Reflexibility of regular Cayley maps on dihedral groups

Young Soo Kwon Yeungnam University, Korea February 13, 2012, Queenstown

- 1. Introduction to maps and regular maps
- 2. Introduction to Cayley graphs, Cayley maps and regular Cayley maps
- 3. Reflexible Cayley maps on dihedral groups
- 4. Some remarks

Introductions to maps and regular maps

1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph G into a closed surface S.

2. For any map $\mathfrak{M}=G\to S$, a mutually incident vertex-edge pair is called an *arc* of \mathfrak{M} . The set of arcs of \mathfrak{M} is denoted by $D(\mathfrak{M})$.

- 3. Any orientable map $\mathfrak{M}=G \to S$ can be described by a pair (G,R) such that
 - (1) G is an undirected graph.
 - (2) R is a permutation of D(G) whose orbits coincide with the sets of arcs based at the same vertex.

The permutation R is called rotation of \mathfrak{M} .

$R = (uv \ uw \ ux)(vu \ vx \ vw)(wu \ wv \ wx)(xu \ xw \ xv)$

4. For two maps $\mathfrak{M}_1 = G_1 \to S_1$ and $\mathfrak{M}_2 = G_2 \to S_2$, a *map isomorphism* from \mathfrak{M}_1 to \mathfrak{M}_2 is a graph isomorphism from G_1 to G_2 which can be extended to a surface homeomorphism from S_1 to S_2 in the embeddings.

If $G_1 = G_2 = G$, a map isomorphism is called a *map automorphism*. The set of automorphisms of \mathfrak{M} is denoted by $\operatorname{Aut}(\mathfrak{M})$. 5. For any map $\mathfrak{M}=G \to S$ with an orientable surface S, the set of orientation-preserving(orientation-reversing, resp.) automorphism is denoted by $\operatorname{Aut}^+(\mathfrak{M})$ ($\operatorname{Aut}^-(\mathfrak{M})$, resp.).

[Some properties]

- 1. If the valency of \mathfrak{M} is greater than two then $\operatorname{Aut}(\mathfrak{M})$ is a faithful subgroup of $\operatorname{Aut}(G)$.
- 2. For any map $\mathfrak{M} = G \to S$ with an orientable surface S, $\operatorname{Aut}^+(\mathfrak{M})$ acts semi-regularly on $\operatorname{D}(G)$, the set of arcs of G. If the action is regular then we call \mathfrak{M} an *regular map* or an *regular embedding* of G.
- 3. If \mathfrak{M} and $\mathfrak{M}^{-1} = (G : R^{-1})$ are isomorphic then \mathfrak{M} is called reflexible. Otherwise, \mathfrak{M} is called chiral. Note that $\mathfrak{M} = G \to S$ is reflexible iff $\operatorname{Aut}^{-}(\mathfrak{M}) \neq \emptyset$.

Five Platonic Solids

Hexahedron

Octahedron

Dodecahedron

Icosahedron

Cayley graphs, Cayley maps and regular Cayley mapss

- 1. For a group Γ and a set $X \subset \Gamma$ such that $X^{-1} = X$,
- a Cayley graph $Cay(\Gamma : X) = (V, E)$ is a graph such that
- (1) $V = \Gamma$ and
- $(2) E = \{ \{g, gx\} \mid x \in X \}.$
- 2. For any $g \in \Gamma$, let $L_g : \Gamma \to \Gamma$ such that $L_g(h) = gh$ for any $h \in \Gamma$. Let $L_{\Gamma} = \{L_g \mid g \in \Gamma\}$.

Note that $L_{\Gamma} \leq \operatorname{Aut}(Cay(\Gamma : X))$ for any Cayley graph $Cay(\Gamma : X)$.

Example:

$$G = Cay(\mathbb{Z}_{6}: \{1,2,4,5\})$$

3. For a Cayley graph $G = Cay(\Gamma : X)$ and cyclic permutation p of X, a Cayley map $CM(\Gamma : X, p)$ is a map $\mathfrak{M} = (G, R)$ such that R(g, gx) = (g, gp(x)) for any $g \in \Gamma$ and $x \in \Gamma$.

Note that $L_{\Gamma} \leq \operatorname{Aut}^{+}(CM(\Gamma : X, p))$ for any Cayley map $CM(\Gamma : X, p)$.

4. For a Cayley map $CM(\Gamma : X, p)$ and for any $x \in X$, if $p(x)^{-1} = p(x^{-1})$ then $CM(\Gamma : X, p)$ is called balanced if $p(x)^{-1} = p^{-1}(x^{-1})$ then anti-balanced if $p(x)^{-1} = p^{t}(x^{-1})$ then t-balanced.

$$p(x)^{-1} = p^t(x^{-1}) \Rightarrow p^t(x)^{-1} = p^{t^2}(x^{-1}) \Rightarrow t^2 \equiv 1 \pmod{|X|}$$

Example:

$$G = Cay(\mathbb{Z}_6: \{1,2,4,5\}, p=(1,2,4,5))$$

triangle: 2

hexagon:1

12 - gon:1

v - e + f = 6 - 12 + 4 = -2

supporting surface: double torus

Automorphisms of Cayley maps

For a Cayley map $CM(\Gamma : X, p)$ with $p = (x_0, x_1, ..., x_{d-1})$, let $c : \{0, 1, ..., d-1\} \rightarrow \{0, 1, ..., d-1\}$ be a bijection such that $x_i^{-1} = x_{c(i)}$ for any $i \in \{0, 1, ..., d-1\}$.

$$Cay(\mathbb{Z}_6:\{1,2,4,5\},p=(1,2,4,5)) \implies c(0) = 3, c(1) = 2.$$

For a group Γ , a bijection $\phi:\Gamma\to\Gamma$ is called skew-morphism with power function $\pi:\Gamma\to\mathbb{Z}$ if it holds that $\phi(1_{\Gamma})=1_{\Gamma}$ and $\phi(gh)=\phi(g)\phi^{\pi(g)}(h)$ for all $g,h\in\Gamma$.

[Lemma]

A Cayley map $CM(\Gamma: X, p)$ is regular $\Leftrightarrow |\operatorname{Aut}^+(\mathfrak{M})_{1_{\Gamma}}| = |X|$ $\Leftrightarrow \exists \text{ a skew-morphism } \phi: \Gamma \to \Gamma \text{ such that } \phi(X) = X \text{ and } \phi|_X = p.$

[Note]

- 1. For a given group Γ , the classification of regular maps over Γ is equivalent to classification of skew-morphisms of Γ and their orbits X such that $X^{-1} = X$ and $\Gamma = \langle X \rangle$.
- $2.1_{\Gamma} = \phi(1_{\Gamma}) = \phi(x_{i}x_{c(i)}) = \phi(x_{i})\phi^{\pi(x_{i})}(x_{c(i)}) = x_{i+1}x_{c(i)+\pi(x_{i})}$ $\Rightarrow \pi(x_{i}) = c(i+1) c(i) \text{ for all } x_{i} \in X.$
- 3. $CM(\Gamma: X, p): balanced \Rightarrow \pi(g)=1 \text{ for all } g \in \Gamma.$
- 4. $CM(\Gamma: X, p)$: anti balanced (t-balanced, resp.) \Rightarrow $\pi(g)=1$ if $g \in \Gamma^+$ and $\pi(g)=-1$ (t, resp.) if $g \in \Gamma^-$.

[Lemma]

Let $\mathfrak{M} = CM(\Gamma, X, p = (x_0, x_1, ..., x_{d-1}))$ be a reflexible Cayley map, and let ψ be an orientation-reversing automorphism of \mathfrak{M} . If ψ takes the arc (g, gx_i) to the arc (h, hx_i) , then $\psi(gx_ix_k) = hx_ix_{c(i)+c(i)-k}$ for all $x_k \in X$.

[Some Results]

- 1. Cyclic groups (11 M. Conder and T. Tucker)
- 2. t-balanced for dihedral, dicyclic,..(Kwak, K, R. Feng, Oh,..)

Reflexible Cayley maps on dihedral groups

[Definition]

- 1. $D_n = \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$: dihedral group of order 2n. Let $A = \langle a \rangle$ and $B = D_n - A$.
- 2. Let a^i be an A-type element and a^ib a B-type element.

Note that a Cayley map $CM(D_n: X, p)$ is balanced \Leftrightarrow all elements in X are B-type element.

3. A Cayley map $CM(D_n: X, p)$ is called alternating if p sends A-type(resp. B-type) element to B-type(resp. A-type) element.

[Main Theorem]

Any reflexible regular Cayley map $CM(D_n:X,p)$ is isomorphic to one of the following maps:

(In fact, all maps in the following are reflexible regular)

- 1. (balanced) $p = (b \ ab \ a^{\ell+1}b \ a^{\ell^2+\ell+1}b \cdots a^{\ell^{d-2}+\cdots+\ell+1}b)$, where $\ell^{d-1} + \cdots + \ell + 1 = 0 \pmod{n}$ and $\ell^2 = 1 \pmod{n}$.
- 2. (alternating) $p = (a \ b \ a^{-1} \ a^{-2}b \ a^{-3} \ \cdots \ a^3 \ a^2b)$ for any even n $p = (a \ b \ a^{-1} \ a^{-2+\frac{n}{2}}b \ a^{-3} \ a^{-4}b \cdots \ a^3 \ a^{2+\frac{n}{2}}b)$ for n = 8k.
- 3. $p = (a \ a^{-1} \ b \ a^{-2}b)$, where n = 3k.
- 4. $p = (a \ a^{-1} \ b \ a^{\frac{n}{2}-1} \ a^{\frac{n}{2}+1} \ a^{\frac{n}{2}-2}b)$, where n = 8k + 4.
- 5. $p = (a \ b \ a^{\frac{n}{2}+2}b \ a^{-1} \ a^2b \ a^{\frac{n}{2}}b)$, where n = 4k + 2.

[Sketch of proof]

Balanced Case. $p = (b \ ab \ a^{\ell+1}b \ a^{\ell^2+\ell+1}b \cdots a^{\ell^{d-2}+\cdots+\ell+1}b)$ ψ : reflection such that $\psi(1) = 1$, $\psi(b) = b$.

 $\Rightarrow \psi$: group auto s.t. $\psi(a) = a^{\ell^{d-2} + \dots + \ell + 1}$ and $\psi(b) = b$.

Let $r = \ell^{d-2} + \dots + \ell + 1$. Then $r^2 = 1$ and $\ell r + 1 = 0$.

 $\Rightarrow \ell = -r \text{ and } \ell^2 = 1.$

Other Case. $p = (x_0 \ x_1 \ x_2 \ \cdots x_{d-1})$

Assume that $x_0: A$ – type and let ψ be a reflection such that $\psi(1) = 1$, $\psi(x_0) = x_{c(0)}$.

Note that for any $a^i \in \langle x_0 \rangle$, $\psi(a^i) = a^{-i}$ and $\psi(x_k) = x_{c(0)-k}$.

1. ψ sends A-type(resp. B-type) to A-type(B-type).

Assume that \exists A-type element x_k s.t. $x_{c(0)-k}$ is B-type.

$$\begin{aligned} \mathbf{x}_{c(0)-k} &= \psi(\mathbf{x}_k) = \psi(\mathbf{x}_0 \mathbf{x}_k \mathbf{x}_{c(0)}) = \mathbf{x}_{c(0)} \mathbf{x}_{c(0)-k} \mathbf{x}_{c(0)-k+c(k)-c(0)} \\ &= \mathbf{x}_{c(0)} \mathbf{x}_{c(0)-k} \mathbf{x}_{c(k)-k} = \mathbf{x}_{c(0)-k} \mathbf{x}_0 \mathbf{x}_{c(k)-k}. \end{aligned}$$

- $\Rightarrow \mathbf{x}_{c(k)-k} = \mathbf{x}_{c(0)}.$
- $\Rightarrow \exists \text{ ref. } \psi_1 \text{ s.t. } \psi_1(x_0) = \mathbf{x}_{c(k)} \text{ and } \psi_1(x_k) = \mathbf{x}_{c(0)}.$
- $\Rightarrow \psi_1$ restricted to subgroup $\langle x_0, x_k \rangle$ is group auto.
- $\Rightarrow \langle \mathbf{x}_0 \rangle = \langle \mathbf{x}_k \rangle$ and $\mathbf{x}_{c(0)-k} = \psi(\mathbf{x}_k) = \mathbf{x}_k^{-1} = \mathbf{x}_{c(k)}$, a contradiction.
- 2. ψ is a group automorphism of D_n.
- 3. ψ_2 is a reflection s. t. $\psi_2(x_k) = x_{c(k)}$ for some A-ele. x_k

$$\Rightarrow \psi = \psi_2$$
.

Let $\alpha = \min\{|c(k) - k| : x_k \text{ is A-type ele. in } X\}.$

Case 1 $\alpha = 1$. All possible local structures.

 $p = (a \ a^{-1} \ b \ a^{-2}b)$, where n = 3k.

$$p = (a \ a^{-1} \ b \ a^{\frac{n}{2}-1} \ a^{\frac{n}{2}+1} \ a^{\frac{n}{2}-2}b)$$
, where $n = 8k + 4$.

Why. Forbidden local structures.

$$\varphi(a^{i+j})=a^{i+j}$$
 and $\varphi(a^{j+i})=a^{-j}p^{-1}(a^{i})$

 \Rightarrow p⁻¹(aⁱ) is A-type. Similarly, one can show that all elements in X are A-type, a contradiction.

Case 2 $\alpha = 2$. All possible local structures.

Alternating structures!!

$$p = (a \ b \ a^{-1} \ a^{-2}b \ a^{-3} \ \cdots \ a^3 \ a^2b)$$
 for any even n
 $p = (a \ b \ a^{-1} \ a^{-2+\frac{n}{2}}b \ a^{-3} \ a^{-4}b \cdots \ a^3 \ a^{2+\frac{n}{2}}b)$ for $n = 8k$.

Case 3 $\alpha = 3$. All possible local structures.

Case 4 $\alpha \ge 4$. No admissible local structure exists.

Regular Cayley maps of odd valency

If $\mathfrak{M} = CM(D_n, X, p)$ is a regular Cayley map of \triangleright odd valency k, then \mathfrak{M} is balanced or isomorphic to $CM(D_4, X, p = (a \ a^{-1} \ b))$.

[Sketch of proof]

- 1. I. Istvan, D. Marusic and M. Muzychuk classified regular Cayley graphs Γ on D_n s.t. a group G of automorphisms of Γ acts regularly on arcs and A_L is core-free in G.
- (1) n=2, $\Gamma = K_4$ and $G \cong A_4$.
- (2) n=3, $\Gamma = K_{2,2,2}$ and $G \cong S_4$.
- (3) n=4, $\Gamma = Q_3$ and $G \cong S_4$.
- (4) n=2m with odd m, $\Gamma = K_{n,n}$ and $G \cong (D_n \times D_n) \vee \langle \alpha \rangle$ $(x,y)^{\alpha} = (y,x).$
 - (1) and (3) are odd valent.

2. Assume that $\mathfrak{M} = CM(D_n:X,p)$ is a regular non-balanced Cayley map of odd valency such that A_L is not core free and its order is possibly smallest.

⇒ $\exists C_q \triangleleft G$ with prime q such that \mathfrak{M} / C_q is isomorphic to regular Cayley corresponding to (1) and (3). ⇒ no such \mathfrak{M} exists.

Future work

- 1. Classification of regular Cayley map on dihedral group.
- 2. Classification of t-balanced regular Cayley map on abelian group.
- 3. Classification of reflexible regular Cayley maps on abelian groups.

4.

Thank you!!!!