Autotopisms of Latin Squares

Ian Wanless

Monash University

Joint work with Doug Stones and Petr Vojtěchovský

A *Latin square* of order n is an $n \times n$ matrix in which each of n symbols occurs exactly once in each row and once in each column.

1	2	3	4	
2	4	1	3	is a Latin square of order 4
3	1	4	2	
4	3	2	1	
	1 2 3 4	1 2 2 4 3 1 4 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Hence a Latin square is a 2 dimensional permutation.

The Cayley table of a finite (quasi-)group is a Latin square.

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies α to permute the rows

- β to permute the columns
- γ to permute the symbols.

... The stabiliser of a Latin square is its *autotopism group*.

atp(n) is the subset of $S_n \times S_n \times S_n$ consisting of all maps that are an autotopism of some Latin square of order *n*.

 $\operatorname{aut}(n)$ is the subset of S_n consisting of all α such that $(\alpha, \alpha, \alpha) \in \operatorname{atp}(n)$. (Such α are *automorphisms*).

Whether (α, β, γ) is in $\operatorname{atp}(n)$ depends only on

- The multiset $\{\alpha, \beta, \gamma\}$.
- The cycle structure of α, β, γ .

In particular, whether $\alpha \in aut(n)$ depends only on the cycle structure of α .

I'll use "nontrivial cycle" for any cycle that is not a fixed point.

Our results are sufficient to determine atp(n) for $n \leq 17$, except they fail to show that atp(6) contains no autotopism with cycle structure $(4 \cdot 2, 4 \cdot 2, 4 \cdot 1^2)$.

Autotopisms where one component is the identity ε : **Theorem:** $(\alpha, \beta, \varepsilon) \in \operatorname{atp}(n)$ iff both α and β consist of n/d cycles of length d, for some divisor d of n.

Automorphisms with all nontrivial cycles of the same length: **Theorem:** Suppose $\alpha \in S_n$ has precisely *m* nontrivial cycles, each of length *d*.

If α has at least one fixed point, then $\alpha \in \operatorname{aut}(n)$ iff $n \leq 2md$. If α has no fixed points, then $\alpha \in \operatorname{aut}(n)$ iff d is odd or m is even.

Corollary: Suppose 2^a is the largest power of 2 dividing *n*, where $a \ge 1$. Suppose each cycle in α , β and γ has length divisible by 2^a . Then $(\alpha, \beta, \gamma) \notin \operatorname{atp}(n)$.

Let (α, β, γ) be an autotopism of a Latin square *L*. If *i* belongs to an *a*-cycle of α and *j* belongs to a *b*-cycle of β , then L_{ij} belongs to a *c*-cycle of γ , where

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(b,c) = \operatorname{lcm}(a,c) = \operatorname{lcm}(a,b,c).$$

Let Λ be a fixed integer, and let R_{Λ} , C_{Λ} and S_{Λ} be the sets of all rows, columns and symbols in cycles whose length *divides* Λ .

Theorem: If at least two of R_{Λ} , C_{Λ} and S_{Λ} are nonempty, then $|R_{\Lambda}| = |C_{\Lambda}| = |S_{\Lambda}|$ and there is a Latin subsquare M on the rows R_{Λ} , columns C_{Λ} and symbols S_{Λ} . Moreover, M admits an autotopism that is a restriction of the original autotopism.

Theorem: Suppose $\alpha \in S_n$ consists of a d_1 -cycle, a d_2 -cycle and d_{∞} fixed points.

If $d_1 = d_2$ then $\alpha \in \operatorname{aut}(n)$ iff $0 \leq d_\infty \leq 2d_1$.

```
If d_1 > d_2 then \alpha \in \operatorname{aut}(n) iff

(a) d_2 divides d_1,

(b) d_2 \ge d_{\infty}, and

(c) if d_2 is even then d_{\infty} > 0.
```

Automorphisms with three nontrivial cycles

Theorem: Suppose $\alpha \in S_n$ has precisely three nontrivial cycles of lengths $d_1 \ge d_2 \ge d_3$, as well as d_∞ fixed points.

Then $\alpha \in aut(n)$ iff one of the following holds:

- 1. $d_1 = d_2 = d_3$ and (a) $d_{\infty} \leq 3d_1$ and (b) if d_1 is even then $d_{\infty} \geqslant 1$,
- 2. $d_1 > d_2 = d_3$ and (a) $d_1 \ge 2d_2 + d_\infty$, (b) d_2 divides d_1 , (c) $d_\infty \le 2d_2$, and (d) if d_2 is even and d_1/d_2 is odd then $d_\infty > 0$,
- 3. $d_1 = d_2 > d_3$ and (a) d_3 divides d_1 , (b) $d_{\infty} \leq d_3$, and (c) if d_3 is even then $d_{\infty} > 0$,
- 4. $d_1 > d_2 > d_3$ and (a) $d_1 = \text{lcm}(d_2, d_3)$, (b) $d_3 \ge d_\infty$, and (c) if d_1 is even then $d_\infty > 0$,
- 5. $d_1 > d_2 > d_3$ and (a) d_3 divides d_2 which divides d_1 , (b) $d_3 \ge d_{\infty}$, and (c) if d_3 is even then $d_{\infty} > 0$.

Number of possible cycle structures

п	3 diff	2 diff	#aut(<i>n</i>)	#atp(<i>n</i>)
1			1	1
2		1	1	2
2 3		1	3	4
4		5	4	9
5		1	5	6
6	1	11	6	18
7		1	9	10
8		25	12	37
9		10	13	23
10	1	23	14	38
11		1	18	19
12	7	113	26	146
13		1	24	25
14	1	37	24	62
15	1	34	39	74
16		151	50	201
17		1	38	39

Open? questions

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime *n*, but α, β, γ don't all have the same cycle structure, must one of them be the identity?

The answer is yes for $n \leq 23$ (but we have a counterexample for a larger value of n).

Q2. If $\theta \in atp(n)$ then is the order of θ at most n?

Horoševskii [1974] proved the answer is yes for groups.

Conjecture: For almost all $\alpha \in S_n$ there are no $\beta, \gamma \in S_n$ such that $(\alpha, \beta, \gamma) \in atp(n)$.

That's all!

All results from today's talk appear in

D. S. Stones, P. Vojtěchovský and I. M. Wanless, Cycle structure of autotopisms of quasigroups and Latin squares, *J. Combin. Des.*, (2012) to appear.

See also:

R. M. Falcón,

Cycle structures of autotopisms of the Latin squares of order up to 11, *Ars Combin.*, (2012), to appear.

B. L. Kerby and J. D. H. Smith,

Quasigroup automorphisms and the Norton-Stein complex, *Proc. Amer. Math. Soc.* **138** (2010), 3079–3088.

B. D. McKay, A. Meynert and W. Myrvold, Small Latin squares, quasigroups and loops, *J. Combin. Des.*, **15** (2007), 98–119.