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Abstract

Abstract
First, we study curves in a Euclidean space of arbitrary
dimension such that the chord joining any two points on the
curve meets it at the same angle.

Next, we study hypersurfaces in a Euclidean space of arbitrary
dimension such that the chord joining any two points on the
hypersurface meets it at the same angle.

As a result, we give a complete characterization of such
curves (hypersurfaces, resp.) in Euclidean space Em with
arbitrary dimension.
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Introduction

It is well-known that a circle is characterized as a closed plane
curve such that the chord joining any two points on it meets the
curve at the same angle at the two points (cf. [8, pp. 160-162]).

From differential geometric point of view, this characteristic
property of circles can be stated as follows:

Proposition 1. Let X = X(s) be a unit speed closed curve in the
Euclidean plane E2 and T(s) = X ′(s) be its unit tangent vector
field. Then X = X(s) is a circle if and only if it satisfies the
following chord property:

(C): 〈X(t) − X(s), T(t) − T(s)〉 = 0 holds identically.
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Introduction

Actually, one can show the following:

Proposition 2. A unit speed plane curve X(s) satisfies chord
property (C) if and only if it is either a circle or a straight line.

In views of above propositions, it is natural to ask the following
question:

“Which Euclidean space curves satisfy the chord property (C)?”
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Introduction

For a sphere S2(r) in a 3-dimensional Euclidean space E3, the chord
joining any two points on it meets the sphere at the same angle at
the two points, that is, the sphere satisfies the chord property:

(D): 〈y− x,G(x) +G(y)〉 = 0 holds identically, where G denotes
the Gauss map.

Hence, it is also natural to ask the following question:

“Which hypersurfaces in an m-dimensional Euclidean space Em
satisfy the chord property (D)?”
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W-curves

A curve in a Euclidean space is called a W-curve if its Frenet
curvatures are constant. Straight lines, circles and circular helices
in E3 are the simplest examples of W-curves ([6]).

With respect to a suitable Euclidean coordinate system of Em,
every unit speed W-curve X(s) in Em can be written as follows:

X(s) = (a1 cos c1s,a1 sin c1s, · · · ,an cos cns,an sin cns, 0, . . . , 0)

or as

X(s) = (a1 cos c1s,a1 sin c1s, · · · ,an cos cns,an sin cns,bs, 0, . . . , 0)

for some distinct nonzero numbers c1, . . . , cn and a nonzero
number b.
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W-curves

First of all, we may get the following:

Theorem A. (Chen, Kim and Kim, [3]) For a unit speed curve
X(s) in Em, TFAE:

(i) X(s) satisfies chord property (C).

(ii) |X(s+ a) − X(s)| depends only on a.

(iii) 〈X(i)(s),X(j)(s) 〉, i+ j = 2, · · · , 2m, are constant.
(iv) |X(k)(s)|, k = 1, · · · ,m, are constant.

(v) X(s) is a W-curve.
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isoparametric hypersurfaces

A hypersurface in a Euclidean space is called an isoparametric
hypersurface if its principal curvatures are constant.

Planes, spheres and circular cylinders in E3 are the simplest
examples of isoparametric hypersurfaces.
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isoparametric hypersurfaces

For Euclidean hypersurfaces satisfying chord property (D), we have
the following:

Theorem B. (Kim and Kim, [5]) For a hypersurface M in
Euclidean m-space Em, the following are equivalent:

(i) M satisfies chord property (D).

(ii) For an m×m matrix A and a vector b ∈ Em, we have

G(x) = Ax+ b.

(iii) M is an isoparametric hypersurface.

(iv) M is an open part of one of the following hypersurfaces:

Em−1,Sm−1(r),Sp−1(r)× Em−p.
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Proof of Theorem A

Let X = X(s) be a unit speed smooth curve in Euclidean m-space.
Without loss of generality, we may assume that X = X(s) is defined
on an open interval I containing 0.
Suppose that the curve satisfies
chord property (C): 〈X(t) − X(s), T(t) − T(s)〉 = 0.
Then, by putting t = s+ a, we obtain

〈X(s+ a) − X(s), T(s+ a) − T(s)〉 = 0. (2.1)

It follows from equation (2.1) that

|X(s+ a) − X(s)|2 = f(a) (2.2)

for some function f = f(a). From (2.2) we find

f(−a) = |X(s− a) − X(s)|2

= |X(s− a+ a) − X(s− a)|2 = f(a),
(2.3)

which implies that f(a) is an even function.
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Proof of Theorem A

Let us consider Taylor’s expansion of f(a) about a = 0. Since f(a)
is an even function, we have

f(a) =

2m∑
k=2

cka
k +O(|a|2m+1) as a→ 0, (2.4)

for some constants c2, . . . , c2m, where O(|a|2m+1) is a function
g(a) satisfying |g(a)| 6 C|a|2m+1 for some constant C and
sufficiently small a > 0. Let us also consider Taylor’s expansion of

X(s+ a) about a = 0 which enable

X(s+ a) − X(s) =

2m−1∑
k=1

1

k!
X(k)(s)ak +O(|a|2m). (2.5)
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Proof of Theorem A

From (2.2) and (2.5) we find

f(a) =

2m∑
k=2

(
k−1∑
i=1

1

i!(k− i)!
〈X(i)(s),X(k−i)(s) 〉

)
ak +O(|a|2m+1)

(2.6)
as a→ 0.

Hence we obtain

ck =

k−1∑
i=1

1

i!(k− i)!
〈X(i)(s),X(k−i)(s) 〉 (2.7)

for k = 2, · · · , 2m.

Now, we may prove by mathematical induction that

〈X(i)(s),X(k−i)(s) 〉 is constant for i = 1, · · · ,k− 1; 2 6 k 6 2m.
(2.8)
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Proof of Theorem A

Then, we may get Theorem A. For details, see [3].

Theorem A. (Chen, Kim and Kim, [3]) For a unit speed curve
X(s) in Em, TFAE:

(i) X(s) satisfies chord property (C).

(ii) |X(s+ a) − X(s)| depends only on a.

(iii) 〈X(i)(s),X(j)(s) 〉, i+ j = 2, · · · , 2m, are constant.
(iv) |X(k)(s)|, k = 1, · · · ,m, are constant.

(v) X(s) is a W-curve.
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Proof of Theorem B

Let M be a hypersurface in a Euclidean space Em which satisfy

chord property (D): 〈y− x,G(x) +G(y)〉 = 0
or
chord property (D): 〈G(x),y〉 = 〈G(x), x〉+ 〈G(y), x〉− 〈G(y),y〉.
Without loss of generality, we may assume that M is not contained
in any hyperplane, that is, M is full in Em.
Then on M, there exist points y0,y1, · · · ,ym such that the set
{yj − y0|j = 1, 2, · · · ,m} spans the Euclidean space Em.

From chord property (D) we have for j = 1, 2, · · · ,m

〈G(x),y0〉 = 〈G(x), x〉+ 〈G(y0), x〉− 〈G(y0),y0〉 , (3.1)〈
G(x),yj

〉
= 〈G(x), x〉+

〈
G(yj), x

〉
−
〈
G(yj),yj

〉
. (3.2)
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Proof of Theorem B

By subtracting (3.1) from (3.2), we obtain〈
G(x),Aj

〉
=
〈
Bj, x

〉
+ cj, j = 1, 2, · · · ,m, (3.3)

where we put

Aj = yj − y0,Bj = G(yj) −G(y0), cj = 〈G(y0),y0〉−
〈
G(yj),yj

〉
for j = 1, 2, · · · ,m.
Hence we may prove the following:

Lemma 3.1. For an m×m matrix A and a vector b ∈ Em we
have G(x) = Ax+ b.
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Proof of Theorem B

By differentiating G covariantly with respect to a tangent vector X
to M, it follows from Lemma 3.1 that

AX = −S(X),X ∈ TxM, (3.4)

where S denotes the shape operator. Choose an orthonormal frame
E1, · · · ,Em−1 such that E1, · · · ,Em−1 are eigenvectors of S with
eigenvalues µ1, · · · ,µm−1. Then from (3.4), for all x ∈M we have

AEj(x) = −µj(x)Ej(x), j = 1, 2, · · · ,m− 1. (3.5)

Since A is a constant matrix and the set of eigenvalues of a matrix
is discrete, the principal curvatures µ1, · · · ,µm−1 are all constant,
that is, M is an isoparametric hypersurface ([4]). Hence it follows
from a well-known theorem([7, 9]) that M is an open part of either
a sphere Sm−1(r) or a generalized cylinder Sp−1(r)× Em−p .
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Proof of Theorem B

Here, we give an elementary proof. Since S is self-adjoint and
{X ∈ TxM|x ∈M} spans Em, (3.4) shows that A is symmetric.

For the function f : Em → R defined by f(x) = 〈Ax+ b,Ax+ b〉, it
follows from Lemma 3.1 that M ⊂ f−1(1) because G(x) is a unit
vector field.

This shows that the gradient vector ∇f(x) = 2A(Ax+ b) is
proportional to G(x). Hence for some function λ(x) we have

A(Ax+ b) = λ(x)(Ax+ b), x ∈M. (3.6)

Since the eigenvalues of a matrix form a discrete set, λ(x) must be
a constant. It follows from (3.6) that V = Span{Ax+ b|x ∈M} is
contained in an eigenspace of A corresponding to eigenvalue λ.
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Proof of Theorem B

From the assumption that M is not contained in any hyperplane,
as in the proof of Lemma 3.1 we see that

ImA = Span{AAj|j = 1, 2, · · · ,m} ⊂ V. (3.7)

It follows from (3.6) that

(A2 − λA)x = −Ab+ λb, x ∈M. (3.8)

Hence we have

(A2 − λA)Aj = 0, j = 1, 2, · · · ,m, (3.9)

which shows
A2 − λA = 0. (3.10)
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Proof of Theorem B

Suppose that λ = 0. Then (3.10) shows that A2 = 0. Since A is
symmetric, A must vanish. Together with Lemma 3.1, this shows
that M is an open part of an hyperplane Em−1.

This contradiction implies that λ 6= 0. Together with (3.10), (3.8)
shows that b = 1

λAb ∈ ImA. Hence (3.7) implies V = ImA.

Let’s denote λ = ±1
r with r > 0. Then we have A|V = ±1

r I. We
may prove Theorem B according to the dimension of V. For
details, see [5].
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Proof of Theorem B

Hence for Euclidean hypersurfaces satisfying chord property (D),
we have the following:

Theorem B. (Kim and Kim, [5]) For a hypersurface M in
Euclidean m-space Em, the following are equivalent:

(i) M satisfies chord property (D).

(ii) For an m×m matrix A and a vector b ∈ Em, we have

G(x) = Ax+ b.

(iii) M is an isoparametric hypersurface.

(iv) M is an open part of one of the following hypersurfaces:

Em−1,Sm−1(r),Sp−1(r)× Em−p.
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Thank You!
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