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Latin squares

A Latin square of order n is an n × n matrix in which each of n
symbols occurs exactly once in each row and once in each column.

e.g.

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

is a Latin square of order 4.

Hence a Latin square is a 2 dimensional permutation.

The Cayley table of a finite (quasi-)group is a Latin square.



Autotopisms and Automorphisms

Let Sn be the symmetric group on n letters.
There is a natural action of Sn × Sn × Sn on Latin squares, where
(α, β, γ) applies

α to permute the rows
β to permute the columns
γ to permute the symbols.

...The stabiliser of a Latin square is its autotopism group.

atp(n) is the subset of Sn ×Sn ×Sn consisting of all maps that are
an autotopism of some Latin square of order n.

aut(n) is the subset of Sn consisting of all α such that
(α, α, α) ∈ atp(n). (Such α are automorphisms).



What is atp(n)?

Whether (α, β, γ) is in atp(n) depends only on

� The multiset {α, β, γ}.
� The cycle structure of α, β, γ.

In particular, whether α ∈ aut(n) depends only on the cycle
structure of α.

I’ll use “nontrivial cycle” for any cycle that is not a fixed point.

Our results are sufficient to determine atp(n) for n � 17, except
they fail to show that atp(6) contains no autotopism with cycle
structure (4 · 2, 4 · 2, 4 · 12).



Some simple cases

Autotopisms where one component is the identity ε:
Theorem: (α, β, ε) ∈ atp(n) iff both α and β consist of n/d
cycles of length d , for some divisor d of n.

Automorphisms with all nontrivial cycles of the same length:
Theorem: Suppose α ∈ Sn has precisely m nontrivial cycles,
each of length d .
If α has at least one fixed point, then α ∈ aut(n) iff n � 2md .
If α has no fixed points, then α ∈ aut(n) iff d is odd or m is even.

Corollary: Suppose 2a is the largest power of 2 dividing n, where
a � 1. Suppose each cycle in α, β and γ has length divisible by 2a.
Then (α, β, γ) �∈ atp(n).



lcm conditions

Let (α, β, γ) be an autotopism of a Latin square L. If i belongs to
an a-cycle of α and j belongs to a b-cycle of β, then Lij belongs to
a c-cycle of γ, where

lcm(a, b) = lcm(b, c) = lcm(a, c) = lcm(a, b, c).

Let Λ be a fixed integer, and let RΛ, CΛ and SΛ be the sets of all
rows, columns and symbols in cycles whose length divides Λ.

Theorem: If at least two of RΛ, CΛ and SΛ are nonempty, then
|RΛ| = |CΛ| = |SΛ| and there is a Latin subsquare M on the rows
RΛ, columns CΛ and symbols SΛ. Moreover, M admits an
autotopism that is a restriction of the original autotopism.



Automorphisms with two nontrivial cycles

Theorem: Suppose α ∈ Sn consists of a d1-cycle, a d2-cycle and
d∞ fixed points.

If d1 = d2 then α ∈ aut(n) iff 0 � d∞ � 2d1.

If d1 > d2 then α ∈ aut(n) iff

(a) d2 divides d1,

(b) d2 � d∞, and

(c) if d2 is even then d∞ > 0.



Automorphisms with three nontrivial cycles

Theorem: Suppose α ∈ Sn has precisely three nontrivial cycles of
lengths d1 � d2 � d3, as well as d∞ fixed points.

Then α ∈ aut(n) iff one of the following holds:

1. d1 = d2 = d3 and (a) d∞ � 3d1 and (b) if d1 is even then
d∞ � 1,

2. d1 > d2 = d3 and (a) d1 � 2d2 + d∞, (b) d2 divides d1,
(c) d∞ � 2d2, and (d) if d2 is even and d1/d2 is odd then
d∞ > 0,

3. d1 = d2 > d3 and (a) d3 divides d1, (b) d∞ � d3, and
(c) if d3 is even then d∞ > 0,

4. d1 > d2 > d3 and (a) d1 = lcm(d2, d3), (b) d3 � d∞, and
(c) if d1 is even then d∞ > 0,

5. d1 > d2 > d3 and (a) d3 divides d2 which divides d1,
(b) d3 � d∞, and (c) if d3 is even then d∞ > 0.



Number of possible cycle structures

n 3 diff 2 diff #aut(n) #atp(n)
1 1 1
2 1 1 2
3 1 3 4
4 5 4 9
5 1 5 6
6 1 11 6 18
7 1 9 10
8 25 12 37
9 10 13 23

10 1 23 14 38
11 1 18 19
12 7 113 26 146
13 1 24 25
14 1 37 24 62
15 1 34 39 74
16 151 50 201
17 1 38 39



Open? questions

Q1. If (α, β, γ) ∈ atp(n) for some prime n, but α, β, γ don’t all
have the same cycle structure, must one of them be the identity?

The answer is yes for n � 23 (but we have a counterexample for a
larger value of n).

Q2. If θ ∈ atp(n) then is the order of θ at most n?

Horoševskĭı [1974] proved the answer is yes for groups.

Conjecture: For almost all α ∈ Sn there are no β, γ ∈ Sn such
that (α, β, γ) ∈ atp(n).



That’s all!
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