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Outline

Given a faithful group action of A on X , the distinguishing
number, D(A,X ), is the least number of colors for X so that no
non-identity element of A preserves the coloring (Albertson-Collins
1996... many more).

Motivated by the Necklace Problem that D(Cn) = 2 for n > 5.
Notice that D(A,X ) = 2 means there is a subset Y whose set-wise
stabilizer is trivial (i.e. A has a regular orbital action). In other
words, if D(A,X ) > 2 every set Y has nontrivial set-wise stabilizer,
so |A| better be big!!!!!

The generic case is D(A,X ) = 2 because of
The Motion Lemma(Russell and Sundaram, 1998) If
m(A) > log2(|A|), then D(A,X ) = 2. (Here m(A), the “motion” is
just usual minimal degree).
Proof is about 10 lines, using the probabilistic method.

The problem: Classify all maps M with
D(M) = D(Aut(M),V ) > 2. (list is finite by Motion Lemma)
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The orientation-preserving case

Let A be a subgroup of Aut(G ). Call an edge uv a τ -edge for A if
some non-identity a ∈ A fixes u and v (e.g a reflection across uv
for a map). If there is no such edge, A is no-τ .

Theorem (TWT Elec J. Comb. 2011). If A ⊂ Aut(G ) is no-τ and
D(A,V ) > 2, then G is C3,C4,C5,K4,K5,K7,O6,O8. For all
except O8 there is a unique (well-known) orientable map M with
Aut+(M) = A. There is no such map for O8.

A little notation: Sk(G ) is the join of G and the empty graph on k
vertices (for topologists, the k-fold suspension).
So S2(On) = On+2 and S1(Kn) = Kn+1.
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General case; Intransitive

Theorem (TWT 2012, submitted to Elec J. Comb) The graphs
underlying maps M with D(M) = D(Aut(M),V ) = 3, where
Aut(M) is not transitive are

1. S1(G ) or S2(G ) where G is either empty graph or cycle on n
vertices, n = 3, 4, 5 (pyramids and stars, and K2,n)
2. Km,n, where 3 ≤ m ≤ n ≤ 5
3. S1(K4),S3(K4),S1(K5),S2(K5)

Idea: orbits themselves form a kind of coloring. There are at most
3 orbits (e.g. double pyramids).
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General case; transitive

Falls into cases

1. Regular (reflexible)
2. All-τ maps that are not regular (vertex stabilizer is Dd/2)
3. No-τ : given in earlier paper
4. Mixed

Theorem (TWT 2012, to EJC) The graphs underlying a
vertex-transitive map M with D(M) = 3 are:
1. Cn for n = 3, 4, 5
2. Kn for n = 4, 5, 6, 7, 9
3. Kn,n for n = 3, 4, 5
4. O6,O8,C3 × C3,K3,3,3 and the cube.
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Examples: Intransitive d < 3

Type map G surface V-orb E-orb

bipart K1,n,K2,n sphere 2 1 or 2

1 rad Cn S1(Cn) sphere 2 2

2 rad Cn S2(Cn) sphere 3 3

1 rad T1 S1(K4) torus 2 3

1 rad T2 S1(K5) g = 2 2 3

3 rad KP
4 S3(K4) proj 2 2

2 rad T2 S2(K5) g = 2 3 4

bipart B(m, n) Km,n g = 3, 4, 6 2 1
3 ≤ m, n ≤ 5.

Here B(m, n) is map from CM(Zm × Zn, (a, a−1b, b−1), where we
place a vertex in each am and bn face, join through vertices of
original graph (and throw out old vertices and edges). Can be
viewed as hypermap.
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Examples: Transitive, not D+(M) = 3

Name G d Stab g τ

CM(Z4, (1,−1, 2)) K4 3 D1 1 mix

CM(Z5, (1,−1, 2,−2)) K5 4 D1 2 no

CM(Z 3
2 , (x , y , z)) cube 3 D3 1 reg

CM(Z 3
2 , (x , x + y , y , y + z , z , z + x)) O8 6 D3 7 all

CM(Q, (i , j , k)b) O8 6 D3 5 no

CM(Z 2
3 , (x , y)b) C3 × C3 4 D4 1 reg

CM(Z 2
3 , (x , y ,−x + y)b) K3,3,3 6 D6 1 reg

CM(Z 2
3 , (x , x + y , y , y − x)b) K9 8 D4 10 all

B(3, 3) K3,3 3 Dn 1 reg

B(4, 4) K4,4 4 D4 3 reg

B(5, 5) K5,5 5 D5 6 reg
Also K6 in projective plane.



Petrie and partial-Petrie duality

Given A ⊂ Aut(M) with an edge orbit EA, we can ”twist” all the
edges in EA, to get a new map (probably nonorientable) M ′ with
Aut(M) = Aut(M ′) and action is the same on the vertex set (the
underlying graph stays the same). Usual Petrie duality is to twist
all edges.

In particular, if D(M) = 3, we can get more maps with same group
by applying Petrie duality to edge-orbits,
Example For standard map M for double pyramid S2(C5) in the
sphere, there are three edge-orbit using the D5 action fixing the
apexes. This map has D(M) = 3 under that action, so we can get
8 maps in all by applying various partial Petrie duals.

So the above tables can lead to many different maps with same
action of Aut(M) on V .
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Negami’s work

Seiya and I have been not communicating well.

He has article coming up in Disc. Math. attacking same problem
with some partial results
Gives list of graphs underlying possible exceptions, but many don’t
happen. In particular, he does not give example of maps for his
possible exceptions.
Also Negami only considers polyhedral maps (no edges in dual).
We have talked and resolved the differences
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Two theorems

Theorem 1 Suppose A ⊂ Aut(G ), where G is connected and edge
stabilizers in A are abelian (e.g for maps Z2 × Z2). Then
D(A,V ) > 3 implies G = K4.

Theorem 2 Let M be a regular (reflexible) map (transitive on
flags). Then the clique number c of the graph G underlying M is
c = 2, 3, 4, 6. If c = 6, the map is non-orientable.
Moreover, for both c = 4, 6, the graph G has a factorization into
Kc ’s.
Finally, for c = 4 each K4 has the symmetry of the tetrahedron
and for c = 6 each K6 has the symmetry of K6 in the projective
plane (antipodal quotient of the icosahedron).

Remark Holds for graph G and A ⊂ Aut(G ) with natural dihedral
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Angles

An angle in a map is uvw where uv and vw are edges. If there is
no edge uw then the angle is bf closed, otherwise open.

Suppose that v has valence d . Then the measure of an angle,
m(uvw), is one more than the number of intervening vertices in
the cyclic order at v , either clockwise or counterclockwise,
whichever is less. Thus m(uvw) ≤ d/2. Map automorphisms
preserve angle measure.

If d is even and m(uvw) = d/2, then uvw is straight. Otherwise
it is bent.

Main fact about maps: you can’t fix a bent angle. So:
If D(M) > 2 and uvw is a bent open angle, there must be an
angle reflection fixing v and interchanging u and w

Since an angle reflector reserves orientation, this shows why in the
orientation-preserving case there are no bent open angles, so you
get Kn,O2n,Cn.
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