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Will discuss results on orbits of G on V:

© Regular orbits
@ Number of orbits

© Arithmetic conditions on orbit sizes, applications

Corresponding affine permutation group H := VG < AGL(V),
V' = translation subgroup, G = Hj stabilizer of zero vector. Orbits
of G are suborbits of H, and H is primitive iff G is irreducible on V.
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Let G < GL,(F) = GL(V). Then G has a regular orbit on V if 3
v € V\0 such that G, = 1. Regular orbit is v® = {vg : g € G},
size |G]|.

If H= VG < AGL(V) is corresponding affine permutation group
on V, this says Hp, = 1, i.e. H has a base of size 2.

Do regular orbits exist?

Sometimes no: eg. if G = GL,(q) (where F =, finite). In
general, no regular orbit if |G| > |V]|.

Sometimes yes: eg. G = (s), s a Singer cycle in GL,(q) of order
q" — 1.
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When F is infinite:

Lemma Let G < GL,(F) = GL(V), G finite, F infinite. Then G
has a regular orbit on V.

Proof Suppose false. Then G, #1 Vv € V. So every v € V lies
in Cv(g) :={veV:vg=v}forsomege G\1, ie.

v=J ale)

geG\1

But as F is infinite, V' is not a union of finitely many proper
subspaces. Contradiction.

For F finite this argument shows 3 regular orbit if F finite and
F| > [G].
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When F = F, finite, G < GL,(q) = GL(V):

Aim (i) If |G| > |V/|, G has no regular orbit on V
(ii) If |G| < |V|, prove G has a regular orbit, with the
following exceptions....?777

Far off. Delicate:

Example 1 Let G = Sc < GL._1(p) = GL(V), where p > ¢ and
V ={(a1,...,ac) 1 ai € Fp,>_a; = 0}. Then G has regular orbits
on V. Number of regular orbits is

Sp-1(p-2)(p-c+1)

Example 2 Let G = Sc x Gy < GLc—1(p) = GL(V'), where
p=c+1, Vasabove, C; = (—1y). Then G has no regular orbits
on V.
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In general let G < GL,(q) with g varying, but fixed Brauer
character of G. There is a poly f(x) of degree n such that number
of regular orbits of G is f(q). So 3 regular orbits for all but at
most n values of gq.

Eg. G =5c < GLc—1(q), char(Fq) > n: here
f(q)=4(q—1)(g—2)---(q— c+1). Thisis a poly in g with
roots equal to the exponents of the Weyl group W(Ac._1) = S..

Same holds for all finite reflection groups in their natural
representations (Orlik-Solomon). Eg. for G = W(F4) < GL4(q),
number of regular orbits

1
wiFy (4 (@ =5)(a=7)(q—11)

Not always so nice, eg. for G = PSL,(7) < GL3(q) (of index 2 in a
unitary reflection group), f(q) = ﬁ(q —1)(q% + g — 48).
e
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General theory (Pahlings-Plesken): G < GL,(q) with g varying,
fixed Brauer character. For each subgroup H < G there is a poly
f(q) of degree dim Cy/(H) such that number of orbits of G with
stabilizer conjugate to H is fy(g). 3 methods for computing these
polys using “table of marks” of G.

Eg. here's the table of marks for As:

As/Ci | 60

As/Co |30 2

As/Cs | 20 2

As/Va |15 3 3

As/Cs |12 2

As/Ss |10 2 1 1

As/Dio |6 2 1 1

As/As |5 1 2 1 1

As/As |1 1 1 1 1 1 1 1 1
G G G Vu G S3 Dig Ay As
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Regular orbits of G < GL,(q) crop up in several areas. A couple of
examples:

1. Suppose all orbits regular, ie. G, =1Vv € V\0. Then affine
group H = VG < AGL(V) is a Frobenius group (H,,, =1 Vv, w)
and G a Frobenius complement. Classified by Zassenhaus.

Eg. SLy(5) < GLy(q) (char > 5)

Or SLo(5) ® (C,.Cs) < GLa(q) ® GL.(q) < Glar(q)
(rls—1, r,s >5)
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2. The k(GV)-problem This is

Conjecture Let G < GL,(p) = GL(V), G a p’-group. The
number of conjugacy classes k(VG) in the semidirect product VG
satisfies

k(VG) <|V]|.

Equivalent to p-soluble case of Brauer's k(B)-problem.
Equality can hold, eg. G = (Singer — cycle) = Cpn_1

Robinson-Thompson reduction: conjecture proved if we can show
that for G of “simple type” or "extraspecial type”, there exists a
regular orbit of G on V.

“Simple type": G has an irreducible normal subgroup H such that
H/Z(H) is non-abelian simple.



Last one on regular orbits



Last one on regular orbits

Theorem (Hall-L-Seitz, Goodwin, Kohler-Pahlings, Riese)

If G < GLp(p) is a p'-group of simple type, then G has a regular
orbit unless one of:

(i) Ac< G < GLc—1(p), p> ¢
(ii) 23 exceptional cases, all with n < 10, p < 61.



Last one on regular orbits

Theorem (Hall-L-Seitz, Goodwin, Kohler-Pahlings, Riese)

If G < GLp(p) is a p'-group of simple type, then G has a regular
orbit unless one of:

(i) Ac< G < GLc—1(p), p> ¢
(ii) 23 exceptional cases, all with n < 10, p < 61.

Eventually k(GV)-conjecture proved (Gluck, Magaard, Riese,
Schmidt 2004)



Last one on regular orbits

Theorem (Hall-L-Seitz, Goodwin, Kohler-Pahlings, Riese)

If G < GLp(p) is a p'-group of simple type, then G has a regular
orbit unless one of:

(i) Ac< G < GLc_1(p), p> ¢

(ii) 23 exceptional cases, all with n < 10, p < 61.

Eventually k(GV)-conjecture proved (Gluck, Magaard, Riese,
Schmidt 2004)

General classification of linear groups with /without regular orbits is
out of reach at the moment. Need substitutes......
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Let G < GL,(q) = GL(V). There are results classifying groups G
with few orbits on V\0.

One orbit G transitive on V\0. Equivalently, affine group
VG < AGL(V) is 2-transitive.

Hering’s theorem Classification of transitive linear groups
G < GLy(q):

(i) G = SLn(q), Spna(q)

(i) G > Ga(q) (n =6, q even)

(i) G <TLi(g™)

(iv) ~ 10 exceptions, all with |V| < 592 (eg.

FEQ o 5L2(5) < GL2(59)).

Two orbits 3 similar classification (L) — hence the rank 3 affine
permutation groups.

Three, four,..... orbits: can be done if desperate
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Arithmetic conditions on orbit sizes

Half-transitivity G < GL,(q) = GL(V) is 3-transitive if all orbits
of G on V\0 have equal size. (Affine group VG < AGL(V) is then
%— transitive.)

Many examples, eg.
(a) G transitive
(b) G < (s), s Singer cycle of order ¢" — 1
(c) G a Frobenius complement, eg. SL»(5) < GL2(q)
(d) G = 5(q) < GL2(q) (g odd), where

s0-(3 %0) (L 3) e

Passman 1969 The soluble %—transitive linear groups are:
Frobenius complements, subgroups of I'L1(g"), S(q), and 6
exceptions with " < 172

General case....?7?
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p-exceptional groups Say G < GL,(p) = GL(V) is p-exceptional
if p divides G and all orbits of G on V have size coprime to p.
Ties in with previous notions:

(a) G p-exceptional = G has no regular orbit on V

(b) G transitive, p||G| = G p-exceptional

(c) G 3-transitive, p||G| = G p-exceptional

3 many examples, eg. V = WX, G = H wr K where H < GL(W)
is transitive on W\0 and K < Sy has all orbits on the power set of
{1,...,k} of p’-size. (Eg. K a p’-group)

Can p-exceptional linear groups be classified?

Yes, at least the irreducible ones ((Giudici, L, Praeger, Saxl,
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( G < GLy(p) = GL(V) is p-exceptional if p divides G and all
orbits of G on V have size coprime to p.)

Theorem Let G < GLy4(p) = GL(V) be p-exceptional. Suppose
G acts irreducibly and primitively on V. Then one of:

(i) G transitive on V\0
(i) G < TLi(p")
(iii) G = Ac, Sc < GLe—e(2), c=2"—1o0r2" -2, ¢e=1o0r2
(iv) G' = SL(5) < GL4(3), orbits 1,40, 40
PSLy(11) < GLs(3), orbits 1,22,110,110
My1 < GLs(3), orbits 1,22,220
Moz < GL11(2), orbits 1,23,253,1771

Also have a classification of the imprimitive p-exceptional groups:
V = Wk, G < Hwr K where H < GL(W) is transitive on W\0
and K < Sk has all orbits on the power set of {1,..., k} of p’-size.
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Recall G %—transitive = all orbits on V\0 have same size = G is
p-exceptional. Hence

Theorem If G < GLy4(p) is %-transitive and p divides |G|, then

one of:

(i) G is transitive on V\0

(i) G < TLy(p?)

(iii) G' = SLy(5) < GL4(3), orbits 1,40, 40.
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Gluck-Wolf theorem 1984 Let p be a prime and G a finite
p-soluble group. Suppose N < G and N has an irreducible character
¢ such that x(1)/$(1) is coprime to p for all x C $©. Then G/N
has abelian Sylow p-subgroups.

This implies Brauer's height zero conjecture for p-soluble groups.

Using our classification of p-exceptional groups, Tiep and Navarro
have proved the Gluck-Wolf theorem for arbitrary finite groups G.
May lead to the complete solution of the height zero conjecture.



