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Regular covering projection of connected graphs

A surjective mapping p : X̃ → X s.t.
fibers p−1(v) and p−1(e) = orbits of a semi-regular subgroup CTp

Construction/reconstruction
by a voltage assignment ζ : X → Γ ∼= CTp
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Motivation in AGT: Studying symmetries of graphs

Lifting automorphisms along regular covering projections

X̃
g̃−−−−→ X̃

p

y yp

X
g−−−−→ X .

Applications

Construction of infinite families, compiling lists,
and classification of graphs with interesting symmetry properties.
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Liftings in terms of voltages: Main questions

Lifting conditions. Well studied.

Given p : X̃ → X , does G lift (is the projection G -admissible)?

Given X and G , find all G -admissible covers (of a certain kind)

Extensions. Very few references.

Suppose G lifts along p : X̃ → X to G̃ .
Study the extension 1→ CTp → G̃ → G → 1.

Given X and G , find all covers (of a certain kind) s. t.
G lifts in a prescribed way (eg. G̃ ∼= CTp o G ).

Algorithmic and complexity aspects. No references.

Efficient algorithms? Computer implementation?
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Basic lifting lemma

Lemma 1. Let p : X̃ → X be given by Cayley voltages ζ : X → Γ. Then
g ∈ AutX lifts ⇔ there exists an automorphism g ]b ∈ Aut Γ defined by

g ]b : ζW 7→ ζgW , W ∈ π(X , b)

Note.

Can be tested in linear time, modulo pre-calculations

Denote ḡtg : fibb → fibgb, 1 7→ tg
There is a formula that evaluates ḡtg at an arbitrary vertex of X̃

Finding g ]b by a closed formula = problematic unless Γ is abelian

g#b = g# and g 7→ g# is a homomorphism G → Aut Γ
g ] can be ‘represented’ by a matrix over ZZ (not uniquelly)
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Split extensions 1→ CTp → G̃ → G → 1

Let X̃ → X be a G -admissible regular cover given by ζ : X → Γ. Denote

ḡtg : fibb → fibgb, 1 7→ tg

Ḡ = {ḡtg | g ∈ G} algebraic transversal to CTp

Theorem 1.

CTp → G̃ → G is split ⇔ there exists a function t : G → Γ

tgh = tgg
#b(th) · g#b(ζQ)ζ−1

gQ , Q : hb → b arbitrary.

There exists a canonical representation of G̃ as Γ oθ G .

Note.

Of theoretical interest, has little practical value (even if Γ is abelian)

Abelian covers: there is an algorithm using group presentations
without explicit construction of G̃ .
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Ḡ = {ḡtg | g ∈ G} algebraic transversal to CTp

Theorem 1.

CTp → G̃ → G is split ⇔ there exists a function t : G → Γ

tgh = tgg
#b(th) · g#b(ζQ)ζ−1

gQ , Q : hb → b arbitrary.

There exists a canonical representation of G̃ as Γ oθ G .

Note.

Of theoretical interest, has little practical value (even if Γ is abelian)

Abelian covers: there is an algorithm using group presentations
without explicit construction of G̃ .

6 / 13



Split extensions 1→ CTp → G̃ → G → 1

Let X̃ → X be a G -admissible regular cover given by ζ : X → Γ. Denote
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Ḡ = {ḡtg | g ∈ G} algebraic transversal to CTp

Theorem 1.

CTp → G̃ → G is split ⇔ there exists a function t : G → Γ

tgh = tgg
#b(th) · g#b(ζQ)ζ−1

gQ , Q : hb → b arbitrary.

There exists a canonical representation of G̃ as Γ oθ G .

Note.

Of theoretical interest, has little practical value (even if Γ is abelian)

Abelian covers: there is an algorithm using group presentations
without explicit construction of G̃ .

6 / 13



Split extensions 1→ CTp → G̃ → G → 1

Let X̃ → X be a G -admissible regular cover given by ζ : X → Γ. Denote
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Split extensions via presentations (abelian covers)

Lemma 2. Let G = 〈g1, g2, . . . , gn | R1,R2, . . . ,Rm〉. Then the extension
id→ CTp → G̃ → G → id splits⇔ some set of lifts {ḡ1, ḡ2, . . . , ḡn}
satisfies the above relations R1, . . .Rm.

Theorem 3.

Evaluate each automorphism Rj(ḡ1, ḡ2, . . . , ḡn) (b, 0) using the
evaluation formula. The yet unknown lifts ḡ1, ḡ2, . . . , ḡn uniquely
given by initial parameters t1, t2, . . . , tn.

Rj(ḡ1, ḡ2, . . . , ḡn) (b, 0) = (b, 0) for all j give rise to a system of
linear equations over Γ for the unknown parameters ti .

The extension is split ⇔ the above system has a solution.

All complements CTp ↔ all solutions in Γ.
conjugate complements ⇔ solution differ by an inner derivation.

Note.

Computations can be carried out over ZZ. No symbolic computation.

Can be adapted to treat the case CTp solvable.

Can be used to test for the existence of normal complements.
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evaluation formula. The yet unknown lifts ḡ1, ḡ2, . . . , ḡn uniquely
given by initial parameters t1, t2, . . . , tn.

Rj(ḡ1, ḡ2, . . . , ḡn) (b, 0) = (b, 0) for all j give rise to a system of
linear equations over Γ for the unknown parameters ti .

The extension is split ⇔ the above system has a solution.

All complements CTp ↔ all solutions in Γ.
conjugate complements ⇔ solution differ by an inner derivation.

Note.

Computations can be carried out over ZZ. No symbolic computation.

Can be adapted to treat the case CTp solvable.

Can be used to test for the existence of normal complements.
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Split extensions – special cases wrt the action of Ḡ

Some Ḡ acts transitively
⇒ G acts transitively on X and on X̃ (via Ḡ ∼= G ).

for example Q3 → K4 ZZ2 × S4 → S4.

Some Ḡ has an invariant section
over a G -invariant subset Ω ⊂ V

for example Q3 → K4 ZZ2 × A4 → A4

Strongly split extension (over Ω)
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Strongly split extensions over Ω

Recognition in terms of voltages

Theorem 5. (M, Nedela, Škoviera, 2000) G lifts as a strongly split
extension over Ω ⇔ X̃ → X can be reconstructed by Cayley voltages
ζ : X → Γ that are (1,G )-invariant on Ω:

ζW = 1⇒ ζgW = 1, for all W : Ω→ Ω.

Note.

Finding the right voltage assignment is difficult !
(even for abelian covers).

However, for abelian covers there is an efficient algorithm.
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Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Theorem 6.

A potential complement 〈ḡ1, ḡ2, . . . ḡn〉 with an invariant section is
uniquely determined by initial parameters ḡi (b, 0) = (gib, ti ).

At the induction step Ω̄ is potentially a part of an invariant section,
and the ‘value’ of a in (v , a) ∈ Ω̄ is computed in terms of unknown
variables constructed so far.

We obtain a system of equations for the parameters ti .

Solution gives the required complement.

Note.

Computations can be carried out over ZZ.
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Finding all covers of X s.t. G̃ strongly splits over Ω

Define
ConeX (Ω) = X + ∗, where ∗ adjacent to Ω

view G acting as a stabilzer of ∗

Theorem 7. Let G lift along p : Y → ConeX (Ω). If Z = Y \ fib∗ is
connected, then G̃ along pZ : Z → X splits strongly over Ω. Also, any
X̃ → X s.t. G̃ splits strongly over Ω arises in this way.

Note.

We can explicitly find all elementary abelian covers along which G
lifts as a strongly split extension.

The problem reduces to finding invariant subspaces of matrix group
linearly representing the action of G on H1(X ,ZZp).
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Example – finding all elementary abelian G -split covers

Find all connceted regular ZZk
p-covers of K4 such that ZZ4 lifts as a split

extension with an invariant section.

Line Condition Dim Voltage array

1. p ≡ −1 (4) 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 0 ] , [ 0 ]

2. 2 [ 11 ] ,
[

1
−1

]
,
[−1
−1

]
,
[−1

1

]
, [ 00 ] , [ 00 ]

3. 3
[
1
1
1

]
,
[

1
1
−1

]
,
[

1
−1
−1

]
,
[

1
−1
1

]
,
[
0
0
0

]
,
[
0
0
0

]
4. p ≡ 1 (4), λ20 = −1 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 0 ] , [ 0 ]
5. 1 [ 1 ] , [ λ0 ] , [ −1 ] , [ −λ0 ] , [ 0 ] , [ 0 ]
6. 2 [ 11 ] ,

[
1

−λ0

]
,
[

1
−1

]
,
[

1
λ0

]
, [ 00 ] , [ 00 ]

7. 2 [ 11 ] ,
[
λ0

−λ0

]
,
[−1
−1

]
,
[−λ0

λ0

]
, [ 00 ] , [ 00 ]

8. 3
[
1
1
1

]
,
[ 1
λ0

−λ0

]
,
[

1
−1
−1

]
,
[ 1
−λ0

λ0

]
,
[
0
0
0

]
,
[
0
0
0

]
9. p = 2 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ]

10. 2 [ 00 ] , [ 00 ] , [ 00 ] , [ 00 ] , [ 11 ] , [ 10 ]
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Thank you!

13 / 13


