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Applications

Construction of infinite families, compiling lists,
and classification of graphs with interesting symmetry properties.
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@ Given X and G, find all G-admissible covers (of a certain kind)

Extensions. Very few references.

@ Suppose G lifts along p: X = X to G.
Study the extension 1 - CT, - G — G — 1.

@ Given X and G, find all covers (of a certain kind) s. t.
G lifts in a prescribed way (eg. G = CT,, x G).

Algorithmic and complexity aspects. No references.

o Efficient algorithms? Computer implementation?
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Basic lifting lemma

Lemma 1. Let p: X — X be given by Cayley voltages ¢: X — . Then
g € Aut X lifts < there exists an automorphism g € Aut T defined by

g Cw = Cw, W en(X,b)

Note.
@ Can be tested in linear time, modulo pre-calculations

@ Denote g, : fibp, — fibgp, 1t
There is a formula that evaluates g;, at an arbitrary vertex of X

@ Finding g by a closed formula = problematic unless I is abelian

o g» = g% and g+ g is a homomorphism G — AutTl
o g can be ‘represented’ by a matrix over Z (not uniquelly)
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Let X — X be a G-admissible regular cover given by (: X — I'. Denote

gtg : fibp — ﬁbgb, 1— tg

G ={&, | g € G} algebraic transversal to CT,

Theorem 1.

e CT, — G — G is split < there exists a function t: G — T

teh = tg87"(th) ‘g#b(CQ)C;C}, Q: hb — b arbitrary.

@ There exists a canonical representation of G as I xg G.
Note.
@ Of theoretical interest, has little practical value (even if I is abelian)

@ Abelian covers: there is an algorithm using group presentations
without explicit construction of G.
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® Ri(&1,&,---,8n)(b,0) = (b,0) for all j give rise to a system of
linear equations over [ for the unknown parameters t;.

@ The extension is split < the above system has a solution.

@ All complements CT,, <+ all solutions in I'.
conjugate complements < solution differ by an inner derivation.

Note.
@ Computations can be carried out over Z. No symbolic computation.
@ Can be adapted to treat the case CT, solvable.

@ Can be used to test for the existence of normal complements.
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= G acts transitively on X and on X (via G = G).

for example Q3 — K4 Z> X 54 — S,4.

Some G has an invariant section
over a G-invariant subset Q C V

for example Q3 — K4 Z>y x Ay — Ag

Strongly split extension (over Q)
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Theorem 5. (M, Nedela, Skoviera, 2000) G lifts as a strongly split

extension over Q < X — X can be reconstructed by Cayley voltages
¢: X — T that are (1, G)-invariant on Q:

(w=1=Cuw=1, foral W:Q-Q

Note.

@ Finding the right voltage assignment is difficult !
(even for abelian covers).

@ However, for abelian covers there is an efficient algorithm.

9/13



Abelian covers: Finding a sectional complement

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

@ A potential complement (g1, 8, ... g,) with an invariant section is
uniquely determined by initial parameters g;(b,0) = (g;b, t;).

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

@ A potential complement (g1, 8, ... g,) with an invariant section is
uniquely determined by initial parameters g;(b,0) = (g;b, t;).

@ At the induction step § is potentially a part of an invariant section,
and the ‘value’ of a in (v, a) € Q is computed in terms of unknown
variables constructed so far.

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

@ A potential complement (g1, 8, ... g,) with an invariant section is
uniquely determined by initial parameters g;(b,0) = (g;b, t;).

@ At the induction step § is potentially a part of an invariant section,
and the ‘value’ of a in (v, a) € Q is computed in terms of unknown
variables constructed so far.

@ We obtain a system of equations for the parameters t;.

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

@ A potential complement (g1, 8, ... g,) with an invariant section is
uniquely determined by initial parameters g;(b,0) = (g;b, t;).

@ At the induction step § is potentially a part of an invariant section,
and the ‘value’ of a in (v, a) € Q is computed in terms of unknown
variables constructed so far.

@ We obtain a system of equations for the parameters t;.

@ Solution gives the required complement.

10 / 13



Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

@ A potential complement (g1, 8, ... g,) with an invariant section is
uniquely determined by initial parameters g;(b,0) = (g;b, t;).

@ At the induction step § is potentially a part of an invariant section,
and the ‘value’ of a in (v, a) € Q is computed in terms of unknown
variables constructed so far.

@ We obtain a system of equations for the parameters t;.

@ Solution gives the required complement.

Note.

@ Computations can be carried out over Z.
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Define
Conex(2) = X + *, where * adjacent to Q
view G acting as a stabilzer of x

Theorem 7. Let G lift along p: Y — Conex(Q2). If Z= Y\ fib, is
connected, then G along pz: Z — X splits strongly over 2. Also, any
X — X s.t. G splits strongly over Q arises in this way.

Note.

@ We can explicitly find all elementary abelian covers along which G
lifts as a strongly split extension.

@ The problem reduces to finding invariant subspaces of matrix group
linearly representing the action of G on Hi(X,Z,).
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Example — finding all elementary abelian G-split covers

Find all connceted regular Z,’;—covers of K4 such that Z, lifts as a split
extension with an invariant section.

Line Condition || Dim Voltage array
L p=-1(4) 1 [1].02],[2]. (2], o] [0]
2. 2 HEEIREINFNGED
3 3 i’%l’_li’_il’g’g
4. [ p=1(4).X5=-1 1 [1],[2].[x]. (2], [o],[o]
5. 1 [1]7[)‘0]7[71]’[7)“’]’[0]7[0]
6. 2 H]?[—l)\o ’[—11]7 )\o_’[g]?[g]
7 2] GLIAL S]] I81 18]
8~ SNINEANEVNEANENI
9. p=2 1 [1],[1]7[1],[1],[1]7[1]
10. 2 [61. 161,161,081, [1].[¢]
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