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Algebraic topology - a crash course

Definition

A simplicial set is a collection {Xn}∞n=0 of sets together with, for
every n ≥ 1, n+ 1 face maps di : Xn → Xn−1 and for every n ≥ 1, n
degeneracy maps sj : Xn−1 → Xn satisfying the simplicial identities:

didj = dj−1di if i < j
di sj = sj−1di if i < j

di sj = id if i = j or i = j + 1
di sj = sjdi−1 if i > j + 1
si sj = sjsi−1 if i > j + 1

Note that a simplicial set is a discrete combinatorial object.
There are two ways to understand the simplicial identities.
Geometrically as the duals of face embeddings and order
theoretically as duals of maximal linear embeddings.



Simplicial identities - geometrically
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Simplicial identities - order theoretically

! Denote by Ln a linearly ordered set with n + 1 elements (for
purposes of following slides, think of these as linear trees).

! For each n ≥ 1 there are precisely n + 1 maximal embedding
d i : Ln−1 → Ln characterized by Im(d i ) missing the i-th
element. These are called coface maps.

! For each n ≥ 1 there are precisely n minimal surjections
s j : Ln → Ln−1 charachterized by the j -th element being the
only one to be repeated (twice). These are called
codegeneracy maps.

! Every order preserving map Ln → Lm is a composition of
codegeneracies followed by cofaces.

! The relations satisfied by the cofaces and codegeneracies are
dual to the simplicial identities.



The Homotopy Hypothesis

! For a topological space A, Sing(A) is the simplicial set where
Sing(A)n = Map(∆n,A), called the singular complex of A.

! For a simplicial set X associate a geometric realization |X | by
taking a disjoint union of simplices, one of dimension n for
every element x ∈ Xn, and gluing them together according to
the face maps di : Xn → Xn−1.

Theorem

(Quillen, 1967) Topological spaces and simplicial sets each support
a model structure such that the singular complex and geometric
realization constructions form an equivalence.

! Informally, the theorem states that as far as homotopy theory
is concerned there is no difference between topological spaces
and simplicial sets.

! It allows the use of combinatorial techniques in topology.
! The theorem is rather hard to prove.
! Slogan: the geometry of linear trees is homotopy theory.



Polytopes

Recall that an abstract polytope is a poset P (whose elements are
called faces) such that:

! P has a bottom element ⊥ and a top element %

! All flags (e.g., maximal chains) in P have the same length
(which then implies that every p ∈ P has a well-defined
dimension)

! P is strongly connected

! P satisfies the diamond condition

where

! Strongly connected means that every two flags are connected
by a sequence of adjacent flags

! The diamond condition states that if p, q ∈ P are faces of
dimension n − 1 and n + 1 respectively then there are precisely
two faces x , y ∈ P of dimension n such that



Polytopes
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Loosely stated: a face of codimension 2 is a face of a face in
precisely two ways.

! Every Euclidean polytope P gives rise to an abstract polytope
Face(P) by considering the poset of faces of P .

! Not every abstract polytope arises in this way.

! The two ways of understanding the simplicial identities are
embodied in the isomorphism

Sub(Ln) ∼= Face(∆n).



Operads
An operad is an algebraic structure that is an abstraction of the
algebra of compositions of multivariable functions. The following is
a picture of (part of) an operad:
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! Trees are fundamental objects in the study of operads.
! The simplicial relations extend to dendroidal relations giving

rise to dendroidal sets.
! Is there a tree formalism that correctly captures the

combinatorics of operads?



Tree formalisms
! For every definition of a tree T there is a notion of the poset

of subobjects Sub(T )
! For different definitions of tree these posets can be different
! Is there a definition of tree such that the accompanying poset

Sub(T ) has a relevant operadic interpretation?
! Motivated by the isomorphism Sub(Ln) ∼= Face(∆n), can

every tree be realized as a polytope?
! Are there other geometric realizations of trees?

More specifically, for the tree T given by
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we expect Sub(T) = {∅, {a}, {b}, {c}, {a, b, c}}. Just this
requirement already excludes most (all?) familiar formalisms.



New tree formalism

There is an extension of order theory that permits for an
axiomatization of trees that captures the operadic combinatorics.
Within that formalism

Theorem

Given any tree T its poset of subobject P = Sub(T ) satisfies

! P has a bottom element ⊥ and a top element %

! All flags in P have the same length

! P is strongly connected

! P satisfies the restricted diamond condition: If p, q ∈ P are
faces of dimensions n − 1 and n + 1 respectively, and p )= ⊥,
then there exist precisely two faces x , y of dimension n such
that p < x , y < q.



Dendroidal polytopes

Definition

A poset P satisfying the conditions above is called a dendroidal
abstract polytope.

Work in progress:

! There exists a generalization of Euclidean spaces in which
dendroidal abstract polytopes can (sometimes) be realized.

! All dendroidal abstract polytopes of the form Sub(T ) can be
so realized.

! A geometry of operads emerges!



Broad posets

! Given a set A the free commutative monoid on it is
A+ = {(a1, · · · , an) | n ∈ N≥0, ai ∈ A} with addition.

! A broad relation R on a set A is a subset R ⊆ A+ × A.

! We denote, as usual, a1 + · · ·+ anRa.

! R is reflexive if aRa holds for all a ∈ A.

! R is anti-symmetric if aRb and bRa imply a = b.

! R is transitive if a1 + · · ·+ anRa and for bi ∈ A+ holds biRai

then b1 + · · ·+ bnRa.

! R is a broad poset if R is reflexive, anti-symmetric, and
transitive. We then write R =≤.



Induced posets

A broad poset (A,≤) induces two relations, one on A and one on
A+, as follows.

! For a, b ∈ A declare that a ≤d b if there exist some x ∈ A+

such that a + x ≤ b.

! For a1 + · · · + an, b1 + · · ·+ bk ∈ A+ declare
a1 + · · ·+ an ≤ b1 + · · ·+ bk if there exist k elements
x1, · · · , xk ∈ A+ such that a1 + · · · + an = x1 + · · ·+ xk and
xi ≤ bi hold.

Note that

! (A,≤d ) need not be anti-symmetric. If (A,≤) is finite then
(A,≤d ) is a poset.

! (A+,≤) is always a poset.



Trees

Given a broad poset (A,≤) and an element a ∈ A let
a↓ = {b ∈ A+ | b < a}. If a↓ = ∅ then a is called a leaf.

Definition

A tree is a broad poset (A,≤) which is dendroidally ordered in the
sense that:

! (A,≤d ) has a maximum element r called the root.

! (A,≤) is simple (meaning that if a1 + · · ·+ an ≤ a holds then
ai = aj implies i = j).

! for every a ∈ A either a is a leaf or a↓ has a maximum in
(A+,≤).



Thank You!


