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Aims :

- symmetric polytopes, providing “periodic” tesselations

- discrete group actions of small (minimal) covolume or
top down ranking w.r.t. symmetry degree

- describe related combinatorial and number theoretical features



Hyperbolic polyhedral geometry

Hyperbolic space in the Lorentz-Minkowski space :

Rn,1 = (Rn+1, < x, y >= x1y1 + · · ·+ xnyn − xn+1yn+1 )

Hn = {x ∈ Rn,1 | |x|2 =< x, x >= −1 , xn+1 > 0}

Geodesic k-planes U in Hn (1 ≤ k ≤ n− 1):

U = V k+1 ∩Hn

H = V n ∩Hn = e⊥ for e ∈ Rn,1 , |e| = 1 with

H− := {x ∈ Hn |< x, e >≤ 0}

Isom(Hn) ∼= PO0(n,1) = {A ∈ GL(n+1;R) | AJAt = In+1 , [A]n+1 > 0}

J =
(

In 0
0 −1

)
; every A ∈ Isom(Hn) is a finite composition of

reflections w.r.t. hyperplanes H



Convex polytopes in hyperbolic space

Convex polytope in Hn : P = ∩i∈IH
−
i , Hi = e⊥i , | ei |= 1,with

Gram matrix G(P ) = (< ei, ej >)

− < ei, ej >=
{

cosαij, ∠(Hi, Hj) = αij

cosh lij, dist(Hi, Hj) = lij

• Vinberg’s realisation criterion

Given an indecomposable symmetric matrix G = (gij) of signa-
ture (n,1) with diagonal entries equal to 1 and gij ≤ 0 otherwise.
Then, there is an acute-angled convex polytope P ⊂ Hn with
G(P ) = G; it is unique up to an isometry

• combinatorial and metrical structure of P

Information about the face complex, the number of ideal and
ultra-ideal vertices, compactness, finite volume for an acute-
angled polytope P is given by G(P ) and the types of its sub-
matrices GJ

E.g. P compact simplex if G has order n + 1, signature (n,1)
and each principal submatrix GJ is positive definite

• Fundamental polytopes for discrete groups in Isom(Hn)

Of special interest are

◦ Polytopes with dihedral angles satisfying Poincaré’s poly-
hedron theorem and giving rise to discrete groups (difficult to
construct ...)

◦ Polytopes with dihedral angles π/k for integers k ≥ 2: They
are acute-angled and fundamental polytopes for groups gener-
ated by reflections w.r.t. finitely many hyperplanes

−→ Coxeter polytopes and Coxeter groups



Coxeter graphs and Coxeter polytopes

A geometric Coxeter graph Σ is a weighted graph of the form

◦ · · ·

◦

∣∣◦—r
——◦–––— ◦–––— ◦–––— ◦

◦

◦
\
/

giving rise to a non-Euclidean Coxeter n-polytope if the associ-
ated symmetric Gram matrix is positive definite or of signature
(n,1)

◦ hyperplane H (or mirror)

◦−−
i

r
◦
k

∠(Hi, Hk) = π
r

for 2 < r ≤ ∞

◦−−◦ ∠(Hi, Hk) = π
3

◦ ◦ Hi ⊥ Hk

◦ · · · · ·
( l )

◦ distH(Hi, Hk) = l

Important and simplest examples

• Linear graphs of order n+1 are Coxeter orthoschemes in Xn
K

for K = +1 : An, Bn, Dn, E6, E7, E8, H3, H4, G2
p finite (spherical)

for K = −1 : Gram(Σ) of signature (n,1)

• The graph with 7 nodes realises a truncated simplex in H5

◦−−
r
◦−− ◦−− ◦−− ◦−− ◦ · · · ◦ , r = 4,5



Cocompact hyperbolic Coxeter orthoschemes

n=2 :

◦–p––◦–q–◦ ,
1

p
+

1

q
<

1

2

n=3 :

◦–––◦–5––◦–––◦ ◦–4––◦–––◦–5–◦ ◦–5––◦–––◦–5–◦

n=4 :

◦–––◦–––◦–––◦–5–◦

◦–4––◦–––◦–––◦–5–◦ ◦–5––◦–––◦–––◦–5–◦



Vinberg’s arithmeticity criterion

Let G = (gij) be the Gram matrix of a cofinite hyperbolic Cox-
eter group Γ (and its fundamental polytope P ) in Hn.

Let F be the field generated by all cycles gi1i2gi2i3 · · · gik−1ikgiki1 ,

and let F̃ be the field generated by all entries of G.

The group Γ is arithmetic (and defined over F ) if and only if

(1) F̃ is totally real

(2) for any embedding σ : F̃ → R with σ|F 6= id :

the matrix Gσ := (gσ
ij) is positive semi-definite

(3) the cyclic products of the matrix 2G are integers of F .

Remarks.

• Condition (2) is equivalent to

(2)’ all principal minors (being elements in F ) are non-negative;

(2)” for any non-trivial embedding σ : F → R :

the matrix Gσ = (gσ
ij) has non-negative principal minors ;

in this case, condition (1) is automatically verified;

• Condition (3) holds trivially if the Coxeter graph of Γ con-
tains no dotted edges. In fact, the non-diagonal entries are then
related to algebraic numbers of the form 2 cosπ/r .

• If the polytope P is non-compact but of finite volume,
then the arithmeticity of Γ (over the field Q) is equivalent to the
condition that

all cyclic products of the matrix 2G are rational integers



Discrete groups acting cocompactly with minimal
hyperbolic covolume

n=2 :

The triangle Coxeter group ◦–––◦–7–◦ realising the (unique) dis-
crete group acting with minimal coarea π/42 on H2; it is arith-
metic (Siegel, 1945)

Recall: For an oriented compact Riemannian surface Sg = H2/Γ
with fundamental domain P for Γ:

vol(Sg) = 4π(g − 1)

For the hyperbolic 2-orbifold Q = Sg/Aut(Sg) :

ord(Aut(Sg) =
vol(Sg)

vol(P )
≤

4π(g − 1)

π/21
= 84(g−1) (Hurwitz, 1893)

Bound is sharp for Klein’s quartic given by x3y + y3z + z3x = 0
of genus 3



n=3 :

Look for polyhedra inducing tesselations of H3 and being of sim-
ple combinatorial type with “large” dihedral angles

Check e.g. all cocompact hyperbolic Coxeter groups with few
generators and small weights...

• Candidate is the (arithmetic) Coxeter group

◦–5––◦–––◦–4––◦ of covolume ' 0.03589

associated to a right-angled regular dodecahedron {5,3}

• T. Chinburg-E. Friedmann, 1986 :

1
2
vol3(◦–––◦–

5
––◦–––◦) ' 0.0195 = 1

2
0.03905

realises the minimal volume of all arithmetic hyperbolic 3-orbifolds

• F. Gehring-G. Martin announced a result that this value is
in fact minimal for ALL hyperbolic 3-orbifolds of finite volume

Part I of the proof is published in Ann. Math., 2009; Part II ?



n=4 :

The hyperbolic 120-cell {5,3,3} with symmetry group generated

by the (arithmetic) Coxeter group Γ : ◦–5––◦–––◦–––◦–––◦

Passing to its rotational subgroup Γ
′
, the space H4/Γ

′
is an ori-

ented compact arithmetic 4-orbifold. Now :

Theorem (M. Belolipetsky, 2004)

Let n > 2 even. Among all orientable compact arithmetic n-
orbifolds there is precisely one of minimal volume; it is defined
over Q(

√
5) . For n = 4 this is Γ

′
which has covolume π2/5400



Minimal volume of arithmetic hyperbolic orbifolds

- the case of odd dimensions ≥ 5 -

Let Γ < PO0(n,1) be discrete and arithmetical w.r.t. the number
field k with quotient space Q = Hn/Γ.

Theorem (V. Emery, Ph.D. 2009, Fribourg)

For n = 2r-1 ≥ 5, a orientable compact arithmetic hyperbolic
n-orbifold Qn

0 of minimal volume is defined over k0 = Q(
√

5) and
of volume

voln(Q
n
0) =

5r2−r/2 · 11r−1/2 · (r − 1)!

22r−1πr
L`0/k0

(r)

r−1∏
i=1

(2i− 1)!2

(2π)4i
ζk0(2i),

where `0 is the quartic field with a defining polynomial x4− x3 +
2x − 1 (and of discriminant −275), and where ζk0 denotes the
Dedekind zeta function and L`0/k0

= ζl0/ζk0 is the L-function cor-
responding to the quadratic extension `0/k0

◦ This theorem completes Belolipetsky’s results for all n ≥ 4

◦ Together with Belolipetsky, Emery proved the unicity of the

minimal volume orbifold Qn
0 !

Consider the first interesting case Q5
0 in odd dimensions



Geometric identification of Q5
0

Theorem (V. Emery–K, 2012)

The orientable double cover of the quotient space of H5 by the
Coxeter 5-prism group

Γ∗ : ◦–5––◦–––◦–––◦–––◦–––◦ · · · ◦
is the (unique) orientable compact arithmetic hyperbolic 5-orbifold
Q5

0 of minimal volume

Idea of proof :

(I) By the result of Emery,

(?) vol5(Q
5
0) =

9
√

515
√

115

214π15
ζk0(2)ζk0(4)L`0/k0

(3)

∼= 0.001534719168635618646691803724

(II) By the unicity statement in Emery’s theorem, we need only
to compute the covolume of the Coxeter 5-prism

Γ∗ : ◦–5––◦–––◦–––◦–––◦–––◦ · · · ◦

which is a simply truncated Coxeter orthoscheme (one ultra-
ideal vertex, cut away by its polar hyperplane). It can be seen as
characteristic polytope of the 5-dimensional (truncated) cousin
of the 120-cell {5,3,3}

 a quick excursion into the realm of

hyperbolic simplex volume formulae



Hyperbolic volume in 3 dimensions

Formula of Lobachevsky

For an orthoscheme R ⊂ H3 as given by a weighted linear graph
of length 4,

vol3(R) =
1

4

{
JI−2(α + θ)− JI−2(α− θ) + JI−2(

π

2
+ β − θ)+

+JI−2(
π

2
− β − θ) + JI−2(γ + θ)− JI−2(γ + θ)

}
,

0 ≤ θ = arctan

(
cos2 β − sin2 α sin2 γ

)1/2

cosα cos γ
≤

π

2

JI−2(x) = −
∫ x

o

log |2 sin t| dt = −
∫ x

o

log |1− exp(2it)| dt

=
1

2

∞∑
k=1

sin(2kx)

k2
=

1

2
ImLi2(e

2ix)

Lobachevsky’s function

Example :

vol3(◦–
6
––◦–––◦–––◦) =

1

8
JI−(

π

3
) ' 0.042289



Hyperbolic volume in 5 dimensions

Theorem (K, 1992) For a 5-orthoscheme R∞

◦–α––◦–β––◦–γ––◦–α––◦–β––◦

with cos2 α + cos2 β + cos γ2 = 1 , the volume is given by

vol5(R∞) =
1

4
{JI−3(α) + JI−3(β)−

1

2
JI−3(

π

2
− γ)}−

−
1

16
{JI−3(

π

2
+ α + β) + JI−3(

π

2
− α + β)}+

3

64
ζ(3)

with JI−3(x) = 1
4

ζ(3)−
∫ x

0
JI−2(t)dt = 1

4

∞∑
k=1

cos(2kx)
k3 = 1

4
ReLi3(e2ix)

Examples :

vol5( ◦–––◦–
4
––◦–––◦–––◦–4–◦) = 7 ζ(3)

4608

v1 = vol5( ◦–––◦–
5
––◦–5/2

——◦–––◦–5–◦ ) = 1
144

{ JI−3(
π
5
) + ζ(3)

5
}

v2 = vol5( ◦–
5/2
——◦–5––◦–––◦–5/2

——◦–5–◦ ) = ζ(3)
1200

v3 = vol5( ◦–
5/2
——◦–––◦–5––◦–5/2

——◦–5–◦ ) = 1
144

{−JI−3(
π
5
) + 2 ζ(3)

25
}

Observe : All these polytopes are non-compact !



By using scissors congruence methods
(cutting, moving, pasting...)

vol5( ◦–––◦–
4
––◦–––◦–––◦–––◦ ) = 7 ζ(3)

46080

u1 = vol5( ◦–
5/2
——◦–5––◦–5/2

——◦–5––◦–5/2
——◦ ) = 1

96
JI−3(

π
5
)

u2 = vol5( ◦–
5
––◦–5/2

——◦–5––◦–5/2
——◦–5–◦ ) = 1

96
JI−3(

π
5
) + ζ(3)

800

w = vol5( ◦–
5
––◦–––◦–––◦–––◦–5/2

—— ◦ · · · ◦ )

= 1
20
{3v1 − 2v2 + 3v3} − 1

12
{u1 − u2} = ζ(3)

3200

On-going work

We are trying to express the covolume of the Coxeter group

Γ∗ : ◦–5––◦–––◦–––◦–––◦––– ◦ · · · ◦

by scissors congruences in a way as above for w being the covol-

ume of ◦–5––◦–––◦–––◦–––◦–5/2
—— ◦ · · · ◦

This is not at all easy.....



Numerical computation

Use Schläfli’s volume differential formula in the hyperbolic
case :

d voln =
1

1− n

∑
F

voln−2(F ) dαF

Together with Lobachevsky’s formula, it allows to deduce the
simple integral expression

vol5(◦–
5
––◦–––◦–––◦–––◦–––◦ · · · ◦) =

=
1

16

α0∫
π/5

{
JI−2(β(t) + θ(t))− JI−2(β(t)− θ(t))+

+JI−2(
π
6
− θ(t))− JI−2(

π
6
+ θ(t))+

+JI−2(
π
3
+ θ(t))− JI−2(

π
3
− θ(t)) + 2JI−2(

π
2
− θ(t))

}
dt

' 0.0007673595843178093233459018621 ,

where

α0 = 1
2
arccos 1

5

β(x) = arccos sinx√
4 sin2 x−1

θ(x) = arctan
√

1− 2 tan2 β(x) .

The index two subgroup Γ0 of orientation preserving isometries

of ◦–5––◦–––◦–––◦–––◦–––◦ · · · ◦ has also the numerical covolume

(?) ∼= 0.001534719168635618646691803724



The three smallest compact arithmetic 5-orbifolds

(III) By the same method (based on Prasad’s volume formula),
Emery computed the second and third smallest volumes of ori-
ented compact arithmetic 5-orbifolds

Group Hyperbolic covolume

Γ0 0.00153459236. . . (?)
Γ1 0.00306918472. . .
Γ2 0.00396939286. . .

Consequences :

(a) The orientation preserving subgroup Γ0 in the Coxeter group

Γ∗ : ◦–5––◦–––◦–––◦–––◦–––◦ · · · ◦ has minimal covolume �

(b) By arithmetic considerations : [Γ0 : Γ1] = 2

Geometrically : A fundamental polytope for the reflection sub-
group in Γ1 arises by doubling along the Coxeter face simplex with

graph ◦–5––◦–––◦–––◦–––◦ which is orthogonal to all neighboring
facets

(c) Similarly to (a), for the arithmetic volume

vol3(H3/Γ2) =
9
√

515

23π15
ζk0(2)ζk0(4)L`2/k0

(3) ∼= 0.00396939286

where `2 = Q(
√

ω) ∼= Q[x]/(x4 − x2 − 1) , ω = 1+
√

5
2

:

the value equals (numerically) twice the volume of the truncated
Coxeter 5-prism

◦–5––◦–––◦–––◦–––◦–4–– ◦ · · · ◦



Arithmetic proof ingredients

( as used by Belolipetsky for 4 ≤ n ≡ 0 (2) and

by Emery for 5 ≤ n ≡ 1 (2) )

• Prasad’s covolume formula for principal arithmetic subgroup

µ(Spin(n,1)/Λ) = D
2r2−r

2

k

(
D`

D[`:k]
k

)1
2
(2r−1)

C(r)[F :Q] E(P),

where ` is the field above, DK denotes the absolute value of the
discriminant of a number field K, E(P) =

∏
v∈Vf

ev(v) is an Euler

product of certain local factors of Λ, and

C(r) =
(r − 1)!

(2π)r

r−1∏
i=1

(2i− 1)!

(2π)2i
.

• Work of Borel-Prasad

• Bruhat-Tits theory for the local factors in Prasad’s formula

• some particular technical aspects and difficulties for odd n :

e.g., the algebraic group whose real points is PO0(n,1) has an al-
gebraic simply connected covering being a 4-covering; the group
PO0(n,1) is of type D, for which there exist outer forms.


