
New variational principle for discrete integrable systems

Frank Nijhoff
University of Leeds

Royal Society/Leverhulme Trust Senior Research Fellow (2011-12)

(joint work with Sarah Lobb and Pavlos Xenitidis)

SODO Conference, Queenstown, NZ, 14/02/2012



Discrete Integrable Systems

◮ Subject on the interface of pure & applied mathematics and mathematical
physics.

◮ Discrete Objects: ordinary and partial difference equations, and
corresponding algebraic and geometric structures.

◮ Research areas related to the subject:

• Discrete differential geometry (Differenzengeometrie);
• Integrable dynamics and dynamical maps (QRT maps in elliptic surfaces);
• Random matrix models;
• Discrete holomophic/conformal maps and discrete analytic function theory;
• Nevanlinna theory and the Vojta dictionary in Number Theory;
• Difference equations over finite fields and tropical geometry;
• Combinatorics: octahedral recurrences and cluster algebras;
• Discrete special functions (q- and elliptic hypergeometric series);
• Difference Painlevé equations and affine Weyl groups;
• Algebraic geometry of rational surfaces and birational maps;
• Quantum geometry and solvable models in statistical mechanics.
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Outline

◮ Integrable partial difference equations – quadrilateral lattice equations

◮ Multidimensional consistency (cubic consistency) and integrability

◮ ABS list of quadrilateral lattice equations

◮ Lagrangian structures and closure relation

◮ Variational principle for (discrete) Lagrangian multi-forms
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Notation
We consider partial difference equations on a regular lattice described by the
following variables:

◮ two independent discrete variables n1, n2 (ni ∈ Z) corresponding to two
lattice directions;

◮ lattice parameters α1, α2 (αi ∈ C) associated with the grid width;

◮ a scalar dependent variable, i.e. function of the lattice u(n1, n2) taking
values in C (or R).

Elementary lattice shifts are denoted as follows:
u1 := u(n1 + 1, n2) , u2 := u(n1, n2 + 1) , u12 := u(n1 + 1, n2 + 1) ,

α1

α2

u−1 u u1 u1,1

u2 u1,2

n1

n2

We may also consider additional lattice directions, where the dependent
variable u depends on any number of discrete variables: u(n1, n2, n3, · · · ) .
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Quadrilateral lattice equations

We will be considering 2-dimensional lattice equations of the form

Q(u,u1, u2, u1,2;α1, α2) = 0

where Q is affine-linear in all four arguments. Multilinearity ensures we may
solve the equation uniquely for any argument.

u1

u2

u

u1,2

α1

α2

Remark: Such equations can also be considered on arbitrary quadgraphs, (and
by duality can be mapped on a regular lattice) [Adler, 1996]. Well-posedness of
initial-value problems can be considered both for the regular lattice
[Papageorgiou, FWN, Capel, 1990] or for quadgraphs [Adler, Veselov, 2001].
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Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2,3u2,3

u1,2

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2,3u2,3

u1,2

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2,3u2,3

u1,2

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2

u1,2,3u2,3

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2

u2,3 u1,2,3

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u1,2,3

u

u1,2

u2,3

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2

u1,2,3u2,3

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2

u1,3

u1,2,3u2,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u1,2

u1,3

u1,2,3u2,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u2,3 u1,2,3

u1,2

u1,3

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u2,3

u1,3

u1,2,3

u1,2

If these three values coincide, the equation is called consistent-around-the-cube.



Consistency around a cube

Copies of the equation in each
pair of lattice directions:

Q(u,u1, u2, u1,2;α1, α2) = 0

Q(u,u2, u3, u2,3;α2, α3) = 0

Q(u,u3, u1, u1,3;α3, α1) = 0

Starting with initial data
u, u1, u2, u3 there are in principle
three ways in which to compute
the value of u1,2,3.

u1

u2

u3

u

u2,3

u1,3

u1,2,3

u1,2

If these three values coincide, the equation is called consistent-around-the-cube.



Example: lattice potential Korteweg-de Vries equation

The equation is

Q(u,u1, u2, u1,2;α1, α2) = (u − u1,2)(u1 − u2)− α1 + α2 = 0

or equivalently

u1,2 =
u(u1 − u2)− α1 + α2

u1 − u2

which when shifted in a 3rd lattice direction is

u1,2,3 =
u3(u1,3 − u2,3)− α1 + α2

u1,3 − u2,3

= − (α1 − α2)u1u2 + (α2 − α3)u2u3 + (α3 − α1)u3u1
(α1 − α2)u3 + (α2 − α3)u1 + (α3 − α1)u2

Clearly the result is independent of the way in which the value at the outer
vertex is calulated!
Note, furthermore, that the value u1,2,3 no longer depends on the value u at
the “origin”. This is called the tetrahedron property.



Example: lattice potential Korteweg-de Vries equation

The equation is

Q(u,u1, u2, u1,2;α1, α2) = (u − u1,2)(u1 − u2)− α1 + α2 = 0

or equivalently

u1,2 =
u(u1 − u2)− α1 + α2

u1 − u2

which when shifted in a 3rd lattice direction is

u1,2,3 =
u3(u1,3 − u2,3)− α1 + α2

u1,3 − u2,3

= − (α1 − α2)u1u2 + (α2 − α3)u2u3 + (α3 − α1)u3u1
(α1 − α2)u3 + (α2 − α3)u1 + (α3 − α1)u2

Clearly the result is independent of the way in which the value at the outer
vertex is calulated!
Note, furthermore, that the value u1,2,3 no longer depends on the value u at
the “origin”. This is called the tetrahedron property.



Example: lattice potential Korteweg-de Vries equation

The equation is

Q(u,u1, u2, u1,2;α1, α2) = (u − u1,2)(u1 − u2)− α1 + α2 = 0

or equivalently

u1,2 =
u(u1 − u2)− α1 + α2

u1 − u2

which when shifted in a 3rd lattice direction is

u1,2,3 =
u3(u1,3 − u2,3)− α1 + α2

u1,3 − u2,3

= − (α1 − α2)u1u2 + (α2 − α3)u2u3 + (α3 − α1)u3u1
(α1 − α2)u3 + (α2 − α3)u1 + (α3 − α1)u2

Clearly the result is independent of the way in which the value at the outer
vertex is calulated!
Note, furthermore, that the value u1,2,3 no longer depends on the value u at
the “origin”. This is called the tetrahedron property.



Example: lattice potential Korteweg-de Vries equation

The equation is

Q(u,u1, u2, u1,2;α1, α2) = (u − u1,2)(u1 − u2)− α1 + α2 = 0

or equivalently

u1,2 =
u(u1 − u2)− α1 + α2

u1 − u2

which when shifted in a 3rd lattice direction is

u1,2,3 =
u3(u1,3 − u2,3)− α1 + α2

u1,3 − u2,3

= − (α1 − α2)u1u2 + (α2 − α3)u2u3 + (α3 − α1)u3u1
(α1 − α2)u3 + (α2 − α3)u1 + (α3 − α1)u2

Clearly the result is independent of the way in which the value at the outer
vertex is calulated!
Note, furthermore, that the value u1,2,3 no longer depends on the value u at
the “origin”. This is called the tetrahedron property.



Example: lattice potential Korteweg-de Vries equation

The equation is

Q(u,u1, u2, u1,2;α1, α2) = (u − u1,2)(u1 − u2)− α1 + α2 = 0

or equivalently

u1,2 =
u(u1 − u2)− α1 + α2

u1 − u2

which when shifted in a 3rd lattice direction is

u1,2,3 =
u3(u1,3 − u2,3)− α1 + α2

u1,3 − u2,3

= − (α1 − α2)u1u2 + (α2 − α3)u2u3 + (α3 − α1)u3u1
(α1 − α2)u3 + (α2 − α3)u1 + (α3 − α1)u2

Clearly the result is independent of the way in which the value at the outer
vertex is calulated!
Note, furthermore, that the value u1,2,3 no longer depends on the value u at
the “origin”. This is called the tetrahedron property.



ABS Classification

In 2002 Adler, Bobenko and Suris (ABS)1 classified all scalar quadrilateral
P∆Es of the form

Q(u,ui , uj , ui,j ;αi , αj ) = 0 ,

up to Möbius equivalence, exhibiting multidimensional consistency and subject
to the additional conditions:

a) Affine-linearity: Q is affine-linear in each argument, i.e., in each vertex
variable u,ui , uj ,ui,j ;

b) Tetrahedron property: in the cubic consistency, the evaluation of the point
on the cube given by ui,j,k is independent of u.
c) Symmetry: Q is invariant under
the group D4 of symmetries of the
square, i.e.

Q(u,ui , uj , ui,j ;αi , αj ) = 0

⇔ Q(u,uj , ui , ui,j ;αj , αi ) = 0

⇔ Q(ui , u,ui,j , uj ;αi , αj ) = 0

b b

bb

1Adler, V.E., A.I. Bobenko and Yu.B. Suris. Classification of Integrable Equations on
Quad-Graphs, the Consistency Approach. Communications in Mathematical Physics, 2003: 233,
pp.513-543.



The ABS list of quadrilateral P∆Es

(u − uij) (ui − uj ) − αi + αj = 0 (H1)

(u − uij)(ui − uj) + (αj − αi )(u + ui + uj + uij )− α2
i + α2

j = 0 (H2)

e−αi/a(uui + ujuij)− e−αj/2(uuj + uiuij) + δ(e−αi − e−αj ) = 0 (H3)

αi (u − uj )(ui − uij)− αj (u − ui )(uj − uij) + δ2αiαj (αi − αj ) = 0 (Q1)

αi (u − uj )(ui − uij)− αj (u − ui )(uj − uij)+
αiαj (αi − αj )(u + ui + uj + uij)− αiαj (αi − αj )(α

2
i − αiαj + α2

j ) = 0 (Q2)

(α2
j − α2

i )(uuij + uiuj ) + αj (α
2
i − 1)(uui + ujuij)

−αi (α
2
j − 1)(uuj + uiuij)−

δ2(α2
i −α2

j )(α
2
i −1)(α2

j −1)

4αiαj
= 0 (Q3)

sn(αi )(uui + ujuij)− sn(αj )(uuj + uiuij)− sn(αi − αj )(uuij + uiuj)+
k sn(αi) sn(αj ) sn(αi − αj ) (1 + uuiujuij ) = 0 (Q4)

In (Q4), sn is the Jacobi elliptic function sn(x |k) with modulus k .
Two further equations A1 and A2 in the list are related by point transformation
to Q1 and (Q3)δ=0.
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3-leg forms & Lagrangians
All ABS equations can be written in either of two forms:

additive : ψ(u,u1;α1)− ψ(u, u2;α2) = φ(u, u1,2;α1, α2)

multiplicative :
ψ(u,u1;α1)

ψ(u,u2;α2)
= φ(u,u1,2;α1, α2)

for some functions ψ and φ.

H1 : (u + u1)− (u + u2) =
α1 − α2

u − u12

u1

u2

u

u1,2

Q4 : φ(u, ui) = ψ(u,ui) =

(

sn(xi )− sn(x + ai)

sn(xi )− sn(x − ai)

)

Θ(x + ai )

Θ(x − ai )
,

where in the latter: u =
√
k sn(x) and αi =

√
k sn(ai)

The Lagrangian description is based on 3-leg forms, identifying 3-point
Lagrangians L (u, u1, u2;α1, α2).

u1

u2

u

u1,2
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Variational formalism: Discrete Euler-Lagrange equations
Starting from an action

S [u(n1, n2)] =
∑

n1,n2∈Z

L (u,u1, u2;α1, α2)

following the usual least-action principle, the lattice equations are those for
which S attains a minimum under local variations δu of the dependent variable.
Thus,

δS =
∑

n1,n2∈Z

{

∂

∂u
L (u, u1, u2;α1, α2)δu +

∂

∂u1
L (u, u1, u2;α1, α2)δu1

+
∂

∂u2
L (u, u1, u2;α1, α2)δu2

}

= 0

Resumming each of the terms we get:

0 =
∑

n1,n2∈Z

{

∂

∂u
L (u, u1, u2;α1, α2) +

∂

∂u
L (u−1, u, u−1,2;α1, α2)

+
∂

∂u
L (u−2, u1,−2, u;α1, α2)

}

δu

and from this the discrete Euler-Lagrange equation can be extracted:

∂

∂u

(

L (u, u1, u2;α1, α2) + L (u−1, u, u−1,2;α1, α2)

+L (u−2, u1,−2, u;α1, α2)

)

= 0
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Example: H1
The equation is

(u − u1,2)(u1 − u2)− α1 + α2 = 0

The equation in 3-leg form is

(u + u1)− (u + u2) =
α1 − α2

u − u1,2

The corresponding 3-point Lagrangian is given as2

L (u, u1, u2;α1, α2) = (u1 − u2)u − (α1 − α2) ln(u1 − u2)

The discrete Euler-Lagrange equations lead to a slightly weaker equation than
H1 itself, but equivalent to a discrete derivative of the equation:

u1 − u−2 − α1 − α2

u − u1,−2
+ u−1 − u2 − α1 − α2

u − u−1,2
= 0

2Capel, H.W., F.W. Nijhoff and V.G. Papageorgiou. Complete Integrability of Lagrangian
Mappings and Lattices of KdV Type. Physics Letters A, 1991: 155, pp.377-387.
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Closure relation and Lagrangian multiform structure

◮ MDC implies that on the same dependent variable

u = u(n1, n2, n3, . . . ;α1, α2, α3, . . . ) one can simultaneously impose a
multitude of compatible equations: P∆Es Qi,j = 0 in any pair of
independent variables ni , nj .

◮ The aim: To give a complete Lagrangian description of multidimensional
consistent (MDC) integrable systems.

◮ problem: Conventional least-action principle yields only one single
equation (per component of the dependent variable u) as EL equation,
giving the ”dynamical” equation of the system;

◮ Thus, we need a new variational approach enabling the derivation of the
multitude of equations of the MDC system.

◮ Answer: The Lagrangians will become extended objects, i.e. components
of a Lagrangian multiform.

The existence and consistency of this approach resides on the following key
observation:

Proposition: MDC systems of lattice equations, possess Lagrangians which
obey the following closure relation:

∆1L (u,u2, u3;α2, α3) + ∆2L (u, u3, u1;α3, α1) + ∆3L (u, u1, u2;α1, α2) = 0

on the solutions of the equations.
Here ∆i denotes the difference operator, i.e.. on functions f of
u = u(n1, n2, n3) we have: ∆i f (u) = f (ui)− f (u).
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Example of H1: From the explicit form of the Lagrangians we find

∆1L (u, u2, u3;α2, α3) + ∆2L (u, u3, u1;α3, α1) + ∆3L (u, u1, u2;α1, α2)

= (u1,2 − u1,3)u1 − (α2 − α3) ln(u1,2 − u1,3)− (u2 − u3)u + (α2 − α3) ln(u2 − u3)

+(u2,3 − u1,2)u2 − (α3 − α1) ln(u2,3 − u1,2)− (u3 − u1)u + (α3 − α1) ln(u3 − u1)

+(u1,3 − u2,3)u3 − (α1 − α2) ln(u1,3 − u2,3)− (u1 − u2)u + (α1 − α2) ln(u1 − u2)

Noting that the differences between the double-shifted terms has the form

u1,2 − u1,3 = − (α2 − α3)u1 + (α3 − α1)u2 + (α1 − α2)u3
(u1 − u2)(u2 − u3)(u3 − u1)

(u2 − u3)

=: A1,2,3(u2 − u3)

where A1,2,3 is invariant under permutations of the indices, the expression
reduces to

A1,2,3(u2 − u3)u1 − (α2 − α3) ln
(

A1,2,3(u2 − u3)
)

−(u2 − u3)u + (α2 − α3) ln(u2 − u3)

+A1,2,3(u3 − u1)u2 − (α3 − α1) ln
(

A1,2,3(u3 − u1)
)

−(u3 − u1)u + (α3 − α1) ln(u3 − u1)

+A1,2,3(u1 − u2)u3 − (α1 − α2) ln
(

A1,2,3(u1 − u2)
)

−(u1 − u2)u + (α1 − α2) ln(u1 − u2) = 0
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Closure relation for other cases

◮ In a similar way the cases of H2, Q1 and A1 can be verified3.

◮ The cases H1 and (Q1)δ=0 involve F (u) = ln u, the cases H2 and (Q1)δ 6=0

and A1 involve F (u) = u ln u.

◮ The cases of H3, Q3|δ=0 and A2 all involve the dilogarithm function

Li2(z) = −
∫ z

0

z
−1 ln(1− z) dz

and uses the Rogers 5-term relation (pentagon relation) for the dilogarithm:

Li2

(

x

1− y

y

1− x

)

= Li2

(

x

1− y

)

+ Li2

(

y

1− x

)

− Li2(x)− Li2(y)

− ln(1 − x) ln(1 − y)

◮ For Q2, Q3, Q4 it is more difficult to verify closure by direct computation
due to the implicit nature of those cases. Also for Q4 it requires new
functional identities for an elliptic dilogarithm function:

F (u) =
∫ u

ln(σ(x)) dx

◮ Bobenko and Suris4 showed subsequently that the closure relation holds
for all quadrilateral equations in the ABS list.

3S B Lobb and F.W. Nijhoff. Lagrangian multiforms and multidimensional consistency. Journal
of Physics A: Mathematical and Theoretical. 42 (2009) 454013.

4A I Bobenko and Yu B Suris, Lett. Math. Phys. 92 (2010) 1731.
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4A I Bobenko and Yu B Suris, Lett. Math. Phys. 92 (2010) 1731.
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Universal Lagrangian
For quadrilateral affine-linear equations for scalar dependent variable u = u(n)

Qpi ,pj (u, ui , uj , uij) = 0 , ui := u(n+ ei ) , uij := u(n+ ei + ej ) ,

possessing the symmetries of the square, let us introduce the biquadratic
functions:

QujQuij − Q Quj uij =: Kp,qhp(u, ui)

QuiQuij − Q Qui uij =: Kq,phq(u, uj )

QuQuij −Q Quuij =: −Kp,qhr(ui , uj )

where Kp,q = −Kq,p is a function of the lattice parameters p, q only. We now
introduce the Lagrangian5

L (u,ui , uj) =

∫ u

u0

∫ ui

u0
i

dx dy

hp(x , y)
−

∫ u

u0

∫ uj

u0
j

dx dy

hq(x , y)
−

∫ ui

u0
i

∫ uj

u0
j

dx dy

hr(x , y)

+

∫ ui

u0
i

dx

∫ Y (u0,x,u0ij )

u0
j

dy

hr(x , y)
+

∫ uj

u0
j

dy

∫ X (u0,y,u0ij )

u0
i

dx

hr(x , y)

where the functions X and Y are solutions of the equations

Qp,q(u
0, x ,Y , u0

ij) = 0 respectively Qp,q(u
0,X , y , u0

ij) = 0 .

5P Xenitidis, F W Nijhoff and S Lobb, On the Lagrangian formulation of multidimensionally
consistent systems, Proc. Roy. Soc. A467 (2011) 3295.



Q4 Equation

This equation, (originally due to V.Adler, 1998) reads:

Qpi ,pj = pi(u ui + ujuij)− pj(u uj + uiuij)

−pij(u uij + uiuj ) + pipjpij(1 + u uiujuij)

where pi =
√
k sn(αi ; k) , pj =

√
k sn(αj ; k) , pij =

√
k sn(αij ; k) with

αij = αi − αj .
For the biquadratics we have

hp(x , y) = p(1 + x
2
y
2)− 1

p
(x2 + y

2) + 2
P

p
xy , Kpi ,pj = −pipjpij

where p = (p,P) are points on the elliptic curve given by
P2 = p4 − (k + 1/k)p2 + 1 and k the modulus of the Jacobi elliptic function.
The double integral in the Lagrangian can be evaluated as:

∫ x1

x0

∫ y1

y0

dx dy

hp(x , y)
= −2

∫ η1

η0

dη log

(

sn(ξ1)− sn(η + α)

sn(ξ1)− sn(η − α)

sn(ξ0)− sn(η − α)

sn(ξ0)− sn(η + α)

)

,

with xi =
√
k sn(ξi ; k) , yi =

√
k sn(ηi ; k) and p =

√
k sn(α; k) .

the latter is an elliptic variant of the dilogarithm function.



Defining the action for discrete Lagrangian 2-forms
We now need the notion of a discrete Lagrangian 2-form.
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n+ei ), u(n+ej );αi , αj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by
the ordered triplet
σij (n) = (n, n+ ei , n+ ej)

n

ei

ej

Choose a surface σ in the multidimensional lattice consisting of a connected
configuration of elementary plaquettes σij(n)

Define the action to be

S [u(n);σ] =
∑

σij (n)∈σ

Lij (n)
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Surface independence

Independence of the action S under local deformations of the surface is
equivalent to the closure relation holding.

S
′ = S − L (u, ui , uj ;αi , αj ) + L (uk , ui,k , uj,k ;αi , αj ) + L (ui , ui,j , ui,k ;αj , αk)

+L (uj , uj,k , ui,j ;αk , αi )− L (u, uj , uk ;αj , αk )− L (u, uk , ui ;αk , αi )

taking into account the orientation of the plaquettes.
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Discrete variational principle for integrable lattice systems
The following is the clue to capture MDC from a variational point of view:

Discrete variational principle for integrable lattice systems: The functions
u(n) solving an integrable multidimensional lattice system on each discrete
quadrilateral surface σ are those for which the action

S [u(n);σ] =
∑

σij (n)∈σ

Lij (n)

attains an extremum under infinitesimal local deformations of the dependent
variable u(n) for any given discrete surface σ, and for which the action is
invariant under local deformations of the lattice subject to the equations of
that same lattice system of equations.

To implement this we can consider the following scheme:
◮ Start with an action functional with a given Lagrangian 2-form
◮ Imposing surface independence, deform the surface locally flat away from

the boundary, keeping the action invariant
◮ Apply on the flat surface the usual variational principle to obtaine the

Euler-Lagrange equations in all lattice directions
◮ Verify the validity of the closure relation, to determine whether the

Lagrangian is admissable.

In fact, the admissable Lagrangians should be as much considered “solutions”
of this least-action principle, as the selection of equations of the motion!
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Discussion

◮ The explicit examples seem to indicate that the relevant canonical
structure for integrable (in the sense of multidimensionally consistent)
systems is that of Lagrangian multiforms rather than scalar Lagrangians.

◮ the main motivation is to formulate a least-action principle that produces
the whole system of multidimensionally consistent equations, rather than a
single equation of the motion.

◮ This new variational principle brings in an essential way the geometry of

the independent variables!

◮ This is as much a principle which determines the admissable Lagrangians

as well as that it selects the classical trajectories of a given system!

◮ Furthermore, there is a duality between (lattice) parameters and lattice
variables each of which can play in turn the role of the independent
variables of the system.

◮ The latter reveals an interplay between compatible continuous and discrete

structures, i.e. between the lattice equations (P∆Es) and the generating
PDEs

◮ The implications for corresponding quantum problems, and the role that
Lagrangian structures could play there (in the spirit of Dirac & Feynman)
is an intriguing open problem for the future.
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