> SetEchoInput(true); > load "pcpres.m"; Loading "pcpres.m" > /* setting up a finite polycyclic group -- Sym (4) */ > > G := PolycyclicGroup x2^2, x3^x1 = x4, x3^x2 = x4, x4^x1 = x3, x4^x2 = x3 * x4 >; > > G; GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.2^G.1 = G.2^2, G.3^G.1 = G.4, G.3^G.2 = G.4, G.4^G.1 = G.3, G.4^G.2 = G.3 * G.4 > > // does every element have unique normal form? > IsConsistent (G); true > > #G; 24 > > flag, phi := IsIsomorphic (G, Sym (4)); > flag; true > phi (G.1); (3, 4) > phi (G.2); (2, 4, 3) > > // normal form? > g := G.3 * G.2^-1 * G.1^-1 * G.2 * G.4; > g; G.1 * G.2^2 * G.3 * G.4 > > // normal subgroups > N := NormalSubgroups (G); > N; Conjugacy classes of subgroups ------------------------------ [1] Order 1 Length 1 GrpPC of order 1 PC-Relations: [2] Order 4 Length 1 GrpPC of order 4 = 2^2 PC-Relations: $.1^2 = Id($), $.2^2 = Id($) [3] Order 12 Length 1 GrpPC of order 12 = 2^2 * 3 PC-Relations: $.1^3 = Id($), $.2^2 = Id($), $.3^2 = Id($), $.2^$.1 = $.2 * $.3, $.3^$.1 = $.2 [4] Order 24 Length 1 GrpPC of order 24 = 2^3 * 3 PC-Relations: $.1^2 = Id($), $.2^3 = Id($), $.3^2 = Id($), $.4^2 = Id($), $.2^$.1 = $.2^2, $.3^$.2 = $.3 * $.4, $.4^$.1 = $.3 * $.4, $.4^$.2 = $.3 > > // centraliser in G of g > C := Centraliser (G, g); > > // subgroup generated by g > H := sub< G | g >; > H; GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = H.2 > N := Normaliser (G, H); > N; GrpPC : N of order 8 = 2^3 PC-Relations: N.1^2 = N.3, N.2^N.1 = N.2 * N.3 > > IdentifyGroup (N); <8, 3> > > /* set up infinite dihedral group */ > D := PolycyclicGroup; > D; GrpGPC : D of infinite order on 2 PC-generators PC-Relations: a^2 = Id(D), b^a = b^-1 > > b^-2 * a * b^-1 * a^-1; b^-1 > > /* exploring quotients of a finitely presented group */ > > G := Group ; > AbelianQuotientInvariants (G); [ 3, 3 ] > H, phi := pQuotient (G, 3, 0:Print:=1); Class limit set to 127. Lower exponent-3 central series for G Group: G to lower exponent-3 central class 1 has order 3^2 Group: G to lower exponent-3 central class 2 has order 3^3 Group: G to lower exponent-3 central class 3 has order 3^5 Group completed. Lower exponent-3 central class = 3, Order = 3^5 > H; GrpPC : H of order 243 = 3^5 PC-Relations: H.1^3 = H.4^2 * H.5, H.2^3 = H.4^2 * H.5^2, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.5 > phi (a * b * a); H.1^2 * H.2 * H.3 > IdentifyGroup (H); <243, 7> > > // aut gp of H > A := AutomorphismGroup (H); > A; A group of automorphisms of GrpPC : H Generators: Automorphism of GrpPC : H which maps: H.1 |--> H.2 * H.3 * H.5^2 H.2 |--> H.1^2 * H.3 * H.5 H.3 |--> H.3 * H.5 H.4 |--> H.5 H.5 |--> H.4^2 Automorphism of GrpPC : H which maps: H.1 |--> H.1 H.2 |--> H.2 * H.4^2 H.3 |--> H.3 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 H.2 |--> H.2 * H.5 H.3 |--> H.3 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 * H.5^2 H.2 |--> H.2 H.3 |--> H.3 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 H.2 |--> H.2 * H.3 H.3 |--> H.3 * H.4 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 * H.3^2 H.2 |--> H.2 H.3 |--> H.3 * H.5 H.4 |--> H.4 H.5 |--> H.5 > #A; 2916 > > // specific aut > alpha := A.1 * A.2^-1 * A.3; > alpha; Automorphism of GrpPC : H which maps: H.1 |--> H.2 * H.3 * H.4 H.2 |--> H.1^2 * H.3 * H.5 H.3 |--> H.3 * H.5 H.4 |--> H.5 H.5 |--> H.4^2 > > h := Random (H); > h; H.1^2 * H.2^2 * H.3^2 > alpha (h); H.1 * H.2^2 * H.3^2 * H.4^2 * H.5 > > // perm rep for automorphism group: action on union of conjugacy classes > phi, B := ClassAction (A); > B; Permutation group B acting on a set of cardinality 108 Order = 2916 = 2^2 * 3^6 > CompositionFactors (B); G | Cyclic(2) * | Cyclic(2) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) 1 > > // A is soluble so we can write down directly a pc-presentation for A > X, tau := PCGroup (A); > X; GrpPC : X of order 2916 = 2^2 * 3^6 PC-Relations: X.1^2 = X.2, X.2^2 = X.3 * X.4^2 * X.8^2, X.3^3 = Id(X), X.4^3 = Id(X), X.5^3 = Id(X), X.6^3 = Id(X), X.7^3 = Id(X), X.8^3 = Id(X), X.3^X.1 = X.3 * X.4, X.4^X.1 = X.4^2, X.5^X.1 = X.5^2 * X.8^2, X.6^X.1 = X.6 * X.7 * X.8^2, X.6^X.2 = X.6^2, X.7^X.1 = X.6 * X.7^2 * X.8, X.7^X.2 = X.7^2, X.7^X.6 = X.7 * X.8 > Y := AutomorphismGroup (X); > #Y; 373248 > > U := PCGroup (Y); > U; GrpPC : U of order 373248 = 2^9 * 3^6 PC-Relations: U.1^2 = Id(U), U.2^2 = U.9 * U.10 * U.14^2, U.3^2 = U.4, U.4^2 = U.5, U.5^2 = Id(U), U.6^3 = Id(U), U.7^2 = Id(U), U.8^3 = Id(U), U.9^2 = U.11, U.10^2 = U.11, U.11^2 = Id(U), U.12^3 = Id(U), U.13^3 = Id(U), U.14^3 = Id(U), U.15^3 = Id(U), U.3^U.2 = U.3 * U.4, U.4^U.2 = U.4 * U.5, U.6^U.1 = U.6^2, U.6^U.2 = U.6^2, U.6^U.3 = U.6^2, U.7^U.2 = U.7 * U.8^2 * U.9 * U.14^2 * U.15^2, U.8^U.2 = U.8^2 * U.9 * U.11 * U.15, U.8^U.7 = U.8^2, U.9^U.2 = U.10 * U.15^2, U.9^U.7 = U.9 * U.10 * U.11, U.9^U.8 = U.9 * U.10, U.10^U.2 = U.9 * U.11 * U.14, U.10^U.7 = U.10 * U.11, U.10^U.8 = U.9 * U.11, U.10^U.9 = U.10 * U.11, U.11^U.2 = U.11 * U.14^2 * U.15^2, U.12^U.2 = U.13, U.12^U.3 = U.12^2 * U.13^2, U.12^U.4 = U.13^2, U.12^U.5 = U.12^2, U.13^U.2 = U.12, U.13^U.3 = U.12 * U.13^2, U.13^U.4 = U.12, U.13^U.5 = U.13^2, U.14^U.2 = U.15, U.14^U.9 = U.14^2 * U.15, U.14^U.10 = U.15^2, U.14^U.11 = U.14^2, U.15^U.2 = U.14 * U.15, U.15^U.7 = U.15^2, U.15^U.8 = U.14^2 * U.15, U.15^U.9 = U.14 * U.15, U.15^U.10 = U.14, U.15^U.11 = U.15^2 > > // family of 7-groups > F := FreeGroup (2); > p := 7; > Q := []; > for k := 1 to p - 1 do > G := quo< F | a^p = (b, a, a), b^p = a^(k*p), (b, a, b)>; > Q[k] := pQuotient (G, p, 10); > end for; > > Q; [ GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^2, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^3, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^4, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^5, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^6, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4 ] > > // how many distinct isom types? > S := [StandardPresentation (H): H in Q]; > > // generic function to identify different objects in S > // using MyCompare > FindDifferent := function (S, MyCompare) > > if #S le 1 then return S, [i : i in [1..#S]]; end if; > D := [S[1]]; > for i in [2..#S] do > if forall {j : j in [1..#D] | > MyCompare (S[i], D[j]) eq false} then > Append (~D, S[i]); > end if; > end for; > pos := [Position (S, D[i]) : i in [1..#D]]; > return D, pos; > end function; > > T, pos := FindDifferent (S, IsIdenticalPresentation); > // non-isomorphic groups > T; [ GrpPC of order 2401 = 7^4 PC-Relations: $.2^7 = $.4, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.2^7 = $.4^3, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4 ] > > // see Cavicchioli, O'Brien and Spaggiari, J. Algebra 2008 > // www.math.auckland.ac.nz/~obrien/research/fib.pdf > // generalised Fibonacci type groups > > CHR := function (n, m, k) > F := FreeGroup (n); > R := []; > for i in [1..n] do > a := i + m; > if a gt n then repeat a := a - n; until a le n; end if; > b := i + k; > if b gt n then repeat b := b - n; until b le n; end if; > Append (~R, F.i * F.a = F.b); > end for; > Q := quo ; > return Q; > end function; > > /* prove that 9, 3, 4 is infinite */ > G := CHR (9, 3, 4); > D := DerivedGroup (G); > S := DerivedGroup (D); > R := Rewrite (D, S: Simplify:=false); > b := Ngens (R); > r := #Relations (R); > "# of generators, # relations ", b, r; # of generators, # relations 321 768 > > // Golod-Safarevic theorem > // G p-group has Frattini quotient rank d and r relators; > // if r < d^2/4 then G is infinite > > // stronger version of this theorem > Left := func; > > Right := func + (e - (-1)^p * (d div 2) - (d^2 div 4)) * (d div 2)>; > > P:= pQuotient(R, 2, 2:Print:=1); Lower exponent-2 central series for R Group: R to lower exponent-2 central class 1 has order 2^43 Group: R to lower exponent-2 central class 2 has order 2^604 > d := FrattiniQuotientRank (P); > // rank of class 2 section > e := NPCgens (P) - d; > p := 2; > > left := Left (b, r); left; 447 > right := Right (d, e, p); right; 1979 > left le right; true > // so G is infinite > > // an unsolved case > G := CHR (9, 1, 3); > G; Finitely presented group G on 9 generators Relations G.1 * G.2 = G.4 G.2 * G.3 = G.5 G.3 * G.4 = G.6 G.4 * G.5 = G.7 G.5 * G.6 = G.8 G.6 * G.7 = G.9 G.7 * G.8 = G.1 G.8 * G.9 = G.2 G.9 * G.1 = G.3 > > // G/G' > AbelianQuotientInvariants (G); [ 19 ] > > // Reduce # of generators > S := Simplify (G); > S; Finitely presented group S on 2 generators Generators as words in group G S.1 = G.2 S.2 = G.5 Relations S.2^-2 * S.1^-2 * S.2^-1 * S.1^2 * S.2 * S.1 * S.2^-1 * S.1 = Id(S) S.2^-1 * S.1^-1 * S.2^-2 * S.1^-1 * S.2^-1 * S.1 * S.2^-2 * S.1^-1 * S.2 * S.1^-1 = Id(S) > P := Homomorphisms (S, PSL(2, 8)); > P; [ Homomorphism of GrpFP: S into GrpPerm: $, Degree 9, Order 2^3 * 3^2 * 7 induced by S.1 |--> (1, 5, 7, 4, 9, 6, 8, 3, 2) S.2 |--> (1, 6, 3, 5, 9, 8, 7, 2, 4), Homomorphism of GrpFP: S into GrpPerm: $, Degree 9, Order 2^3 * 3^2 * 7 induced by S.1 |--> (1, 7, 9, 8, 2, 5, 4, 6, 3) S.2 |--> (1, 8, 4, 3, 2, 7, 5, 9, 6), Homomorphism of GrpFP: S into GrpPerm: $, Degree 9, Order 2^3 * 3^2 * 7 induced by S.1 |--> (1, 9, 2, 4, 3, 7, 8, 5, 6) S.2 |--> (1, 8, 2, 3, 5, 9, 4, 6, 7) ] > > // easy to get homomorphism from G to PSL(2, 8) x Z_19 > // Not too difficult to show kernel K is perfect > // Hard question: is K infinite simple, trivial, finite? > > // Baumslag-Solitar groups > > G := Group; > AbelianQuotientInvariants (G); [ 2, 0 ] > > // p-quotient > H, tau := pQuotient (G, 2, 5:Print:=1); Lower exponent-2 central series for G Group: G to lower exponent-2 central class 1 has order 2^2 Group: G to lower exponent-2 central class 2 has order 2^4 Group: G to lower exponent-2 central class 3 has order 2^6 Group: G to lower exponent-2 central class 4 has order 2^8 Group: G to lower exponent-2 central class 5 has order 2^10 > H; GrpPC : H of order 1024 = 2^10 PC-Relations: H.1^2 = H.4, H.2^2 = H.3 * H.5 * H.7, H.3^2 = H.5 * H.7 * H.9, H.4^2 = H.6, H.5^2 = H.7 * H.9, H.6^2 = H.8, H.7^2 = H.9, H.8^2 = H.10, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.4^H.2 = H.4 * H.9, H.5^H.1 = H.5 * H.7, H.7^H.1 = H.7 * H.9 > tau; Mapping from: GrpFP: G to GrpPC: H > (a * b^2 *a) @ tau; H.3 * H.4 * H.7 * H.9 > > // nilpotent quotient > K, phi := NilpotentQuotient (G, 5); > K; GrpGPC : K of infinite order on 6 PC-generators PC-Relations: K.2^2 = K.3 * K.4 * K.5, K.3^2 = K.4 * K.5 * K.6, K.4^2 = K.5 * K.6, K.5^2 = K.6, K.6^2 = Id(K), K.2^K.1 = K.2 * K.3, K.2^(K.1^-1) = K.2 * K.3 * K.6, K.3^K.1 = K.3 * K.4, K.3^(K.1^-1) = K.3 * K.4, K.4^K.1 = K.4 * K.5, K.4^(K.1^-1) = K.4 * K.5, K.5^K.1 = K.5 * K.6, K.5^(K.1^-1) = K.5 * K.6 > phi; Mapping from: GrpFP: G to GrpGPC: K > K.5 @@ phi; (b, a, a, a) > > // soluble group use PCGroup to write down PCPresentation > G := WreathProduct (Alt(4), DihedralGroup(10)); > IsSoluble (G); true > P, pi := PCGroup (G); > > // soluble quotient > G := WreathProduct(Sym(5), DihedralGroup(3)); > #G; 10368000 > F := FPGroupStrong (G); > time S, phi := SolubleQuotient (F); Time: 0.190 > S; GrpPC : S of order 48 = 2^4 * 3 PC-Relations: S.1^2 = Id(S), S.2^2 = Id(S), S.3^3 = Id(S), S.4^2 = Id(S), S.5^2 = Id(S), S.3^S.2 = S.3^2, S.4^S.3 = S.5, S.5^S.2 = S.4 * S.5, S.5^S.3 = S.4 * S.5 > > // find p-groups G where G^p \leq Z(G) > //is p-group pcentral? > IsPCentral := function(G) > Z := Center (G); > O := Omega (G, 1); > return O subset Z; > end function; > > // groups of order 32 with pcentral property > X := SmallGroups (32, IsPCentral); > "Number of examples is ", #X; Number of examples is 20 > X[1]; GrpPC of order 32 = 2^5 PC-Relations: $.1^2 = $.2, $.2^2 = $.3, $.3^2 = $.4, $.4^2 = $.5 > > // identify abelian invariants of Schur multiplier of G > SchurMultiplier := function (G) > B := PrimeBasis (#G); > M := [pMultiplicator (G, p): p in B]; > M := [x : x in M | #x gt 0 and x ne [1]]; > return M; > end function; > > // extension of soluble group > D4 := DihedralGroup (4); > SchurMultiplier (D4); [ [ 2 ] ] > > // largest central extension > D := Darstellungsgruppe (FPGroup (D4)); > D; Finitely presented group D on 3 generators Relations D.2^2 = Id(D) D.1^4 * D.3 = Id(D) (D.1^-1 * D.2)^2 = Id(D) (D.1, D.3) = Id(D) (D.2, D.3) = Id(D) > H := pQuotient (D, 2, 10:Print := 1); Lower exponent-2 central series for D Group: D to lower exponent-2 central class 1 has order 2^2 Group: D to lower exponent-2 central class 2 has order 2^3 Group: D to lower exponent-2 central class 3 has order 2^4 Group completed. Lower exponent-2 central class = 3, Order = 2^4 > H; GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.3, H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.2 = H.3 * H.4 > > // extensions of D4 by C2 > S := ExtensionsOfSolubleGroup (D4, CyclicGroup (2)); > X := [pQuotient(x, 2, 10:Print:=0): x in S]; > [IdentifyGroup (x): x in X]; [ <16, 11>, <16, 13>, <16, 7>, <16, 8> ] > > quit; Total time: 5.480 seconds, Total memory usage: 47.19MB > > /* setting up a finite polycyclic group -- Sym (4) */ > > G := PolycyclicGroup x2^2, x3^x1 = x4, x3^x2 = x4, x4^x1 = x3, x4^x2 = x3 * x4 >; > > G; GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.2^G.1 = G.2^2, G.3^G.1 = G.4, G.3^G.2 = G.4, G.4^G.1 = G.3, G.4^G.2 = G.3 * G.4 > > // does every element have unique normal form? > IsConsistent (G); true > > #G; 24 > > flag, phi := IsIsomorphic (G, Sym (4)); > flag; true > phi (G.1); (3, 4) > phi (G.2); (2, 4, 3) > > // normal form? > g := G.3 * G.2^-1 * G.1^-1 * G.2 * G.4; > g; G.1 * G.2^2 * G.3 * G.4 > > // normal subgroups > N := NormalSubgroups (G); > N; Conjugacy classes of subgroups ------------------------------ [1] Order 1 Length 1 GrpPC of order 1 PC-Relations: [2] Order 4 Length 1 GrpPC of order 4 = 2^2 PC-Relations: $.1^2 = Id($), $.2^2 = Id($) [3] Order 12 Length 1 GrpPC of order 12 = 2^2 * 3 PC-Relations: $.1^3 = Id($), $.2^2 = Id($), $.3^2 = Id($), $.2^$.1 = $.2 * $.3, $.3^$.1 = $.2 [4] Order 24 Length 1 GrpPC of order 24 = 2^3 * 3 PC-Relations: $.1^2 = Id($), $.2^3 = Id($), $.3^2 = Id($), $.4^2 = Id($), $.2^$.1 = $.2^2, $.3^$.2 = $.3 * $.4, $.4^$.1 = $.3 * $.4, $.4^$.2 = $.3 > > // centraliser in G of g > C := Centraliser (G, g); > > // subgroup generated by g > H := sub< G | g >; > H; GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = H.2 > N := Normaliser (G, H); > N; GrpPC : N of order 8 = 2^3 PC-Relations: N.1^2 = N.3, N.2^N.1 = N.2 * N.3 > > IdentifyGroup (N); <8, 3> > > /* set up infinite dihedral group */ > D := PolycyclicGroup; > D; GrpGPC : D of infinite order on 2 PC-generators PC-Relations: a^2 = Id(D), b^a = b^-1 > > b^-2 * a * b^-1 * a^-1; b^-1 > > /* exploring quotients of a finitely presented group */ > > G := Group ; > AbelianQuotientInvariants (G); [ 3, 3 ] > H, phi := pQuotient (G, 3, 0:Print:=1); Class limit set to 127. Lower exponent-3 central series for G Group: G to lower exponent-3 central class 1 has order 3^2 Group: G to lower exponent-3 central class 2 has order 3^3 Group: G to lower exponent-3 central class 3 has order 3^5 Group completed. Lower exponent-3 central class = 3, Order = 3^5 > H; GrpPC : H of order 243 = 3^5 PC-Relations: H.1^3 = H.4^2 * H.5, H.2^3 = H.4^2 * H.5^2, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.5 > phi (a * b * a); H.1^2 * H.2 * H.3 > IdentifyGroup (H); <243, 7> > > // aut gp of H > A := AutomorphismGroup (H); > A; A group of automorphisms of GrpPC : H Generators: Automorphism of GrpPC : H which maps: H.1 |--> H.2 * H.3 * H.5^2 H.2 |--> H.1^2 * H.3 * H.5 H.3 |--> H.3 * H.5 H.4 |--> H.5 H.5 |--> H.4^2 Automorphism of GrpPC : H which maps: H.1 |--> H.1 H.2 |--> H.2 * H.4^2 H.3 |--> H.3 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 H.2 |--> H.2 * H.5 H.3 |--> H.3 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 * H.5^2 H.2 |--> H.2 H.3 |--> H.3 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 H.2 |--> H.2 * H.3 H.3 |--> H.3 * H.4 H.4 |--> H.4 H.5 |--> H.5 Automorphism of GrpPC : H which maps: H.1 |--> H.1 * H.3^2 H.2 |--> H.2 H.3 |--> H.3 * H.5 H.4 |--> H.4 H.5 |--> H.5 > #A; 2916 > > // specific aut > alpha := A.1 * A.2^-1 * A.3; > alpha; Automorphism of GrpPC : H which maps: H.1 |--> H.2 * H.3 * H.4 H.2 |--> H.1^2 * H.3 * H.5 H.3 |--> H.3 * H.5 H.4 |--> H.5 H.5 |--> H.4^2 > > h := Random (H); > h; H.2 * H.4 * H.5 > alpha (h); H.1^2 * H.3 * H.4^2 * H.5^2 > > // perm rep for automorphism group: action on union of conjugacy classes > phi, B := ClassAction (A); > B; Permutation group B acting on a set of cardinality 108 Order = 2916 = 2^2 * 3^6 > CompositionFactors (B); G | Cyclic(2) * | Cyclic(2) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) * | Cyclic(3) 1 > > // A is soluble so we can write down directly a pc-presentation for A > X, tau := PCGroup (A); > X; GrpPC : X of order 2916 = 2^2 * 3^6 PC-Relations: X.1^2 = X.2, X.2^2 = X.3 * X.4^2 * X.8^2, X.3^3 = Id(X), X.4^3 = Id(X), X.5^3 = Id(X), X.6^3 = Id(X), X.7^3 = Id(X), X.8^3 = Id(X), X.3^X.1 = X.3 * X.4, X.4^X.1 = X.4^2, X.5^X.1 = X.5^2 * X.8^2, X.6^X.1 = X.6 * X.7 * X.8^2, X.6^X.2 = X.6^2, X.7^X.1 = X.6 * X.7^2 * X.8, X.7^X.2 = X.7^2, X.7^X.6 = X.7 * X.8 > Y := AutomorphismGroup (X); > #Y; 373248 > > U := PCGroup (Y); > U; GrpPC : U of order 373248 = 2^9 * 3^6 PC-Relations: U.1^2 = Id(U), U.2^2 = U.5 * U.12, U.3^2 = U.4, U.4^2 = U.5, U.5^2 = Id(U), U.6^3 = Id(U), U.7^2 = Id(U), U.8^3 = Id(U), U.9^2 = U.11, U.10^2 = U.11, U.11^2 = Id(U), U.12^3 = Id(U), U.13^3 = Id(U), U.14^3 = Id(U), U.15^3 = Id(U), U.3^U.2 = U.3 * U.4 * U.13^2, U.4^U.2 = U.4 * U.5 * U.12 * U.13, U.5^U.2 = U.5 * U.12 * U.13^2, U.6^U.1 = U.6^2, U.6^U.3 = U.6^2, U.8^U.7 = U.8^2, U.9^U.7 = U.9 * U.11, U.9^U.8 = U.10 * U.11, U.10^U.7 = U.9 * U.10, U.10^U.8 = U.9 * U.10 * U.11, U.10^U.9 = U.10 * U.11, U.12^U.2 = U.13, U.12^U.3 = U.12 * U.13, U.12^U.4 = U.12^2 * U.13, U.12^U.5 = U.12^2, U.13^U.2 = U.12^2, U.13^U.3 = U.12, U.13^U.4 = U.12 * U.13, U.13^U.5 = U.13^2, U.14^U.7 = U.14 * U.15, U.14^U.8 = U.15, U.14^U.9 = U.14 * U.15, U.14^U.10 = U.15^2, U.14^U.11 = U.14^2, U.15^U.7 = U.15^2, U.15^U.8 = U.14^2 * U.15^2, U.15^U.9 = U.14 * U.15^2, U.15^U.10 = U.14, U.15^U.11 = U.15^2 > > // family of 7-groups > F := FreeGroup (2); > p := 7; > Q := []; > for k := 1 to p - 1 do > G := quo< F | a^p = (b, a, a), b^p = a^(k*p), (b, a, b)>; > Q[k] := pQuotient (G, p, 10); > end for; > > Q; [ GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^2, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^3, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^4, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^5, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.1^7 = $.4, $.2^7 = $.4^6, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4 ] > > // how many distinct isom types? > S := [StandardPresentation (H): H in Q]; > > // generic function to identify different objects in S > // using MyCompare > FindDifferent := function (S, MyCompare) > > if #S le 1 then return S, [i : i in [1..#S]]; end if; > D := [S[1]]; > for i in [2..#S] do > if forall {j : j in [1..#D] | > MyCompare (S[i], D[j]) eq false} then > Append (~D, S[i]); > end if; > end for; > pos := [Position (S, D[i]) : i in [1..#D]]; > return D, pos; > end function; > > T, pos := FindDifferent (S, IsIdenticalPresentation); > // non-isomorphic groups > T; [ GrpPC of order 2401 = 7^4 PC-Relations: $.2^7 = $.4, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4, GrpPC of order 2401 = 7^4 PC-Relations: $.2^7 = $.4^3, $.2^$.1 = $.2 * $.3, $.3^$.1 = $.3 * $.4 ] > > // see Cavicchioli, O'Brien and Spaggiari, J. Algebra 2008 > // www.math.auckland.ac.nz/~obrien/research/fib.pdf > // generalised Fibonacci type groups > > CHR := function (n, m, k) > F := FreeGroup (n); > R := []; > for i in [1..n] do > a := i + m; > if a gt n then repeat a := a - n; until a le n; end if; > b := i + k; > if b gt n then repeat b := b - n; until b le n; end if; > Append (~R, F.i * F.a = F.b); > end for; > Q := quo ; > return Q; > end function; > > /* prove that 9, 3, 4 is infinite */ > G := CHR (9, 3, 4); > D := DerivedGroup (G); > S := DerivedGroup (D); > R := Rewrite (D, S: Simplify:=false); > b := Ngens (R); > r := #Relations (R); > "# of generators, # relations ", b, r; # of generators, # relations 321 768 > > // Golod-Safarevic theorem > // G p-group has Frattini quotient rank d and r relators; > // if r < d^2/4 then G is infinite > > // stronger version of this theorem > Left := func; > > Right := func + (e - (-1)^p * (d div 2) - (d^2 div 4)) * (d div 2)>; > > P:= pQuotient(R, 2, 2:Print:=1); Lower exponent-2 central series for R Group: R to lower exponent-2 central class 1 has order 2^43 Group: R to lower exponent-2 central class 2 has order 2^604 > d := FrattiniQuotientRank (P); > // rank of class 2 section > e := NPCgens (P) - d; > p := 2; > > left := Left (b, r); left; 447 > right := Right (d, e, p); right; 1979 > left le right; true > // so G is infinite > > // an unsolved case > G := CHR (9, 1, 3); > G; Finitely presented group G on 9 generators Relations G.1 * G.2 = G.4 G.2 * G.3 = G.5 G.3 * G.4 = G.6 G.4 * G.5 = G.7 G.5 * G.6 = G.8 G.6 * G.7 = G.9 G.7 * G.8 = G.1 G.8 * G.9 = G.2 G.9 * G.1 = G.3 > > // G/G' > AbelianQuotientInvariants (G); [ 19 ] > > // Reduce # of generators > S := Simplify (G); > S; Finitely presented group S on 2 generators Generators as words in group G S.1 = G.2 S.2 = G.5 Relations S.2^-2 * S.1^-2 * S.2^-1 * S.1^2 * S.2 * S.1 * S.2^-1 * S.1 = Id(S) S.2^-1 * S.1^-1 * S.2^-2 * S.1^-1 * S.2^-1 * S.1 * S.2^-2 * S.1^-1 * S.2 * S.1^-1 = Id(S) > P := Homomorphisms (S, PSL(2, 8)); > P; [ Homomorphism of GrpFP: S into GrpPerm: $, Degree 9, Order 2^3 * 3^2 * 7 induced by S.1 |--> (1, 5, 7, 4, 9, 6, 8, 3, 2) S.2 |--> (1, 6, 3, 5, 9, 8, 7, 2, 4), Homomorphism of GrpFP: S into GrpPerm: $, Degree 9, Order 2^3 * 3^2 * 7 induced by S.1 |--> (1, 7, 9, 8, 2, 5, 4, 6, 3) S.2 |--> (1, 8, 4, 3, 2, 7, 5, 9, 6), Homomorphism of GrpFP: S into GrpPerm: $, Degree 9, Order 2^3 * 3^2 * 7 induced by S.1 |--> (1, 9, 2, 4, 3, 7, 8, 5, 6) S.2 |--> (1, 8, 2, 3, 5, 9, 4, 6, 7) ] > > // easy to get homomorphism from G to PSL(2, 8) x Z_19 > // Not too difficult to show kernel K is perfect > // Hard question: is K infinite simple, trivial, finite? > > // Baumslag-Solitar groups > > G := Group; > AbelianQuotientInvariants (G); [ 2, 0 ] > > // p-quotient > H, tau := pQuotient (G, 2, 5:Print:=1); Lower exponent-2 central series for G Group: G to lower exponent-2 central class 1 has order 2^2 Group: G to lower exponent-2 central class 2 has order 2^4 Group: G to lower exponent-2 central class 3 has order 2^6 Group: G to lower exponent-2 central class 4 has order 2^8 Group: G to lower exponent-2 central class 5 has order 2^10 > H; GrpPC : H of order 1024 = 2^10 PC-Relations: H.1^2 = H.4, H.2^2 = H.3 * H.5 * H.7, H.3^2 = H.5 * H.7 * H.9, H.4^2 = H.6, H.5^2 = H.7 * H.9, H.6^2 = H.8, H.7^2 = H.9, H.8^2 = H.10, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.4^H.2 = H.4 * H.9, H.5^H.1 = H.5 * H.7, H.7^H.1 = H.7 * H.9 > tau; Mapping from: GrpFP: G to GrpPC: H > (a * b^2 *a) @ tau; H.3 * H.4 * H.7 * H.9 > > // nilpotent quotient > K, phi := NilpotentQuotient (G, 5); > K; GrpGPC : K of infinite order on 6 PC-generators PC-Relations: K.2^2 = K.3 * K.4 * K.5, K.3^2 = K.4 * K.5 * K.6, K.4^2 = K.5 * K.6, K.5^2 = K.6, K.6^2 = Id(K), K.2^K.1 = K.2 * K.3, K.2^(K.1^-1) = K.2 * K.3 * K.6, K.3^K.1 = K.3 * K.4, K.3^(K.1^-1) = K.3 * K.4, K.4^K.1 = K.4 * K.5, K.4^(K.1^-1) = K.4 * K.5, K.5^K.1 = K.5 * K.6, K.5^(K.1^-1) = K.5 * K.6 > phi; Mapping from: GrpFP: G to GrpGPC: K > K.5 @@ phi; (b, a, a, a) > > // soluble group use PCGroup to write down PCPresentation > G := WreathProduct (Alt(4), DihedralGroup(10)); > IsSoluble (G); true > P, pi := PCGroup (G); > > // soluble quotient > G := WreathProduct(Sym(5), DihedralGroup(3)); > #G; 10368000 > F := FPGroupStrong (G); > time S, phi := SolubleQuotient (F); Time: 0.210 > S; GrpPC : S of order 48 = 2^4 * 3 PC-Relations: S.1^2 = Id(S), S.2^2 = Id(S), S.3^3 = Id(S), S.4^2 = Id(S), S.5^2 = Id(S), S.3^S.2 = S.3^2, S.4^S.3 = S.5, S.5^S.2 = S.4 * S.5, S.5^S.3 = S.4 * S.5 > > // find p-groups G where G^p \leq Z(G) > //is p-group pcentral? > IsPCentral := function(G) > Z := Center (G); > O := Omega (G, 1); > return O subset Z; > end function; > > // groups of order 32 with pcentral property > X := SmallGroups (32, IsPCentral); > "Number of examples is ", #X; Number of examples is 20 > X[1]; GrpPC of order 32 = 2^5 PC-Relations: $.1^2 = $.2, $.2^2 = $.3, $.3^2 = $.4, $.4^2 = $.5 > > // identify abelian invariants of Schur multiplier of G > SchurMultiplier := function (G) > B := PrimeBasis (#G); > M := [pMultiplicator (G, p): p in B]; > M := [x : x in M | #x gt 0 and x ne [1]]; > return M; > end function; > > // extension of soluble group > D4 := DihedralGroup (4); > SchurMultiplier (D4); [ [ 2 ] ] > > // largest central extension > D := Darstellungsgruppe (FPGroup (D4)); > D; Finitely presented group D on 3 generators Relations D.2^2 = Id(D) D.1^4 * D.3 = Id(D) (D.1^-1 * D.2)^2 = Id(D) (D.1, D.3) = Id(D) (D.2, D.3) = Id(D) > H := pQuotient (D, 2, 10:Print := 1); Lower exponent-2 central series for D Group: D to lower exponent-2 central class 1 has order 2^2 Group: D to lower exponent-2 central class 2 has order 2^3 Group: D to lower exponent-2 central class 3 has order 2^4 Group completed. Lower exponent-2 central class = 3, Order = 2^4 > H; GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.3, H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.2 = H.3 * H.4 > > // extensions of D4 by C2 > S := ExtensionsOfSolubleGroup (D4, CyclicGroup (2)); > X := [pQuotient(x, 2, 10:Print:=0): x in S]; > [IdentifyGroup (x): x in X]; [ <16, 11>, <16, 13>, <16, 7>, <16, 8> ] > > quit; Total time: 5.620 seconds, Total memory usage: 47.19MB