On the Split Structure of Lifted groups, II

Rok Požar University of Ljubljana

Joint work with Aleksander Malnič

SODO, Queenstown, New Zeleand

February 14, 2012

Setting

 $p\colon X\times_\zeta\Gamma\to X$ a regular cover of connected graphs given by voltages Suppose $G\le \operatorname{Aut} X$ lifts to $\tilde G$

Setting

 $p\colon X\times_\zeta\Gamma\to X$ a regular cover of connected graphs given by voltages Suppose $G\le \operatorname{Aut} X$ lifts to $\tilde G$

Problem

Is
$$\tilde{G} \cong \operatorname{CT}_p \rtimes G$$
?

Setting

 $p\colon X\times_\zeta\Gamma\to X$ a regular cover of connected graphs given by voltages Suppose $G\le \operatorname{Aut} X$ lifts to $\tilde G$

Problem

Is
$$\tilde{G} \cong \operatorname{CT}_p \rtimes G$$
?

Further assumptions

$$G = \langle g_1, g_2, \dots, g_n \mid R_1, R_2, \dots, R_m \rangle$$

 $\operatorname{CT}_p \cong \Gamma = \langle \delta_1, \delta_2, \dots, \delta_r \mid \Lambda_1, \Lambda_2, \dots, \Lambda_s \rangle$ abelian

Lemma Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the following statements are equivalent

Lemma Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the following statements are equivalent

(1)
$$\tilde{G} \cong \operatorname{CT}_p \rtimes G$$

Lemma Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the following statements are equivalent

- (1) $\tilde{G} \cong \operatorname{CT}_p \rtimes G$
- (2) certain lifts $\{\bar{g}_1,\bar{g}_2,\ldots,\bar{g}_n\}$ satisfy the relations R_1,R_2,\ldots,R_m

Lemma Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the following statements are equivalent

- (1) $\tilde{G} \cong \operatorname{CT}_p \rtimes G$
- (2) certain lifts $\{\bar{g}_1,\bar{g}_2,\ldots,\bar{g}_n\}$ satisfy the relations R_1,R_2,\ldots,R_m

Note

We can test **(2)** using existing algorithms, provided that \tilde{G} is explicitly known, for instance by constructing ad hoc lifts $\tilde{g}_1, \tilde{g}_2, \ldots, \tilde{g}_n$, and the generators of CT_p

Lemma Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the following statements are equivalent

- (1) $\tilde{G} \cong \operatorname{CT}_p \rtimes G$
- (2) certain lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfy the relations R_1, R_2, \dots, R_m

Note

We can test **(2)** using existing algorithms, provided that \tilde{G} is explicitly known, for instance by constructing ad hoc lifts $\tilde{g}_1, \tilde{g}_2, \ldots, \tilde{g}_n$, and the generators of CT_p

However

For complexity reasons we would like to avoid the construction of the derived graph and the lifted group

Testing
$$R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n) = id$$

Equivalent to testing

$$R_j(\bar{g}_1,\bar{g}_2,\dots,\bar{g}_n)(u_0,0)=(u_0,0)$$

Equivalent to testing

$$R_j(\bar{g}_1,\bar{g}_2,\ldots,\bar{g}_n)(u_0,0)=(u_0,0)$$

Note

 $ar{g}_1, ar{g}_2, \ldots, ar{g}_n$ unknown lifts determined by parameters t_1, t_2, \ldots, t_n $ar{g}_i(u_0, 0) = (g_i u_0, t_i)$

Equivalent to testing

$$R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(u_0, 0) = (u_0, 0)$$

Note

 $ar{g}_1, ar{g}_2, \ldots, ar{g}_n$ unknown lifts determined by parameters t_1, t_2, \ldots, t_n $ar{g}_i(u_0, 0) = (g_i u_0, t_i)$

We need to evaluate $\bar{g}_i(v,c)$

$$\bar{g}_i(v,c) = (g_i v, t_i + g_i^{\#}(c) + g_i^{\#}(\zeta_Q) - \zeta_{g_i Q})$$

Equivalent to testing

$$R_j(\bar{g}_1,\bar{g}_2,\ldots,\bar{g}_n)(u_0,0)=(u_0,0)$$

Note

 $ar{g}_1, ar{g}_2, \ldots, ar{g}_n$ unknown lifts determined by parameters t_1, t_2, \ldots, t_n $ar{g}_i(u_0, 0) = (g_i u_0, t_i)$

We need to evaluate $\bar{g}_i(v,c)$

$$\bar{g}_i(v,c) = (g_i v, t_i + g_i^\#(c) + g_i^\#(\zeta_Q) - \zeta_{g_i Q})$$

BUT: c is a parameter depending on t_1, t_2, \ldots, t_n

Equivalent to testing

$$R_j(\bar{g}_1,\bar{g}_2,\ldots,\bar{g}_n)(u_0,0)=(u_0,0)$$

Note

 $ar{g}_1, ar{g}_2, \ldots, ar{g}_n$ unknown lifts determined by parameters t_1, t_2, \ldots, t_n $ar{g}_i(u_0, 0) = (g_i u_0, t_i)$

We need to evaluate $\bar{g}_i(v,c)$

$$\bar{g}_i(v,c) = (g_i v, t_i + g_i^\#(c) + g_i^\#(\zeta_Q) - \zeta_{g_i Q})$$

BUT: c is a parameter depending on t_1, t_2, \ldots, t_n

Since CT_p is abelian

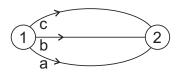
voltages can be viewed as 'vectors' over \mathbb{Z} and evaluation of $g_i^{\#}(c)$ as $M_i\underline{c}$

Example



Voltage group:
$$\Gamma = \langle x \mid 7x = 0 \rangle \cong \mathbb{Z}_7$$
 voltages: $\zeta(a) = 4x$, $\zeta(b) = 2x$, $\zeta(c) = x$

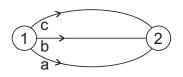
Example



Voltage group:
$$\Gamma = \langle x \mid 7x = 0 \rangle \cong \mathbb{Z}_7$$
 voltages: $\zeta(a) = 4x$, $\zeta(b) = 2x$, $\zeta(c) = x$
$$\sigma = (abc)(a^{-1}b^{-1}c^{-1}), \quad \tau = (aa^{-1})(bb^{-1})(cc^{-1})$$

$$G = \langle \sigma, \tau \mid \sigma^3 = \mathrm{id}, \tau^2 = \mathrm{id}, \sigma^2\tau\sigma\tau = \mathrm{id} \rangle \cong \mathbb{Z}_6$$

Example



Voltage group:
$$\Gamma = \langle x \mid 7x = 0 \rangle \cong \mathbb{Z}_7$$
 voltages: $\zeta(a) = 4x$, $\zeta(b) = 2x$, $\zeta(c) = x$
$$\sigma = (abc)(a^{-1}b^{-1}c^{-1}), \quad \tau = (aa^{-1})(bb^{-1})(cc^{-1})$$

$$G = \langle \sigma, \tau \mid \sigma^3 = \operatorname{id}, \tau^2 = \operatorname{id}, \sigma^2\tau\sigma\tau = \operatorname{id} \rangle \cong \mathbb{Z}_6$$

$$\tilde{G} \cong \mathbb{Z}_7 \rtimes \mathbb{Z}_6$$

Setting

 $p\colon X\times_\zeta\Gamma\to X$ a regular cover of connected graphs given by voltages Suppose $G\le \operatorname{Aut} X$ lifts to $\tilde G$

Setting

 $p\colon X\times_\zeta\Gamma\to X$ a regular cover of connected graphs given by voltages Suppose $G\le \operatorname{Aut} X$ lifts to $\tilde G$

Problem

Does \tilde{G} splits with a sectional complement to CT_p over Ω ?

Setting

 $p\colon X\times_\zeta\Gamma\to X$ a regular cover of connected graphs given by voltages Suppose $G\le \operatorname{Aut} X$ lifts to $\tilde G$

Problem

Does \tilde{G} splits with a sectional complement to CT_p over Ω ?

Further assumptions

$$\mathrm{CT}_p\cong \Gamma=\langle \delta_1,\delta_2,\ldots,\delta_r\mid \Lambda_1,\Lambda_2,\ldots,\Lambda_s
angle$$
 abelian

Adapting an algorithm for constructing an orbit

simultaneously constructing a potential sectional orbit $\tilde{\Omega}$ over orbit Ω in X

Adapting an algorithm for constructing an orbit

simultaneously constructing a potential sectional orbit $\tilde{\Omega}$ over orbit Ω in X

Starting with

$$\Delta=\{u_0\}$$
 and $\tilde{\Delta}=\emptyset$ $ar{g}_i(u_0,0)=(g_iu_0,t_i)$ with parameters t_i

Adapting an algorithm for constructing an orbit

simultaneously constructing a potential sectional orbit $\tilde{\Omega}$ over orbit Ω in X

Starting with

$$\Delta=\{u_0\}$$
 and $\tilde{\Delta}=\emptyset$ $ar{g}_i(u_0,0)=(g_iu_0,t_i)$ with parameters t_i

Iteration

 $\begin{array}{c} \text{for } g_i \in \mathcal{S} \text{ and } v \in \Delta \text{:} \\ \text{if } g_i v \notin \Delta \Rightarrow \text{ expand } \Delta \text{ and } \tilde{\Delta} \\ \text{else } \bar{g}_i(\tilde{v}) \in \tilde{\Delta} \text{ gives new equation} \end{array}$

Adapting an algorithm for constructing an orbit

simultaneously constructing a potential sectional orbit $\tilde{\Omega}$ over orbit Ω in X

Starting with

$$\Delta = \{u_0\}$$
 and $\tilde{\Delta} = \emptyset$
 $\bar{g}_i(u_0,0) = (g_iu_0,t_i)$ with parameters t_i

Iteration

 $\begin{array}{c} \text{for } g_i \in S \text{ and } v \in \Delta \text{:} \\ \text{if } g_i v \notin \Delta \Rightarrow \text{ expand } \Delta \text{ and } \tilde{\Delta} \\ \text{else } \bar{g}_i(\tilde{v}) \in \tilde{\Delta} \text{ gives new equation} \end{array}$

 $\tilde{\mathcal{G}}$ has a sectional complement \Leftrightarrow system has a solution

Package for computing with covers

Package for computing with covers

Main functions

- construction of the voltage space,
- construction of (T,u)-reduced voltage assignment,
- construction of the derived cover,
- testing whether an automorphism lifts,
- testing weather two projections are equivalent,
- computing a lift,
- construction of the group of covering transformations,
- computing the structure of the lifted group.

Package for computing with covers

Main functions

- construction of the voltage space,
- construction of (T,u)-reduced voltage assignment,
- construction of the derived cover,
- testing whether an automorphism lifts,
- testing weather two projections are equivalent,
- computing a lift,
- construction of the group of covering transformations,
- computing the structure of the lifted group.

Additional feature

generalised graphs: multiple links, loops, and semiedges

Thank you!