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What are abstract polytopes?

An abstract n-polytope Q is a poset having some of the key structural
properties of the face lattice of a convex n-polytope, although Q

• need not be a lattice

• need not be finite

• need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face
tessellations and many less familiar structures. But

you can safely think of a finite 3-polytope as a map on a compact surface.

Do we want details?
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The symmetry of Q

is encoded in the group Γ = Γ(Q) of all order-preserving bijections (=
automorphisms) of Q.

Each automorphism is det’d by its action on any one flag Φ; for a
polyhedron, a flag

Φ = incident [vertex, edge, facet] triple

Def. Q is regular if Γ is transitive on flags.

Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

• the usual tiling of E3 by unit cubes is an infinite regular 4-polytope

• the Platonic solids (n = 3). Look, for example, at ⇒
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Example 1. The regular dodecahedron D (facets removed)

Here Γ(D) is the Coxeter group

H3 = • 5 • 3 •

of order 120.
The flags correspond exactly to
the triangles in a barycentric
subdivision of the surface of D.
Here is part of that ⇒
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A base flag for D, adjacent flags and generators

By transitivity, pick any
base flag = Φ [white]
Then
0-adjacent flag =: Φ0 [pink]
1-adjacent flag =: Φ1 [cyan]
2-adjacent flag =: Φ2 [orange]
For i = 0, 1, 2, there is a
unique automorphism

ρi : Φ 7→ Φi .

Then Γ(D) = 〈ρ0, ρ1, ρ2〉.
Think reflections!

Barry Monson (UNB), (from projects with Egon Schulte, , Daniel Pellicer and Gordon Williams), , SODO – Queenstown, February, 2012, supported in part by the NSERC of CanadaAbstract Polytopes: Regular, Semiregular and Chiral



The convex regular polyhedra (=Platonic solids) and the
Kepler-Poinsot star-polyhedra P

Local data for both polyhedron P and its group Γ(P) reside in the Schläfli
symbol or type {p, q}.

Platonic solids: {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube),
{3, 5} (icosahedron),{5, 3} (dodecahedron)

Kepler (ca. 1619) {52 , 5} (small stellated dodecahedron),
{52 , 3} (great stellated dodecahedron)

Poinsot (ca. 1809) {5, 52} (great dodecahedron),
{3, 52} (great isosahedron)

Want to see some?
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The classical convex regular polytopes, their Schläfli
symbols and finite Coxeter groups with string diagrams

name symbol # facets (Coxeter) group order

n = 4:

simplex {3, 3, 3} 5 A4 ' S5 5!

cross-polytope {3, 3, 4} 16 B4 384

cube {4, 3, 3} 8 B4 384

24-cell {3, 4, 3} 24 F4 1152

600-cell {3, 3, 5} 600 H4 14400

120-cell {5, 3, 3} 120 H4 14400

n > 4:

simplex {3, 3, . . . , 3} n + 1 An ' Sn+1 (n + 1)!
cross-polytope {3, . . . , 3, 4} 2n Bn 2n · n!
cube {4, 3, . . . , 3} 2n Bn 2n · n!
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Regular polytopes and string C-groups

Schulte (1982) showed that the abstract regular n-polytopes P correspond
exactly to the string C-groups of rank n (which we often study in their
place).

The Correspondence Theorem.

Part 1. If P is a regular n-polytope, then Γ(P) = 〈ρ0, . . . , ρn−1〉 is a
string C-group.

Part 2. Conversely, if Γ = 〈ρ0, . . . , ρn−1〉 is a string C-group, then we can
reconstruct an n-polytope P(Γ) (in a natural way as a
coset geometry on Γ).

Furthermore, Γ(P(Γ)) ' Γ and P(Γ(P)) ' P.
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Recap: what is a string C-group?

Means: having fixed a base flag Φ in P, for 0 ≤ j ≤ n − 1 there is a
unique automorphism ρj ∈ Γ(P) mapping Φ to the j-adjacent flag Φj .
These involutions generate Γ(P) and satisfy the relations implicit in some
string (Coxeter) diagram, like

• p1 • p2 • . . . •pn−1• ,

and perhaps other relations, so long as this intersection condition
continues to hold:

〈ρk : k ∈ I 〉 ∩ 〈ρk : k ∈ J〉 = 〈ρk : k ∈ I ∩ J〉

(for all I , J ⊆ {0, . . . , n − 1}).
Notice that P then has Schläfli type {p1, . . . , pn−1}.
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Example 2. A modern look at a a classical object

(from Wikipedia)

The small stellated dodecahedron {52 , 5} is a
Euclidean realization of the map
M = {5, 5 | 3}. This quotient of the infinite
tessellation {5, 5} of H2 is determined by
specifying that ‘1st holes’ be triangular, i.e.
Γ(M) = 〈ρ0, ρ1, ρ2〉, where
ρ20 = ρ20 = ρ20 = (ρ0ρ1)5 = (ρ1ρ2)5

= (ρ0ρ2)2 = (ρ0ρ1ρ2ρ1)3 = 1.
(The ‘extra’ hole relation is red. You can see
the ’hole’, which is really an anti-hole.)

In contrast, the great icosahedron {3, 52}
is isomorphic to the convex regular
icosahedron {3, 5}.
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Abstract Semiregular Polytopes

There are already too many regular polytopes, so let’s relax the constraints
and get even more!

Definition. A polytope Q is said to be semiregular if its facets are regular
and Γ(Q) is transitive on vertices.

• the classical Archimedean solids, prisms, antiprisms

• any regular polytope

So this is a broad generalization of ‘regular’. One can generalize even
more: uniform polytopes inductively have uniform facets, again with Γ(Q)
vertex-transitive, taking polygons to be uniform to start.

Instead let’s be at least a little more restrictive ...
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Alternating Semiregular Polytopes

Definition An abstract semiregular n-polytope S is alternating if it has two
(necessarily compatible) types of regular facets, say P and Q, appearing in
alternating fashion around each (n − 3)-face.

Example 4.

The cuboctahedron is an alternating
semiregular 3-polytope. Here k = 2 each of
triangles P = {3} and squares Q = {4}
alternate around each 0-face = vertex.
Each rectangular vertex-figure is a
‘geometrically alternating’ polygon, but is
abstractly regular of course.
A truncated tetrahedron, for example, is
semiregular but not alternating.
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Thing 1 and Thing 2 – build an alternating polytope

You are given – unlimited copies of regular polyhedra P and Q
having matching facets

Your task – Start with a single P. Attach a copy of Q to each
P-facet, then a copy of P to each remaining

‘exposed’ facet of a Q, and so on in alternating
fashion with the

Edge Rule k – close up around each edge after k P’s and k Q’s.

• Can this be done?

• Is the resulting ‘complex’ S a 4–polytope?

• If so, what is the symmetry group Aut(S)?
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Example 5 (rich). Take

the regular octahedron P = {3, 4} and
the regular tetrahedron Q = {3, 3}

⇐ Assemble k = 2 of each
around each edge.
We get a familiar tessellation
S of E3.
This abstract semiregular
4-polytope therefore has a
Euclidean realization.
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Building S from Wythoff’s Construction

The (infinite) Coxeter group Γ = 〈ρ0, ρ1, ρ2, ρ3〉 of type B̃3 has diagram

4

0 1

2

3
4

ρ ρ

ρ

ρ

and acts discretely on Euclidean space E3. We get S from Wythoff’s
construction, as encoded in the modified diagram

4

Begin with vertex set = Γ-orbit of the unique point fixed by ρ1, ρ2, ρ3; etc.
see it
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Change an ingredient . . .

Keep the regular tetrahedron Q = {3, 3} but switch to the regular
hemioctahedron P = {3, 4}3:

1

23

1

2 3
This projective map P has 3 vertices,
6 edges and 4 triangular facets.

We still try to put k = 2 of each
around each edge. But now our
construction is best done using an
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Abstract Version of Wythoff’s Construction (with E.
Schulte) in which

the vertices, edges, 2-faces (= polygons) and 3-faces (=facets) of the new
S are (identified with) right cosets of certain standard subgroups of the
new group Γ generated by ρ0, ρ1, ρ2, ρ3 and having defining relations ⇓

Γ :
4

0

3

21

ρ

ρ ρ

ρ

ρ20 = ρ21 = ρ22 = ρ23 = 1

(ρ0ρ1)3 = (ρ1ρ2)3 = (ρ1ρ3)4 = 1

(ρ0ρ2)2 = (ρ0ρ3)2 = (ρ2ρ3)2 = 1

and the new projectifying relation

(ρ0ρ1ρ3)3 = 1 .

Remark. It’s not clear that S ‘survives intact’, since the new relation
could destroy polytopality.
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Abstract Version of Wythoff’s Construction (with E.
Schulte) in which

the vertices, edges, 2-faces (= polygons) and 3-faces (=facets) of the new
S are (identified with) right cosets of certain standard subgroups of the
new group Γ generated by ρ0, ρ1, ρ2, ρ3 and having defining relations ⇓
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ρ

ρ ρ

ρ
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But all is well - and we get a finite 4-polytope S!
(Example 6)

It’s true, but not obvious, that Γ is now finite. In fact,

• the ρj ’s survive as involutions

• still 〈ρ0, ρ1, ρ2〉 ' Γ(Q) (' S4) [group for tetrahedra]

• still 〈ρ0, ρ1, ρ3〉 ' Γ(P) (also ' S4)[group for hemioctahedra]

• |Γ| = 192, so there are 8 = 192/24 facets of each type; two tetrahedra
and two hemioctahedra occur alternately around each edge.

• S can’t be regular since P 6' Q. But it is alternating semiregular – all
facets are regular and Γ(S) is vertex-transitive.
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More on this new S

• The polytope S is universal for assembling tetrahedra and
hemioctahedra face-to-face, with two each alternately surrounding
any edge.

• S has a unique, minimal regular cover of Schläfli type {3, 12, 4} and
group order 213 · 32 = 73728.

• But further collapse is possible. Each vertex-figure is a
centrally-symmetric cuboctahedron. So let’s collapse these to
semiregular hemicuboctahedra by adjoining the relation

(ρ1ρ2ρ3)3 = 1

Polytopality survives this further collapse and we get the
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Example 7. The Tomotope T (w. D. Pellicer, G. Williams)

To visualize T slice out a 2× 2× 2 cube containing eight tetrahedra, a
core octahedron and three other octahedra, each split into four identical
but non-regular tetrahedra. The latter pieces fit into the twelve ‘dimples’
on the surface of the stella octangula:

1

1

1

1

1

1

2
2

4

4

3

1
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More on visualizing T

Next identify opposite square faces of the 2× 2× 2 cube in toroidal
fashion, so that the eight original vertices of the cube become one.

Finally reflect in the centre of the core octahedron and so identify
antipodal faces of all ranks. see it again

You see the 4 vertices, 4 = 8/2 tetrahedra and 1 hemioctahedron (hidden
in the core). The other three hemioctahedra are red, yellow and green, and
‘run around’ the belts of those colours.

There are 12 edges, on which Γ(T ) acts faithfully,
and 16 triangular 2-faces. The permutations

Aside: Γ(T ) ' Z4
2 o S3 has order 96 an can be obtained from the

crystallographic group B̃3 by reduction mod 2.
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The tomotope has T has a strange property

that cannot hold for maps (rank 3 polytopes). It has infinitely many
mutually non–isomorphic minimal regular covers.
There is such a finite, minimal regular cover Pp for each prime p. Each of
these 4-polytopes has type {3, 12, 4}.

Intuitively: infinitely many distinct sets of minimal assembly instructions
for T using standardized regular parts.

See The Tomotope, B. Monson, D. Dellicer, G. Williams, to appear in Ars
Mathematica Contemporanea.
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Enough with the examples - on with the Theorems

Egon Schulte and I have proved
Theorem 1. A combinatorial Wythoff’s construction works for any group
generated by involutions satisfying at least the relations suggested by

q
n−1

pn−1
p
n−2

p
1Γ : k

1
ρ

n−1
ρ

β
n−1

ρ
0

ρ
n−2

and also satisfying an intersection condition (akin to that for string
C-groups).
Note: k or various pj ’s could equal 2: no branch then.

Definition Call Γ a tail-triangle group.
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And

Theorem 2. For any two regular n-polytopes P and Q with matching (i.e.
isomorphic) facets, there exists a semiregular (n + 1)-polytope S with
infinitely many facets of type P and Q, occurring alternately around each
face of corank 2. (In this case, Γ(S) contains a certain free product with
amalgamation.)

(See Semiregular polytopes and Amalgamated C-groups,
Adv. in Math., to appear.)
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Some almost final words on monodromy ...

The structure of regular covers R of a general polytope Q has a lot to do
with the monodromy group Mon(Q).

Mon(Q) is a natural permutation group on the flag set of Q; this action
commutes with the action of automorphisms on flags.
Mon(Q) is a string group generated by involutions, nearly a string
C-group. But for the tomotope these generators fail the intersection
condition.
The fall out: covering and likely other combinatorial questions are
complicated.
See Mixing and Monodromy of Abstract Polytopes, B.M., D. Pellicer, G.
Williams, in purgatory.
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Some final words on chirality ... Example 8

In 2008, M. Conder, I. Hubard, T. Pisanski ended the long search for any
chiral polytopes P of higher rank (this meant > 4 for P finite).

We recently noticed that Mon(P) fails the intersection condition for one
of their examples. So take Γ = S6 with these generators:

σ1 = (1, 2, 3), σ2 = (1, 3, 2, 4), σ3 = (1, 5, 4, 3), σ4 = (1, 2, 3)(4, 6, 5).

Then Γ is the automorphism group of a chiral 5-polytope P, evidently with
type {3, 4, 4, 3}

But Mon(P), which has order 518400 and the same type, fails the
intersection condition. We don’t understand where this leads ...
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Some Conjectures and a Question

• Conjecture. The monodromy group for any convex polytope is a
string C-group.

Is this known? (I have some doubts it is true ...)

• Conjecture. The monodromy group for any convex polytope with
combinatorially regular facets of any type is a string C-group. (This
seems likely.)

• Conjecture. There is a finite abstract (convex?, chiral?) polytope Q
whose minimal regular covers are all infinite. (Certainly Mon(Q)
could not then be a string C-group.)

• Question Can one always assemble thing 1 and thing 2 for any finite
integer k ≥ 2?
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Many thanks to our organizers!
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Example 3.Two regular star-polyhedra (courtesy
Wikipedia)

Small stellated dodec.
{52 , 5}

Great icos. {3, 52}
' convex reg. icos.

Go Back
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The semiregular tessellation S of R3

D

go back
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The group Γ(T )

acts faithfully on edges of T , so we have this permutation representation:

ρ0 = (5, 10)(6, 9)(7, 12)(8, 11)

ρ1 = (1, 6)(2, 5)(3, 8)(4, 7)

ρ2 = (5, 9)(6, 10)(7, 11)(8, 12)

ρ3 = (5, 8)(6, 7)(9, 12)(10, 11)

Back
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The n-polytope Q
is a poset whose elements (= faces) satisfy:

• Q has a unique minimal face F−1 and maximal face Fn

• Every maximal chain or flag has n + 2 faces

so Q has a strictly monotone rank function onto {−1, 0, . . . , n}
• Q is strongly flag connected

via adjacency in the flag graph; this rules out, for example, the
disjoint union of two polyhedra

• Q satisfies the ‘diamond’ condition:

whenever F < G with rank(F ) = j − 1 and rank(G ) = j + 1 there
exist exactly two j-faces H with F < H < G

H H’

F

G

j

j+1

j−1

get back
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So when is Mon(Q) a string C-group?

Some results below may be well-known, others new:

Mon(Q) is a string C-group if

• Q is any polyhedron (d = 3, regardless of symmetry); or

• Q is regular of any rank (in which case Γ(Q) ' Mon(Q)); or

• all facets of Q are regular quotients of one particular regular facet (or
dually); or

• Q has any mixture of regular facets together with flag-transitive
vertex-figures (or dually).

• Thus: if Q is any simplicial (or simple) convex polytope, then
Mon(Q) is a string C-group.

Example. The cyclic convex 4-polytope Q on 6 vertices thereby has
a regular cover of Schläfli type {3, 3, 12}; Mon(Q) is a string C-group
of order 26 · 37.
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