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Let G ≤ GLn(F) = GL(V ), F a field, G finite.
Will discuss results on orbits of G on V :

1 Regular orbits

2 Number of orbits

3 Arithmetic conditions on orbit sizes, applications

Corresponding affine permutation group H := VG ≤ AGL(V ),
V = translation subgroup, G = H0 stabilizer of zero vector. Orbits
of G are suborbits of H, and H is primitive iff G is irreducible on V .
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Regular orbits

Let G ≤ GLn(F) = GL(V ). Then G has a regular orbit on V if ∃
v ∈ V \0 such that Gv = 1. Regular orbit is vG = {vg : g ∈ G},
size |G |.

If H = VG ≤ AGL(V ) is corresponding affine permutation group
on V , this says H0v = 1, i.e. H has a base of size 2.

Do regular orbits exist?

Sometimes no: eg. if G = GLn(q) (where F = Fq finite). In
general, no regular orbit if |G | ≥ |V |.

Sometimes yes: eg. G = �s�, s a Singer cycle in GLn(q) of order
q
n − 1.
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Regular orbits

When F is infinite:

Lemma Let G ≤ GLn(F) = GL(V ), G finite, F infinite. Then G

has a regular orbit on V .

Proof Suppose false. Then Gv �= 1 ∀v ∈ V . So every v ∈ V lies
in CV (g) := {v ∈ V : vg = v} for some g ∈ G\1, ie.

V =
�

g∈G\1

CV (g).

But as F is infinite, V is not a union of finitely many proper
subspaces. Contradiction.

For F finite this argument shows ∃ regular orbit if F finite and
|F| > |G |.
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Regular orbits

When F = Fq finite, G ≤ GLn(q) = GL(V ):

Aim (i) If |G | ≥ |V |, G has no regular orbit on V

(ii) If |G | < |V |, prove G has a regular orbit, with the
following exceptions....????

Far off. Delicate:

Example 1 Let G = Sc < GLc−1(p) = GL(V ), where p > c and
V = {(a1, . . . , ac) : ai ∈ Fp,

�
ai = 0}. Then G has regular orbits

on V . Number of regular orbits is

1

c!
(p − 1)(p − 2) · · · (p − c + 1).

Example 2 Let G = Sc × C2 < GLc−1(p) = GL(V ), where
p = c + 1, V as above, C2 = �−1V �. Then G has no regular orbits
on V .
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More on egular orbits

In general let G < GLn(q) with q varying, but fixed Brauer
character of G . There is a poly f (x) of degree n such that number
of regular orbits of G is f (q). So ∃ regular orbits for all but at
most n values of q.

Eg. G = Sc < GLc−1(q), char(Fq) > n: here
f (q) = 1

c!(q − 1)(q − 2) · · · (q − c + 1). This is a poly in q with
roots equal to the exponents of the Weyl group W (Ac−1) ∼= Sc .

Same holds for all finite reflection groups in their natural
representations (Orlik-Solomon). Eg. for G = W (F4) < GL4(q),
number of regular orbits

1

|W (F4)|
(q − 1)(q − 5)(q − 7)(q − 11).

Not always so nice, eg. for G = PSL2(7) < GL3(q) (of index 2 in a
unitary reflection group), f (q) = 1

168(q − 1)(q2 + q − 48).
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Still more on regular orbits

General theory (Pahlings-Plesken): G < GLn(q) with q varying,
fixed Brauer character. For each subgroup H < G there is a poly
fH(q) of degree dimCV (H) such that number of orbits of G with
stabilizer conjugate to H is fH(q). ∃ methods for computing these
polys using “table of marks” of G .

Eg. here’s the table of marks for A5:

A5/C1 60
A5/C2 30 2
A5/C3 20 2
A5/V4 15 3 3
A5/C5 12 2
A5/S3 10 2 1 1
A5/D10 6 2 1 1
A5/A4 5 1 2 1 1
A5/A5 1 1 1 1 1 1 1 1 1

C1 C2 C3 V4 C5 S3 D10 A4 A5
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Yet more on regular orbits

Regular orbits of G < GLn(q) crop up in several areas. A couple of
examples:

1. Suppose all orbits regular, ie. Gv = 1 ∀v ∈ V \0. Then affine
group H = VG ≤ AGL(V ) is a Frobenius group (Hvw = 1 ∀v ,w)
and G a Frobenius complement. Classified by Zassenhaus.

Eg. SL2(5) < GL2(q) (char > 5)

Or SL2(5)⊗ (Cr .Cs) < GL2(q)⊗ GLr (q) < GL2r (q)
(r |s − 1, r , s > 5)
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Yet more on regular orbits

2. The k(GV )-problem This is

Conjecture Let G < GLn(p) = GL(V ), G a p
�
-group. The

number of conjugacy classes k(VG ) in the semidirect product VG

satisfies

k(VG ) ≤ |V |.

Equivalent to p-soluble case of Brauer’s k(B)-problem.
Equality can hold, eg. G = �Singer− cycle� ∼= Cpn−1

Robinson-Thompson reduction: conjecture proved if we can show
that for G of “simple type” or ”extraspecial type”, there exists a
regular orbit of G on V .
“Simple type”: G has an irreducible normal subgroup H such that
H/Z (H) is non-abelian simple.
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Last one on regular orbits

Theorem (Hall-L-Seitz, Goodwin, Kohler-Pahlings, Riese)
If G < GLn(p) is a p

�
-group of simple type, then G has a regular

orbit unless one of:

(i) Ac � G < GLc−1(p), p > c

(ii) 23 exceptional cases, all with n ≤ 10, p ≤ 61.

Eventually k(GV )-conjecture proved (Gluck, Magaard, Riese,
Schmidt 2004)

General classification of linear groups with/without regular orbits is
out of reach at the moment. Need substitutes......
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Few orbits

Let G ≤ GLn(q) = GL(V ). There are results classifying groups G
with few orbits on V \0.

One orbit G transitive on V \0. Equivalently, affine group
VG ≤ AGL(V ) is 2-transitive.

Hering’s theorem Classification of transitive linear groups

G ≤ GLn(q):
(i) G ≥ SLn(q), Spn(q)
(ii) G ≥ G2(q) (n = 6, q even)
(iii) G ≤ ΓL1(qn)
(iv) ∼ 10 exceptions, all with |V | ≤ 592 (eg.
F∗
59 ◦ SL2(5) < GL2(59)).

Two orbits ∃ similar classification (L) – hence the rank 3 affine
permutation groups.

Three, four,..... orbits: can be done if desperate
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Arithmetic conditions on orbit sizes

Half-transitivity G ≤ GLn(q) = GL(V ) is 1
2 -transitive if all orbits

of G on V \0 have equal size. (Affine group VG ≤ AGL(V ) is then
3
2 -transitive.)

Many examples, eg.

(a) G transitive

(b) G ≤ �s�, s Singer cycle of order qn − 1

(c) G a Frobenius complement, eg. SL2(5) < GL2(q)

(d) G = S(q) < GL2(q) (q odd), where

S(q) = {
�

a 0
0 ±a

−1

�
,

�
0 a

±a
−1 0

�
: a ∈ F∗

q}

Passman 1969 The soluble 1
2 -transitive linear groups are:

Frobenius complements, subgroups of ΓL1(qn), S(q), and 6
exceptions with q

n ≤ 172.

General case....???
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Arithmetic conditions

p-exceptional groups Say G ≤ GLn(p) = GL(V ) is p-exceptional
if p divides G and all orbits of G on V have size coprime to p.

Ties in with previous notions:

(a) G p-exceptional ⇒ G has no regular orbit on V

(b) G transitive, p | |G | ⇒ G p-exceptional

(c) G 1
2 -transitive, p | |G | ⇒ G p-exceptional

∃ many examples, eg. V = W
k , G = H wr K where H ≤ GL(W )

is transitive on W \0 and K ≤ Sk has all orbits on the power set of
{1, . . . , k} of p�-size. (Eg. K a p

�-group)

Can p-exceptional linear groups be classified?

Yes, at least the irreducible ones ((Giudici, L, Praeger, Saxl,
Tiep)......
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Arithmetic conditions

( G ≤ GLn(p) = GL(V ) is p-exceptional if p divides G and all
orbits of G on V have size coprime to p.)

Theorem Let G ≤ GLd(p) = GL(V ) be p-exceptional. Suppose

G acts irreducibly and primitively on V . Then one of:

(i) G transitive on V \0
(ii) G ≤ ΓL1(pn)

(iii) G = Ac , Sc < GLc−�(2), c = 2r − 1 or 2r − 2, � = 1 or 2

(iv) G
� = SL2(5) < GL4(3), orbits 1, 40, 40

PSL2(11) < GL5(3), orbits 1, 22, 110, 110
M11 < GL5(3), orbits 1, 22, 220
M23 < GL11(2), orbits 1, 23, 253, 1771

Also have a classification of the imprimitive p-exceptional groups:
V = W

k , G ≤ H wr K where H ≤ GL(W ) is transitive on W \0
and K ≤ Sk has all orbits on the power set of {1, . . . , k} of p�-size.
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Consequences

Recall G 1
2 -transitive ⇒ all orbits on V \0 have same size ⇒ G is

p-exceptional. Hence

Theorem If G ≤ GLd(p) is
1
2 -transitive and p divides |G |, then

one of:

(i) G is transitive on V \0
(ii) G ≤ ΓL1(pd)

(iii) G
� = SL2(5) < GL4(3), orbits 1, 40, 40.
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Gluck-Wolf theorem 1984 Let p be a prime and G a finite

p-soluble group. Suppose N �G and N has an irreducible character

φ such that χ(1)/φ(1) is coprime to p for all χ ⊆ φG
. Then G/N

has abelian Sylow p-subgroups.

This implies Brauer’s height zero conjecture for p-soluble groups.

Using our classification of p-exceptional groups, Tiep and Navarro
have proved the Gluck-Wolf theorem for arbitrary finite groups G .
May lead to the complete solution of the height zero conjecture.
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