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Generalized Petersen graphs

In 1950 the class of generalized
Petersen graphs was introduced
by Coxeter and around 1970
popularized by Frucht, Graver
and Watkins.

Let n ≥ 3 and k be such that 1 ≤ k < n and k �= n/2.

V (G(n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}
E(G(n, k)) = {uiui+1, uivi , vivi+k ; i = 0, . . . , n − 1},

where the subscripts are to be read modulo n. Since
G(n, k) = G(n, n − k) we usually take 1 ≤ k < n/2.



Some properties of GP-graphs

� connected
� vertex-transitive if (n, k) = (10, 2) or

k
2 ≡ ±1 (mod n).

� edge-transitive if

(n, k) ∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}.

� each edge-transitive is also vertex-transitive and
hence arc-transitive.



Automorphisms of GP-graphs

If a generalized Petersen graph is not edge-transitive,
then there (may) exist only three types of automorphisms:

� rotation ρ

� reflection τ

� automorphism α that changes the outer and the inner
rim if and only if k2 ≡ ±1 (mod n):

α(ui) = vki , α(vi) = uki .

The automorphism group of G(n, k) contains the dihedral
group Dn, generated by ρ and τ .



I-graphs

I-graphs were introduced in
the Foster census in 1988 by
Bouwer et al.

They represent a slight
further albeit important
generalization of the
renowned Petersen graph.

Let n ≥ 3 and j , k be such that 1 ≤ j , k < n and j , k �= n/2.

V (I(n, j , k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}
E(I(n, j , k)) = {uiui+j , uivi , vivi+k ; i = 0, . . . , n − 1},

where the subscripts are to be read modulo n.



Some properties of I-graphs
� Not all connected! Let gcd(n, j , k) = d and let

n = n0d , j = j0d , k = k0d . Then I(n, j , k) consists of d

isomorphic copies of I(n0, j0, k0).I(n, j , k) is connected
if and only if

gcd(n, j , k) = 1.

� I(n, j , k) is a GP-graph if and only if

gcd(n, j) = 1 or gcd(n, k) = 1.

� vertex- or edge-transitive only if GP-graphs
� I-graphs less popular than GP-graphs.
� Recently Žitnik, Horvat and Pisanski used I-graphs to

prove that all GP-graphs are unit-distance graphs
(JKMS 2012).



I-graph I(6, 2, 2) is not connected



Standard form of an I-graph.

� I(n, j , k) = I(n, k , j)

� I(n, j , k) = I(n, n − j , k)

� Using these facts we may always assume that in
I(n, j , k) we have 1 ≤ j ≤ k < n/2. In this case the
I-graph is in a standard form.



Automorphisms of proper I-graphs
There (may) exist only three types of automorphisms:

� rotation ρ

� reflection τ

� automorphism ϕ that reflects a cycle on the inner rim
and rotates or fixes cycles on the outer rim (or vice
versa)

ϕ(uij+pk) = u−ij+pk , ϕ(vij+pk) = v−ij+pk .

ψ(uij+pk) = uij−pk , ψ(vij+pk) = vij−pk .

That happens only if

n = gcd(n, j) ·gcd(n, k) or n = 2 ·gcd(n, j) ·gcd(n, k).

The automorphism group of I(n, j , k) contains the dihedral
group Dn, generated by ρ and τ .



I-graph I(12, 2, 3)

Here 12 = 2jk , so each cycle of the inner rim is
connected to each cycle of the outer rim with two spokes.



I-graph I(12, 3, 4)

Here 12 = jk , so each cycle of the inner rim is connected
to each cycle of the outer rim with one spoke.



Definition of GI-graphs

Let n ≥ 3, t ≥ 1 and 1 ≤ jk ≤ n− 1, jk �= n/2 for 1 ≤ k ≤ t .

A GI-graph GI(n; j1, j2, . . . , jt) is a graph defined on the
vertex set Zt × Zn with edges of two kinds:

a) spoke edges from (s, v) to (s�, v) for all s, s� ∈ Zt , for
every v ∈ Zn,

b) layer edges from (s, v) to (s, v + js) and (s, v − js) for
all s and v .

The graph has nt vertices and is regular of valence t + 1.



Layers and spokes

For s ∈ Zt the set

Ls = {(s, v) : v ∈ Zn}

is called a layer and for v ∈ Zn the set

Sv = {(s, v) : s ∈ Zt}

is called a spoke.

We observe that the induced subgraph of
GI(n; j1, j2, . . . , jt) on every spoke is a complete graph Kt .

If gcd(n, js) = d , the induced subgraph on the layer Ls is a
union of d cycles of length n/d .



GI-graphs are

t = 1: unions of isomorphic cycles,
t = 2: I-graphs,

In particular, GI(n; 1, j) is a generalized Petersen
graph.

There is another generalization by Lovrečič Saražin,
Pacco and Previtali, where spokes are not complete
graphs but cycles. They call such graphs generalized

generalized Petersen graphs or GGP-graphs.

t ≤ 3: The classes of GI-graphs and GGP-graphs coincide.



Example: GI(6; 1, 2, 2)



Some properties of GI-graphs
For t > 3 the spoke edges are easy to recognize.

Proposition

Let t > 3. An edge of a GI-graph with t layers is a

spoke-edge if and only if it belongs to some K4.

Proposition

The graph X = GI(n; j1, j2, . . . , jt) is connected if and only if

gcd(n, j1, j2, . . . , jt) = 1.

If gcd(n, j1, j2, . . . , jt) = d > 1, then X consists of d copies

of GI(n/d ; j1/d , j2/d , . . . , jt/d).



Isomorphic GI-graphs and canoncal from.

� GI(n; j �1, j �2, . . . , j �
t
) is the same graph as

GI(n; j1, j2, . . . , jt),
if j �

k
∈ {jk ,−jk}

� any permutation of j1, . . . , jt gives a GI-graph that is
isomorphic to GI(n; j1, j2, . . . , jt).

� Let j1, . . . , jt �∈ {0, n/2} modulo n and gcd(n, a) = 1.
Then

GI(n; aj1, . . . ajt) ≈ GI(n; j1, . . . jt).

Therefore we will usually assume that jk < n/2 and
j1 ≤ j2 ≤ · · · ≤ jt .

The multi-set J is the canonical form if it is
lexicographically first among all isomorphs.



Symmetry properties of GI-graphs

Theorem
A GI-graph is edge-transitive exactly in the following

cases:

� for t = 1,

� for t = 2 whenever each connected component is

isomorphic to one of the 7 special generalized

Petersen graphs,

� for t = 3 whenever each connected component is

isomorphic to GI(3; 1, 1, 1).

In particular, there are no GI-graphs which would be

edge-transitive and not arc-transitive.



Number of automorphisms of a GI-graph -
disconnected case

We try to determine the number of automorphisms of
GI(n; J). Let F (n; J) denote the number of
automorphisms of G = GI(n; J). Let d = gcd(n, J). Then
G is composed of d isomorphic copies of H = GI(n, J/d)
and

F (n, J) = d !F (n, J/d)

. This reduces the computation of F to connected
GI-graphs.



Number of automorphisms of a GI-graph -
arc-transitive case

F (4, 1, 1) = 24

F (5, 1, 2) = 120

F (8, 1, 3) = 96

F (10, 1, 2) = 120

F (10, 1, 3) = 240

F (12, 1, 5) = 144

F (24, 1, 5) = 288

F (3, 1, 1, 1) = 72



Number of automorphisms of a GI-graph -
simple J

Let GI(n; J) be connected and not arc-transitive. Let J be
a set (not a multi-set) in a standard form. Let

A = {a ∈ Z
∗
n
|aJ = J}

Then
F (n; J) = 2n|A|



Number of automorphisms of a GI-graph -
multiset J

Let GI(n; J) be connected and not arc-transitive. Let J be
a multi-set in a standard form with multiplicities m(ji) and
d(ji) = gcd(n, ji). Let

A = {a ∈ Z
∗
n
|aJ = J}

Multiplicities must be matched by each a. Then

F (n; J) = 2n|A|
�

i

m(ji)!m(ji)
d(ji )−1



Number of automorphisms of a GGP-graph?

Previous slides give an algorithm for computing F (n; J) in
general.

Maybe we can also compute the number of
automorphisms for the related family of GGP graphs.
There will be more vertex-transitive graphs, but essentially
we may repeat the same line of arguments to compute
the automorphisms. Instead of using full automorphims
group we have to use the dihedral group.


