On the Split Structure of Lifted groups, I

Aleksander Malnič University of Ljubljana and University of Primorska

Joint work with Rok Požar

Symmetries of Discrete Objects Queenstown, New Zealand

February 14, 2012

<ロ> (四) (四) (三) (三) (三)

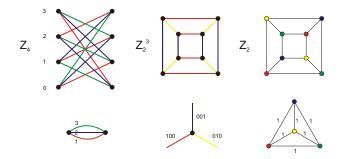
1 / 13

Regular covering projection of connected graphs

A surjective mapping $p: \tilde{X} \to X$ s.t. fibers $p^{-1}(v)$ and $p^{-1}(e) =$ orbits of a semi-regular subgroup CT_p

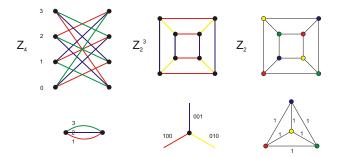
Regular covering projection of connected graphs

A surjective mapping $p: \tilde{X} \to X$ s.t. fibers $p^{-1}(v)$ and $p^{-1}(e) =$ orbits of a semi-regular subgroup CT_p



Regular covering projection of connected graphs

A surjective mapping $p \colon \tilde{X} \to X$ s.t. fibers $p^{-1}(v)$ and $p^{-1}(e) =$ orbits of a semi-regular subgroup CT_p



Construction/reconstruction by a **voltage assignment** $\zeta : X \to \Gamma \cong CT_p$

Motivation in AGT: Studying symmetries of graphs

 Motivation in AGT: Studying symmetries of graphs

Lifting automorphisms along regular covering projections

Motivation in AGT: Studying symmetries of graphs

Lifting automorphisms along regular covering projections

Applications

Construction of infinite families, compiling lists, and classification of graphs with interesting symmetry properties.

< □ > < 部 > < E > < E > E の < で 4 / 13

Lifting conditions. Well studied.

Lifting conditions. Well studied.

• Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?

Lifting conditions. Well studied.

- Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?
- Given X and G, find all G-admissible covers (of a certain kind)

Lifting conditions. Well studied.

- Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?
- Given X and G, find all G-admissible covers (of a certain kind)

Extensions. Very few references.

Lifting conditions. Well studied.

- Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?
- Given X and G, find all G-admissible covers (of a certain kind)

Extensions. Very few references.

Suppose G lifts along p: X̃ → X to G̃.
 Study the extension 1 → CT_p → G̃ → G → 1.

Lifting conditions. Well studied.

- Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?
- Given X and G, find all G-admissible covers (of a certain kind)

Extensions. Very few references.

- Suppose G lifts along p: X̃ → X to G̃.
 Study the extension 1 → CT_p → G̃ → G → 1.
- Given X and G, find **all** covers (of a certain kind) s. t. G lifts in a prescribed way (eg. $\tilde{G} \cong CT_p \rtimes G$).

Lifting conditions. Well studied.

- Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?
- Given X and G, find all G-admissible covers (of a certain kind)

Extensions. Very few references.

- Suppose G lifts along p: X̃ → X to G̃.
 Study the extension 1 → CT_p → G̃ → G → 1.
- Given X and G, find **all** covers (of a certain kind) s. t. G lifts in a prescribed way (eg. $\tilde{G} \cong CT_p \rtimes G$).

Algorithmic and complexity aspects. No references.

Lifting conditions. Well studied.

- Given $p: \tilde{X} \to X$, **does** G **lift** (is the projection G-admissible)?
- Given X and G, find all G-admissible covers (of a certain kind)

Extensions. Very few references.

- Suppose G lifts along p: X̃ → X to G̃.
 Study the extension 1 → CT_p → G̃ → G → 1.
- Given X and G, find **all** covers (of a certain kind) s. t. G lifts in a prescribed way (eg. $\tilde{G} \cong CT_p \rtimes G$).

Algorithmic and complexity aspects. No references.

• Efficient algorithms? Computer implementation?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

Note.

• Can be tested in linear time, modulo pre-calculations

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

- Can be tested in linear time, modulo pre-calculations
- Denote $\bar{g}_{t_g} : \operatorname{fib}_b \to \operatorname{fib}_{gb}, \quad 1 \mapsto t_g$ There is a **formula that evaluates** \bar{g}_{t_g} at an arbitrary vertex of \tilde{X}

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

- Can be tested in linear time, modulo pre-calculations
- Denote $\bar{g}_{t_g} : \operatorname{fib}_b \to \operatorname{fib}_{gb}, \quad 1 \mapsto t_g$ There is a **formula that evaluates** \bar{g}_{t_g} at an arbitrary vertex of \tilde{X}
- Finding g^{\sharp_b} by a closed formula = problematic unless Γ is **abelian**

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

- Can be tested in linear time, modulo pre-calculations
- Denote $\bar{g}_{t_g} : \operatorname{fib}_b \to \operatorname{fib}_{gb}, \quad 1 \mapsto t_g$ There is a **formula that evaluates** \bar{g}_{t_g} at an arbitrary vertex of \tilde{X}
- Finding g^{\sharp_b} by a closed formula = problematic unless Γ is **abelian**
 - $g^{\#_b} = g^{\#}$ and $g \mapsto g^{\#}$ is a homomorphism $G \to \operatorname{Aut} \Gamma$

Lemma 1. Let $p: \tilde{X} \to X$ be given by Cayley voltages $\zeta: X \to \Gamma$. Then $g \in \operatorname{Aut} X$ lifts \Leftrightarrow there exists an automorphism $g^{\sharp_b} \in \operatorname{Aut} \Gamma$ defined by

$$g^{\sharp_b} \colon \zeta_W \mapsto \zeta_{gW}, \quad W \in \pi(X, b)$$

Note.

- Can be tested in linear time, modulo pre-calculations
- Denote $\bar{g}_{t_g} : \operatorname{fib}_b \to \operatorname{fib}_{gb}, \quad 1 \mapsto t_g$ There is a **formula that evaluates** \bar{g}_{t_g} at an arbitrary vertex of \tilde{X}

• Finding g^{\sharp_b} by a closed formula = problematic unless Γ is **abelian**

- $g^{\#_b} = g^{\#}$ and $g \mapsto g^{\#}$ is a homomorphism $G \to \operatorname{Aut} \Gamma$
- g^{\sharp} can be 'represented' by a matrix over \mathbb{Z} (not uniquelly)

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

• $\operatorname{CT}_{p} \to \tilde{G} \to G$ is split \Leftrightarrow there **exists** a function $t: G \to \Gamma$ $t_{gh} = t_{g}g^{\#_{b}}(t_{h}) \cdot g^{\#_{b}}(\zeta_{Q})\zeta_{gQ}^{-1}, \quad Q: hb \to b$ arbitrary.

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

• $\operatorname{CT}_{p} \to \tilde{G} \to G$ is split \Leftrightarrow there **exists** a function $t: G \to \Gamma$ $t_{gh} = t_{g}g^{\#_{b}}(t_{h}) \cdot g^{\#_{b}}(\zeta_{Q})\zeta_{gQ}^{-1}, \quad Q: hb \to b$ arbitrary.

• There exists a canonical representation of \tilde{G} as $\Gamma \rtimes_{\theta} G$.

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

• $\operatorname{CT}_{p} \to \tilde{G} \to G$ is split \Leftrightarrow there **exists** a function $t \colon G \to \Gamma$

 $t_{gh} = t_g g^{\#_b}(t_h) \cdot g^{\#_b}(\zeta_Q) \zeta_{gQ}^{-1}, \quad Q \colon hb o b$ arbitrary.

• There exists a canonical representation of \tilde{G} as $\Gamma \rtimes_{\theta} G$.

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

• $\operatorname{CT}_{p} \to \tilde{G} \to G$ is split \Leftrightarrow there **exists** a function $t \colon G \to \Gamma$

$$t_{gh} = t_g g^{\#_b}(t_h) \cdot g^{\#_b}(\zeta_Q) \zeta_{gQ}^{-1}, \quad Q \colon hb \to b \text{ arbitrary.}$$

• There exists a canonical representation of \tilde{G} as $\Gamma \rtimes_{\theta} G$.

Note.

Of theoretical interest, has little practical value (even if Γ is abelian)

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

• $\operatorname{CT}_p \to \tilde{G} \to G$ is split \Leftrightarrow there **exists** a function $t \colon G \to \Gamma$

$$t_{gh} = t_g g^{\#_b}(t_h) \cdot g^{\#_b}(\zeta_Q) \zeta_{gQ}^{-1}, \quad Q \colon hb o b$$
 arbitrary.

• There exists a canonical representation of \tilde{G} as $\Gamma \rtimes_{\theta} G$.

- Of theoretical interest, has little practical value (even if Γ is abelian)
- Abelian covers: there is an algorithm using group presentations

Let $\tilde{X} \to X$ be a *G*-admissible regular cover given by $\zeta \colon X \to \Gamma$. Denote

 $ar{g}_{t_g} \colon \mathrm{fib}_b o \mathrm{fib}_{gb}, \quad 1 \mapsto t_g$ $ar{G} = \{ar{g}_{t_g} \mid g \in G\}$ algebraic transversal to CT_p

Theorem 1.

• $\operatorname{CT}_{p} \to \tilde{G} \to G$ is split \Leftrightarrow there **exists** a function $t \colon G \to \Gamma$

$$t_{gh} = t_g g^{\#_b}(t_h) \cdot g^{\#_b}(\zeta_Q) \zeta_{gQ}^{-1}, \quad Q \colon hb o b$$
 arbitrary.

• There exists a canonical representation of \tilde{G} as $\Gamma \rtimes_{\theta} G$.

- Of theoretical interest, has little practical value (even if Γ is abelian)
- Abelian covers: there is an algorithm using group presentations without explicit construction of G.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

• Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) using the evaluation formula. The yet unknown lifts g
 ₁, g
 ₂,..., g
 _n uniquely given by initial parameters t₁, t₂,..., t_n.
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.
- The extension is split \Leftrightarrow the above system has a solution.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.
- The extension is split \Leftrightarrow the above system has a solution.
- All complements CT_p ↔ all solutions in Γ.
 conjugate complements ⇔ solution differ by an inner derivation.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.
- The extension is split \Leftrightarrow the above system has a solution.
- All complements CT_p ↔ all solutions in Γ. conjugate complements ⇔ solution differ by an inner derivation.

Note.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.
- The extension is split \Leftrightarrow the above system has a solution.
- All complements CT_p ↔ all solutions in Γ.
 conjugate complements ⇔ solution differ by an inner derivation.

Note.

• Computations can be carried out over Z. No symbolic computation.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.
- The extension is split \Leftrightarrow the above system has a solution.
- All complements CT_p ↔ all solutions in Γ.
 conjugate complements ⇔ solution differ by an inner derivation.

Note.

- Computations can be carried out over Z. No symbolic computation.
- Can be adapted to treat the case CT_p solvable.

Lemma 2. Let $G = \langle g_1, g_2, \dots, g_n | R_1, R_2, \dots, R_m \rangle$. Then the extension $\mathrm{id} \to \mathrm{CT}_p \to \tilde{G} \to G \to \mathrm{id}$ splits \Leftrightarrow some set of lifts $\{\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n\}$ satisfies the above relations R_1, \dots, R_m .

Theorem 3.

- Evaluate each automorphism $R_j(\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n)(b, 0)$ using the evaluation formula. The yet unknown lifts $\bar{g}_1, \bar{g}_2, \dots, \bar{g}_n$ uniquely given by initial parameters t_1, t_2, \dots, t_n .
- R_j(g
 ₁, g
 ₂,..., g
 _n)(b, 0) = (b, 0) for all j give rise to a system of linear equations over Γ for the unknown parameters t_i.
- The extension is split \Leftrightarrow the above system has a solution.
- All complements CT_p ↔ all solutions in Γ.
 conjugate complements ⇔ solution differ by an inner derivation.

Note.

- Computations can be carried out over \mathbb{Z} . No symbolic computation.
- Can be adapted to treat the case CT_p solvable.
- Can be used to test for the existence of **normal complements**.

Split extensions – special cases wrt the action of \bar{G}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Split extensions – special cases wrt the action of \bar{G}

Some \overline{G} acts transitively \Rightarrow *G* acts transitively on *X* and on \widetilde{X} (via $\overline{G} \cong G$).

> <ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 8 / 13

Split extensions – special cases wrt the action of \overline{G}

Some \overline{G} acts transitively $\Rightarrow G$ acts transitively on X and on \widetilde{X} (via $\overline{G} \cong G$).

for example $Q_3 \to K_4$ $\mathbb{Z}_2 \times S_4 \to S_4$.

Split extensions – special cases wrt the action of \overline{G}

Some \overline{G} acts transitively $\Rightarrow G$ acts transitively on X and on \widetilde{X} (via $\overline{G} \cong G$).

for example $Q_3 \to K_4$ $\mathbb{Z}_2 \times S_4 \to S_4$.

Some \overline{G} has an invariant section over a *G*-invariant subset $\Omega \subset V$ Split extensions – special cases wrt the action of \overline{G}

Some \overline{G} acts transitively $\Rightarrow G$ acts transitively on X and on \widetilde{X} (via $\overline{G} \cong G$).

for example $Q_3 \to K_4$ $\mathbb{Z}_2 \times S_4 \to S_4$.

Some \overline{G} has an invariant section over a *G*-invariant subset $\Omega \subset V$

for example $Q_3 \to K_4$ $\mathbb{Z}_2 \times A_4 \to A_4$

(ロ) (部) (E) (E) (E) (0)

8 / 13

Some \overline{G} acts transitively $\Rightarrow G$ acts transitively on X and on \widetilde{X} (via $\overline{G} \cong G$).

for example $Q_3 \to K_4$ $\mathbb{Z}_2 \times S_4 \to S_4$.

Some \overline{G} has an invariant section over a *G*-invariant subset $\Omega \subset V$

for example $Q_3 \to K_4$ $\mathbb{Z}_2 \times A_4 \to A_4$

Strongly split extension (over Ω)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 → ♡

8 / 13

Strongly split extensions over Ω

<ロト < 部ト < 言ト < 言ト 9 / 13

Strongly split extensions over Ω

Recognition in terms of voltages

Theorem 5. (M, Nedela, Škoviera, 2000) *G* lifts as a strongly split extension over $\Omega \Leftrightarrow \tilde{X} \to X$ can be reconstructed by Cayley voltages $\zeta : X \to \Gamma$ that are (1, G)-invariant on Ω :

Theorem 5. (M, Nedela, Škoviera, 2000) *G* lifts as a strongly split extension over $\Omega \Leftrightarrow \tilde{X} \to X$ can be reconstructed by Cayley voltages $\zeta : X \to \Gamma$ that are (1, G)-invariant on Ω :

$$\zeta_W = 1 \Rightarrow \zeta_{gW} = 1, \quad \text{for all} \quad W \colon \Omega \to \Omega.$$

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

9 / 13

Theorem 5. (M, Nedela, Škoviera, 2000) *G* lifts as a strongly split extension over $\Omega \Leftrightarrow \tilde{X} \to X$ can be reconstructed by Cayley voltages $\zeta : X \to \Gamma$ that are (1, G)-invariant on Ω :

$$\zeta_W = 1 \Rightarrow \zeta_{gW} = 1, \quad \text{for all} \quad W \colon \Omega \to \Omega.$$

Note.

Theorem 5. (M, Nedela, Škoviera, 2000) *G* lifts as a strongly split extension over $\Omega \Leftrightarrow \tilde{X} \to X$ can be reconstructed by Cayley voltages $\zeta : X \to \Gamma$ that are (1, G)-invariant on Ω :

$$\zeta_W = 1 \Rightarrow \zeta_{gW} = 1, \quad \text{for all} \quad W \colon \Omega \to \Omega.$$

Note.

• Finding the right voltage assignment is difficult ! (even for abelian covers).

Theorem 5. (M, Nedela, Škoviera, 2000) *G* lifts as a strongly split extension over $\Omega \Leftrightarrow \tilde{X} \to X$ can be reconstructed by Cayley voltages $\zeta : X \to \Gamma$ that are (1, G)-invariant on Ω :

$$\zeta_W = 1 \Rightarrow \zeta_{gW} = 1, \quad \text{for all} \quad W \colon \Omega \to \Omega.$$

Note.

- Finding the right voltage assignment is difficult ! (even for abelian covers).
- However, for **abelian** covers there is an efficient algorithm.

<ロト < 部ト < 言ト < 言ト 言 の Q () 10 / 13

Adapting the algorithm for finding an orbit

Adapting the algorithm for finding an orbit

Adapting the algorithm for finding an orbit

Theorem 6.

Adapting the algorithm for finding an orbit

- At the induction step Ω
 is potentially a part of an invariant section, and the 'value' of a in (v, a) ∈ Ω
 is computed in terms of unknown variables constructed so far.

Adapting the algorithm for finding an orbit

- At the induction step Ω
 is potentially a part of an invariant section, and the 'value' of a in (v, a) ∈ Ω
 is computed in terms of unknown variables constructed so far.
- We obtain a system of equations for the parameters t_i .

Adapting the algorithm for finding an orbit

- A potential complement ⟨g
 ₁, g
 ₂,...g
 _n⟩ with an invariant section is uniquely determined by initial parameters g
 _i(b, 0) = (g_ib, t_i).
- At the induction step Ω is potentially a part of an invariant section, and the 'value' of a in (v, a) ∈ Ω is computed in terms of unknown variables constructed so far.
- We obtain a system of equations for the parameters t_i .
- Solution gives the required complement.

Adapting the algorithm for finding an orbit

Theorem 6.

- A potential complement ⟨g
 ₁, g
 ₂,...g
 _n⟩ with an invariant section is uniquely determined by initial parameters g
 _i(b, 0) = (g_ib, t_i).
- At the induction step Ω
 is potentially a part of an invariant section, and the 'value' of a in (v, a) ∈ Ω
 is computed in terms of unknown variables constructed so far.
- We obtain a system of equations for the parameters t_i .
- Solution gives the required complement.

Note.

• Computations can be carried out over \mathbb{Z} .

 $\begin{array}{l} \textbf{Define}\\ \mathrm{Cone}_X(\Omega) = X + *, \text{ where } * \text{ adjacent to } \Omega\\ \mathrm{view}\ G \text{ acting as a stabilzer of } * \end{array}$

 $\begin{array}{l} \textbf{Define}\\ \mathrm{Cone}_X(\Omega) = X + *, \text{ where } * \text{ adjacent to } \Omega\\ \mathrm{view} \ G \text{ acting as a stabilzer of } * \end{array}$

Theorem 7. Let G lift along $p: Y \to \operatorname{Cone}_X(\Omega)$. If $Z = Y \setminus \operatorname{fib}_*$ is connected, then \tilde{G} along $p_Z: Z \to X$ splits strongly over Ω . Also, any $\tilde{X} \to X$ s.t. \tilde{G} splits strongly over Ω arises in this way.

 $\begin{array}{l} \textbf{Define}\\ \mathrm{Cone}_X(\Omega) = X + *, \text{ where } * \text{ adjacent to } \Omega\\ \mathrm{view}\ G \text{ acting as a stabilzer of } * \end{array}$

Theorem 7. Let G lift along $p: Y \to \operatorname{Cone}_X(\Omega)$. If $Z = Y \setminus \operatorname{fib}_*$ is connected, then \tilde{G} along $p_Z: Z \to X$ splits strongly over Ω . Also, any $\tilde{X} \to X$ s.t. \tilde{G} splits strongly over Ω arises in this way.

・ロト ・ 一 ト ・ モト ・ モト

11 / 13

Note.

 $\begin{array}{l} \textbf{Define}\\ \mathrm{Cone}_X(\Omega) = X + *, \text{ where } * \text{ adjacent to } \Omega\\ \mathrm{view} \ G \text{ acting as a stabilzer of } * \end{array}$

Theorem 7. Let G lift along $p: Y \to \operatorname{Cone}_X(\Omega)$. If $Z = Y \setminus \operatorname{fib}_*$ is connected, then \tilde{G} along $p_Z: Z \to X$ splits strongly over Ω . Also, any $\tilde{X} \to X$ s.t. \tilde{G} splits strongly over Ω arises in this way.

Note.

• We can explicitly find all elementary abelian covers along which G lifts as a strongly split extension.

 $\begin{array}{l} \textbf{Define}\\ \mathrm{Cone}_X(\Omega) = X + *, \text{ where } * \text{ adjacent to } \Omega\\ \text{view } G \text{ acting as a stabilzer of } * \end{array}$

Theorem 7. Let G lift along $p: Y \to \operatorname{Cone}_X(\Omega)$. If $Z = Y \setminus \operatorname{fib}_*$ is connected, then \tilde{G} along $p_Z: Z \to X$ splits strongly over Ω . Also, any $\tilde{X} \to X$ s.t. \tilde{G} splits strongly over Ω arises in this way.

Note.

- We can explicitly find all elementary abelian covers along which *G* lifts as a strongly split extension.
- The problem reduces to finding invariant subspaces of matrix group linearly representing the action of G on H₁(X, ℤ_p).

Example – finding all elementary abelian G-split covers

Example – finding all elementary abelian G-split covers

Find all connceted regular \mathbb{Z}_p^k -covers of K_4 such that \mathbb{Z}_4 lifts as a split extension with an invariant section.

Line	Condition	Dim	Voltage array
1.	$p\equiv-1$ (4)	1	[1],[1],[1],[1],[0],[0]
2.		2	$\begin{bmatrix} 1\\1\end{bmatrix}, \begin{bmatrix} 1\\-1\end{bmatrix}, \begin{bmatrix} -1\\-1\end{bmatrix}, \begin{bmatrix} -1\\1\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}$
3.		3	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
4.	$p \equiv 1$ (4), $\lambda_0^2 = -1$	1	[1],[1],[1],[1],[0],[0]
5.		1	$\left[1 ight], \left[\lambda_0 ight], \left[-1 ight], \left[-\lambda_0 ight], \left[0 ight], \left[0 ight] ight]$
6.		2	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\lambda_0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ \lambda_0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
7.		2	$egin{bmatrix} 1 \ 1 \end{bmatrix}, egin{bmatrix} \lambda_0 \ -\lambda_0 \end{bmatrix}, egin{bmatrix} -1 \ -1 \end{bmatrix}, egin{bmatrix} -\lambda_0 \ \lambda_0 \end{bmatrix}, egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 0 \end{bmatrix}$
8.		3	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\\lambda_0\\-\lambda_0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-\lambda_0\\\lambda_0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
9.	p = 2	1	[1], [1], [1], [1], [1], [1], [1]
10.		2	$\begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\end{bmatrix}, \begin{bmatrix} 1\\0\end{bmatrix}$

Thank you!