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Introductions to maps and regular maps

W - [Definition]

1. A (topological) map 9=G — § 1s a 2-cell embedding

of a graph G into a closed surface S.

&

2. For any map 91=G — §, a mutually incident vertex-edge pair
is called an arc of 9. The set of arcs of 9N 1s denoted by D(9).




3. Any orientable map =G — § can be descibed by
a pair (G,R) such that

(1) G 1s an undirected graph.
(2) R 1s a permutation of D(G) whose orbits coincide with

the sets of arcs based at the same vertex.

The permutation R 1s called rotation of 9)1.
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Topalogical map

R = (uv uw ux)(vu vx vw)(wu wv wx)(xu xw xv)

4. For two maps M, =G, = S, and M ,=G, > §,, amap
isomorphism from 9, to I, 1s a graph 1somorphism
from G, to G, which can be extended to a surface

homeomorphism from §, to S, in the embeddings.

If G, =G, =G, amap isomorphism is called a map automorphism.
The set of automorphisms of )1 is denoted by Aut(91).



5. For any map 91=G — § with an orientable surface §,

the set of orientation-preserving(orientation-reversing, resp.)

automorphism is denoted by Aut” (91) (Aut (901), resp.).

ﬁ@ [Some properties]
1. If the valency of 91 is greater than two then Aut(91)
1s a faithful subgroup of Aut(G).

2. For any map 91=G — § with an orientable surface §,
Aut” (9) acts semi-regularly on D(G), the set of arcs of G.

If the action 1s regular then we call 9t an regular map

or an regular embedding of G.

3.If M and 9 '=(G : R™") are isomorphic then M is
called reflexible. Otherwise, 901 1s called chiral.
Note that 91=G — § is reflexible iff Aut™ (901) # &.



-ive Platonic Solids

Tetrahedron Hexahedron Octahedron
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Dodecahedron lcosahedron




Cayley graphs, Cayley maps and regular
Cayley mapss

w [Definition]
1. For a group I" and a set X T such that X' = X,
a Cayley graph Cay(I": X)=(V, E) 1s a graph such that
(1) V=TI and
(2) E={{g.gx}|x € Xj}.
2.Foranygel,letL, :I" > I such that
L,(h)=ghtoranyhel. LetL. ={L,|geT}.

Note that L. < Aut(Cay(I': X)) for any
Cayley graph Cay(I' : X).



Example:
G=Cay(4,:{1,2,4,5})
0

1,5




3. For a Cayley graph G = Cay(I': X)) and cyclic permutation
p of X, a Cayley map CM(I": X, p) is a map 90 = (G, R) such that
R(g,gx)=(g,gp(x)) foranygel andx eI

Note that L. < Aut (CM (I' : X, p)) for any
Cayleymap CM (I' : X, p).

4. For a Cayleymap CM (I' : X, p) and for any x € X,
if p(x)"' = p(x") then CM (T : X, p) is called balanced
if p(x)"' = p'(x") then anti-balanced

if p(x)"' = p'(x™") then t-balanced.

p()' =p'(xH)=p'(0)' = p (x") = t* =1 (mod X )



Example:
G=Cay(Z{1,2,4,5},p=(1,2,4,5))

0
triangle : 2
5 1 hexagon : 1

12—gon:1

3 v—e+ f=6-124+4=-2

supporting surface: double torus



Automorphisms of Cayley maps

Fora Cayleymap CM (I' : X, p) withp = (x,,x,,...,Xx,_,),
letc:{0,1,...,d -1} —> {0,1,... ,d —1} be a bijection such that

-1
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"? [Example]

Cay(Z.:11,2,4,5},p=(1,2,4,5)) = c(0)=3, c(1)=2

aﬁﬂ [Definition]

For a group I', a bijection ¢ :I' — I' 1s called skew-morphism

=x,, foranyie{0,l,...,d —1}.

with power function 7z:I' — Z 1f 1t holds that
#(1.) =1 and ¢(gh)=¢(g)¢""* (h) forall g,h e T.



,ﬁ? [Lemmal]

A Cayley map CM (I : X, p) is regular < |Aut (9M), |=[X]
< 3J a skew-morphism ¢:I' = I'" such that ¢(X )= X and ¢ |, = p.

4@9 [Note]

1. For a given group I', the classification of regular maps

over I' is equivalent to classification of skew-morphisms

of I' and their orbits X such that X ' = X and I’ = (X).

2.1, =9(;) = ¢(xixc(i)) = ¢(xi)¢”(Xi)(xc(i)) = X Xe(yrz(x,)
= 7(x,)=c(i+1)-c(i) forallx, e X.

3.CM (I' : X, p):balanced = 7x(g)=1 forall geI.

4. CM (I' : X, p) :ant1 balanced (t-balanced,resp.) =
7(g)=1ifge " and 7 (g)=-1(t, resp.)ifge .



4%9 [Lemma]

Let 9t = CMT, X,p = (x,,x,,...,x,_,) ) be areflexible
Cayley map, and let w be an orientation-reversing
automorphism of 9. If y takes the arc (g, gx,) to the arc
(h,hx ), then w(gx,x,) = hxx, ;.. forallx e X.

0T Ty, h.’l‘j Lol ji4eli)—k

gz, " hx;

[Some Results]

1. Cyclic groups (11 M. Conder and T. Tucker)
2. t-balanced for dihedral, dicyclic,..(Kwak, K, R. Feng, Oh,..)



Reflexible Cayley maps on dihedral groups

g@ [Definition]

1.D ={a, b | a" = b> =(ab)’ =1 ): dihedral group of order 2n.
Let4A=(a)and B=D_ - A.

2. Let a’ be an A-type element and a'b a B-type element.

Note that a Cayley map CM (D : X, p) 1s balanced <

all elements in X are B-type element.

3. A Cayley map CM(D : X, p) is called alternating if p sends
A-type(resp. B-type) element to B-type(resp. A-type) element.



4%-9’ [Main Theorem]
Any reflexible regular Cayley map CM (D, : X, p) 1s
iIsomorphic to one of the following maps:
(In fact, all maps in the following are reflexible regular)
1. (balanced) p=(b ab a'*'b a! Tt gl T ), where
(“'+...4/4+1=0 (modn)and ¢/* =1 (mod n).

d

2. (alternating)p=(aba'a’b a> --- a° a’b) for any even n

n n
. 1 t2 3 4 3 2o
p=(aba a b a  a’'b- a a

b) for n = 8k.

3. p=(a a' b a’b),wheren=3k.

n n n

4. p=(a a' b a® a*> a? 2b), where n =8k + 4.

5. p=(a b asz a' a’h a’b), where n =4k +2.



[Sketch of proof]

Balanced Case. p=(b ab a'*'b a"*"'b --a" **"*p)
v :reflection such that w (1) =1, w(b) =b.

1 and w(b) = b.

—  :group auto s.t. w(a)=a'
Letr=/(‘"+--+/+1.Thenr’ =1and /r+1=0.

— /(=—-rand /° =1,

Other Case. p=(x, x;, x, - x,_,)
Assume that x, : 4 — type and lety be a reflection
such that w (1) =1, w(x,) = x_-

Note that for any a' € (x,), W(Cli) =a ' and v (x, )Zxc(o)_k,



1. v sends A-type(resp. B-type) to A-type(B-type).
Assume that 3 A-type element x, s.t. x_,,_, 1s B-type.
Xe(0)—k W (X, )= l//(XOXkXc(O)):XC(O)Xc(O)—kXc(O)—k+c(k)—c(O)
X)X ()= B ek Xe0)=kXoX c(k)—k *

— X -k = Xc(0)
= Jret. w, s.t. v (x))=x,, and v (x,)=X -
= , restricted to subgroup (x,,x,) 1s group auto.

= (X,) =(x,) and x_,,_, =y (x,)=x, =x_,,, a contradiction.

2. y 1s a group automorphism of D .
3. v, 1s areflection s. t. ¥, (x,)=x_,, for some A-ele. x,

= Y=y,



Let « = min{|c(k)—k| : x, 1s A-type ele. in X }.
Case 1 a=1. All possible local structures.

:
nyoon, O

p=(a a’' b a?1 a’ a? b), wheren=_8k+4.

p=(a a' b a’b), wheren =3k.

Why. Forbidden local structures.

p(a"’)=a"’ and p(a’")=a'p'(a’)
i = p '(a’')is A-type. Similarly, one can
show that all elements in X are A-type,

a contradiction.



Case 2 a=2. All possible local structures.

Alternating structures!!

p=(aba'a’b a’ -+ a a’b) for any even n

n

p=(ba'a b a’a*b- a® a b)forn =8k

Case 3 a=3. All possible local structures.

p=~(a b a5+2b a' a*h a?b),
where n =4k + 2.

Case 4 o > 4. No admissible local structure exists.



Regular Cayley maps of odd valency

,%9 [Main Theorem]

It M= CM(D,, X, p)1s aregular Cayley map of >
odd valency k, then 9t 1s balanced or
isomorphic to CM (D,, X, p=(a a ' b)).



[Sketch of proof]

1. 1. Istvan, D. Marusic and M. Muzychuk classified
regular Cayley graphs I' on D s.t. a group G of
automorphisms of I' acts regularly on arcs and A,

1s core-free 1n G.

(1)n=2,T'=K, and G = A,.

(2)n=3,1'=K,,, and G =8§,.

(3) n=4,1'=Q, and G = §S,.

(4) n=2m with odd m, I'=K | and G = (D, x D, )* («)

(X,y)* = (y,x).

(1) and (3) are odd valent.



2. Assume that 9t = CM (D, :X,p) 1s a regular non-balanced
Cayley map of odd valency such that A, 1s not core free

and 1ts order 1s possibly smallest.

— 3 C_, < G with prime q such that 9t / C_

1s 1Isomorphic to regular Cayley corresponding
to (1) and (3). = no such 9 exists.



Future work

1. Classification of regular Cayley map on dihedral group.

2. Classification of t-balanced regular Cayley map on

abelian group.

3. Classification of reflexible regular Cayley maps

on abelian groups.



Thank you!lll



