, k)(k2 ≡ −1 (mod 2p)).

Theorem (Zhou, Adv. Math. (China), 2008)

Let p be a prime. A connected cubic graph of order 2p2 is a
VNC-graph if and only if it is isomorphic to
P(p2, t)(t2 ≡ −1(mod p2)).
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Cubic VNC-graphs of order a product of three primes

Theorem (Zhou & Feng, J. Graph Theory, 2010)
Let p > q be odd primes and X a connected cubic
vertex-transitive non-Cayley graph of order 2pq. Then
(1) X is symmetric if and only if X ∼= F030, F102, F182C,

F182D, F506A, or F2162;
(2) X is non-symmetric if and only if X ∼= VNC1

30, VNC2
30,

P(pq, t), where t2 ≡ −1(mod pq), and Aut(VNC1
30)
∼= S5

and Aut(VNC2
30)
∼= A5.
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Cubic VNC-graphs of order 4 times a prime power

Theorem (Kutnar, Marušič & Zhang, J. Graph Theory, 2012)

Every cubic VNC-graphs of order 4p2, p > 7 a prime, is a
generalized Petersen graph.
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A question

Are there infinite family of cubic VNC-graphs different from
generalized Petersen graph?
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Two families of cubic vertex-transitive graphs

We modify the generalized Petersen graph construction slightly
so that the subgraph induced by the out edges is a union of two
n-cycles.

Double generalized Petersen graphs
Let n ≥ 3 and t ∈ Zn − {0}. The double generalized Petersen graph DP(n, t)
(DGPG for short) is defined to have vertex set {xi , yi , ui , vi | i ∈ Zn} and edge
set the union of the out edges {{xi , xi+1}, {yi , yi+1} | i ∈ Zn}, the inner edges
{{ui , vi+t}, {vi , ui+t} | i ∈ Zn} and the spokes {{xi , ui}, {yi , vi} | i ∈ Zn}.
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DP(10,2) and P(8,3)

DP(10,2)
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An interesting problem

Problem
Determining all vertex-transitive graphs and all VNC-graphs
among DGPGs.

The complete solution of this problem may be a topic for our
future effort. Here, we just give a sufficient condition for a
DGPG being vertex-transitive non-Cayley.
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A sufficient condition

Sufficient condition
Let p be a prime such that p ≡ 1 (mod 4). Then DP(2p, λ) is a
connected cubic VNC-graph of order 8p, where λ is a solution
of x2 ≡ −1 (mod p) in Z2p..
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The second family

Definition 1
For integer n ≥ 2, let X (n, 2) be the graph of order 4n and valency 3 with
vertex set V0 ∪ V1 ∪ . . .V2n−2 ∪ V2n−1, where Vi = {x0

i , x
1
i }, and adjacencies

x r
2i ∼ x r

2i+1(i ∈ Zn, r ∈ Z2) and x r
2i+1 ∼ xs

2i+2(i ∈ Zn; r , s ∈ Z2).

Remark Note that X (n, 2) is obtained from Cn[2K1] by expending each
vertex into an edge, in a natural way, so that each of the two blown-up
endvertices inherits half of the neighbors of the original vertex.
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The second family

The second family
Let EX (n, 2) be the graph obtained from X (n, 2) by blowing up each vertex x r

i

into two vertices x r,0
i and x r,1

i . The adjacencies are as the following:
x r,s

2i ∼ x r,t
2i+1 and x r,s

2i+1 ∼ xs,r
2i+2, where i ∈ Zn and r , s, t ∈ Z2 (see Fig. 1 for

EX(5,2)).
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A picture of EX(5,2)
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Figure: The graph EX (5,2)
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Dobson et al. (2007) showed that EX (n,2) is vertex-transitive
for each n ≥ 2. However, EX (n,2) is not necessarily a Cayley
graph.

Sufficient condition
Let p > 3 be a prime. Then the graph EX (p,2) is a connected
cubic VNC-graph of order 8p.
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Cubic VNC-graphs of order 8p

Recently, we classified cubic VNC-graphs of order 8p.

Theorem (Zhou & Feng, 2011, submitted to Elec. J. Combin.)

A connected cubic graph of order 8p for a prime p is a
VNC-graph if and only if it is isomorphic to F56B, F56C,
DG(2p, λ) or EX (p,2).
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Cubic VNC-graphs of square-free order

Li, Lu & Wang (2012) classified cubic vertex-transitive graphs of
square-free order. From their result, one may pick out all cubic
VNC-graphs of square-free order.
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Tetravalent VNC-graphs

Tan (1996) constructed three families of tetravalent
vertex-transitive non-Cayley graphs which are metacirculant
graphs.
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Tetravalent VNC-graphs of order 4p

Recently, we classified all tetravalent VNC-graphs of order 4p
for each prime p.

Theorem (Zhou, to appear in J. Graph Theory)
There are one sporadic and five infinite families of tetravalent
VNC-graphs, of which the sporadic one has order 20, and one
infinite family exists for every prime p > 3, two families exist if
and only if p ≡ 1 (mod 8) and the other two families exist if and
only if p ≡ 1 (mod 4). For each family there is a unique graph
for a given order. (Examples 1-6).
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Tetravalent VNC-graphs of order 4p

Example 1

Let p > 3 be a prime. The graph VNC1
4p has vertex set

Zp × (Z2 × Z2) and its edges are defined by
{(i , (x , y)), (i + 1, (y , z))} ∈ E(VNC1

4p) for all i ∈ Zp and
x , y , z ∈ Z2.

Example 2

Let p be a prime and let r ∈ Z∗p satisfy r4 = −1. The graph
VNC2

4p is defined to have vertex set {x j
i | i ∈ Z4, j ∈ Zp} and

edge set {{v j
i , v

j+r i

i+1 }, {v
j
i , v

j−r i

i+1 } | i ∈ Z4, j ∈ Zp}.
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Tetravalent VNC-graphs of order 4p

Example 3

Let p be a prime and let r ∈ Z∗p satisfy r4 = −1. The graph
VNC3

4p is defined to have vertex set {x j
i | i ∈ Z4, j ∈ Zp} and

edge set {{x j
i−1, x

j
i }, {x

j−1
0 , x j

0}, {x
j
1, x

j+r
1 },

{x j
2, x

j+r2

2 }, {x j
3, x

j+r3

3 } | i ∈ Z4, j ∈ Zp}.

Example 4

Let p be a prime and let t ∈ Z∗2p satisfy t2 = −1. The graph
VNC4

4p is defined to have vertex set {xi , yi | i ∈ Z2p} and edge
set {{xi , xi+1}, {xi , xi+p}, {xi , yi}, {yi , yi+t}, {yi , yi+p} | i ∈ Z2p}.
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Tetravalent VNC-graphs of order 4p

Example 5

Let p be a prime and let t ∈ Z∗2p satisfy t2 = −1. The graph
VNC5

4p is defined to have vertex set {xi , yi | i ∈ Z2p} and edge
set E = {{xi , xi+2}, {xi , xi+p}, {xi , yi},
{yi , yi+2t}, {yi , yi+p} | i ∈ Z2p}.

Example 6
Let G = A5 be the alternating group of degree 5. Let
H = 〈(1 2 3)〉, d1 = (1 4)(2 5) and d2 = (1 2)(4 5). Then
Cos(G,H,Hd1H ∪Hd2) is a connected tetravalent VNC-graph of
order 20, denoted by VNC6

20, and Aut(VNC6
20)
∼= S5.



Introduction Classification=Understanding structure References

Thanks!
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