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What are circle planes?
Circle planes are incidence geometries with point set P and circle set C
that comprise Möbius, Laguerre and Minkowski planes. Circles are subsets

of P with at least three points, and there are up to two different partitions

of P , whose members are called generators of the plane. The most

important geometric axiom is that three points no two of which are on the

same generator are joined by a unique circle.

• Finite Möbius planes (or inversive planes) of order n are precisely the

3-(n2 + 1, n + 1, 1) designs.

• Finite Laguerre planes of order n are precisely the transversal designs

TD1(3, n + 1, n). In case of odd order, they are equivalent to anti-

regular generalized quadrangles.

• Finite Minkowski planes or order n are the ”doubly transversal”

3-designs with (n + 1)2 points. They are equivalent to sharply

3-transitive sets of permutations of degree n + 1.
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Models of circle planes
The miquelian circle plane over a field F is obtained as the geometry of

non-trivial plane sections of a quadratic set (elliptic quadric, elliptic cone,

ruled quadric) in 3-dimensional projective space over F.
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If the quadratic set is an ovoid or oval cone one obtains embeddable (or

ovoidal) circle planes.
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Finite 2-transitive Möbius or Minkowski planes

General results

• A finite Möbius plane of even order is embeddable. (Dembowski 1964)

• A finite Minkowski plane of even order is miquelian. (Heise 1974)

• A finite circle plane of odd order with a desarguesian derivation is

miquelian. (Chen, Kaerlein 1973, Thas 1994)

• A finite circle plane of order at most 8 is miquelian.

• A Möbius or Laguerre plane of order 9 is miquellian. A Minkowski

plane of order 9 is isomorphic to one corresponding to one of the two

sharply 3-transitive groups of degree 10. (S. 1992)

Theorem

• A finite 2-transitive Möbius plane is embeddable. (Dembowski 1964,

Hering 1967)

• A finite 2-transitive Minkowski plane is miquelian. (Wilbrink 1982)
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So what about finite Laguerre planes?

A finite Laguerre plane L = (P , C,G) of order n consists of a set P of

n(n + 1) points, a set C of n3 circles and a set G of n + 1 generators

(where circles and generators are both subsets of P) such that the

following three axioms are satisfied:

(G) G partitions P and each generator contains n points.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator can be

uniquely joined by a circle.

Theorem
A finite embeddable Laguerre plane whose automorphism group is

2-transitive on the set of generators is miquelian.
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Elation Laguerre planes

A finite elation Laguerre plane is a Laguerre plane L that admits a group

∆ of automorphisms, called the elation group of L, that acts trivially on

the set of generators and regularly on the set of circles.

• Each derived incidence structure of L is a dual translation plane.

• Finite elation Laguerre planes of odd order q are equivalent to

antiregular translation generalized quadrangles of order q.

There is a finite field F such that the point set of the elation Laguerre

plane L can be identified with (Fm ∪ {∞})× Fm where generators are of

the form {x}× Fm, and such that the elation group ∆ is isomorphic to

F3m. The automorphism group of L is F-linearly represented on F3m.

m = 1 describes the embeddable Laguerre planes.
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The structure of finite 2-transitive groups

Theorem
If G is a finite 2-transitive and effective group on v points, then G

contains a transitive normal subgroup H and either H is elementary abelian

of prime power order v or H is simple non-abelian. (Burnside 1911)

In the latter case, H is one of the following. (Cameron 1981)

H v

An n n ≥ 5

PSL(d , q) (qd − 1)/(q − 1) d ≥ 2, (d , q) �= (2, 2), (2, 3)
PSU(3, q2) q

3 + 1 q > 2

Sz(q) q
2 + 1 q = 22a+1 > 2

2
G2(q) q

3 + 1 q = 32a+1 > 3

PSp(2d , 2) 22d−1 ± 2d−1
d > 2

Mn n n = 11, 12, 22, 23, 24

M11 (v = 12), PSL(2, 8) (v = 28), PSL(2, 11) (v = 11), A7 (v = 15), C03

(v = 276), HS (v = 176).
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Finite 2-transitive elation Laguerre planes

Theorem
A finite 2-transitive elation Laguerre plane L is miquelian or Γ/T contains

a transitive simple non-abelian normal subgroup isomorphic to

• PSL(2, q), q �= 2, 3,

• PSU(3, q2), q > 2, or

• Sz(q), q = 22a+1 > 2,

where T is the kernel of the action of the automorphism group Γ on G and

q is a prime power (the order of L).
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