Highly symmetric hyperbolic polytopes

Ruth Kellerhals, University of Fribourg, Switzerland

Aims :
- symmetric polytopes, providing ‘“periodic” tesselations

- discrete group actions of small (minimal) covolume or
top down ranking w.r.t. symmetry degree

- describe related combinatorial and number theoretical features



Hyperbolic polyhedral geometry
Hyperbolic space in the Lorentz-Minkowski space :
R = (R" <z, y >=z1y1 4+ + ToYn — Tpp1Ynt1)

H*  ={zeR" | |g2 =<z, >= 1, 5,41 > O}

Geodesic k-planes U in H" (1 <k <n—1):

U =VHinH"
H =V'nH"=et for ecR% |eJ=1 with
H- ={zeH" |<z,e><0}

/ o

Isom(H"™) £ POg(n,1) = {A € GL(n+1;R) | AJA" = I,41, [A]p+1 > O}

J = ( % _Cl) ) ; every A € Isom(H") is a finite composition of

reflections w.r.t. hyperplanes H



Convex polytopes in hyperbolic space
Convex polytope in H* : P = H; , H, =¢;, | e; |= 1,with
Gram matrix G(P) = (< ej,e; >)

COS aj, 4%

<66 >= { coshlj;, dist

° Vinberg’s realisation criterion

Given an indecomposable symmetric matrix G = (gi;) of signa-
ture (n,1) with diagonal entries equal to 1 and g;; < 0 otherwise.
Then, there is an acute-angled convex polytope P C H"™ with
G(P) = G; it is unique up to an isometry

° combinatorial and metrical structure of P

Information about the face complex, the number of ideal and
ultra-ideal vertices, compactness, finite volume for an acute-
angled polytope P is given by G(P) and the types of its sub-
matrices G

E.g. P compact simplex if G has order n + 1, signature (n,1)
and each principal submatrix GG is positive definite

e Fundamental polytopes for discrete groups in Isom(H")
Of special interest are

o Polytopes with dihedral angles satisfying Poincaré’'s poly-
hedron theorem and giving rise to discrete groups (difficult to
construct ...)

o Polytopes with dihedral angles «/k for integers k > 2: They
are acute-angled and fundamental polytopes for groups gener-
ated by reflections w.r.t. finitely many hyperplanes

— Coxeter polytopes and Coxeter groups



Coxeter graphs and Coxeter polytopes

A geometric Coxeter graph % is a weighted graph of the form

giving rise to a non-Euclidean Coxeter n-polytope if the associ-
ated symmetric Gram matrix is positive definite or of signature

(n, 1)

o hyperplane H (or mirror)
r
o0—o0 Z(HZ,Hk):ngr 2<r<oo
i kK
o——-0 A(HZ,H]C) :%
o) o H; 1L Hy,
(1) |
O-----0 dIStH(Hi,Hk):l

Important and simplest examples

e Linear graphs of order n+ 1 are Coxeter orthoschemes in X\
for K =41 : Ay, Bn, Dy, Es, E7, Eg, H3, Hy, G2 finite (spherical)
for K = —1 : Gram(X) of signature (n,1)

e The graph with 7 nodes realises a truncated simplex in H®

r
0O—0—0—0—0—0-::0

, r=45



Cocompact hyperbolic Coxeter orthoschemes

n=2:
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Vinberg’s arithmeticity criterion

Let G = (gi;) be the Gram matrix of a cofinite hyperbolic Cox-
eter group I' (and its fundamental polytope P) in H".

Let ' be the field generated by all cycles gi,i,Gisis - * Gir_1ixGiriv »
and let F be the field generated by all entries of G.

The group I is arithmetic (and defined over F) if and only if
(1) Fis totally real

(2) for any embedding o : F — R with olp #id :

the matrix G? := (g;;) Is positive semi-definite
(3) the cyclic products of the matrix 2 G are integers of F..

Remarks.
e Condition (2) is equivalent to
(2)' all principal minors (being elements in F') are non-negative;
(2)" for any non-trivial embedding o : F — R :
the matrix G° = (g;’j) has non-negative principal minors ;

in this case, condition (1) is automatically verified;

e Condition (3) holds trivially if the Coxeter graph of ' con-
tains no dotted edges. In fact, the non-diagonal entries are then
related to algebraic numbers of the form 2 cosw«/r.

° If the polytope P is non-compact but of finite volume,
then the arithmeticity of ' (over the field Q) is equivalent to the
condition that

all cyclic products of the matrix 2 G are rational integers



Discrete groups acting cocompactly with minimal
hyperbolic covolume

n=2:
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The triangle Coxeter group o—o lo realising the (unique) dis-
crete group acting with minimal coarea /42 on H2; it is arith-
metic (Siegel, 1945)

Recall: For an oriented compact Riemannian surface S, = H?/I
with fundamental domain P for [":

vol(Sy) = 4n(g — 1)

For the hyperbolic 2-orbifold Q = S,/Aut(S,) :

vol(S,) _ 4n(g— 1)

— 84(g—1) (Hurwitz, 1893
vol(P) = #/21 (9=1) )

ord(Aut(Sy) =

Bound is sharp for Klein’s quartic given by z3y +y3z+ 23z =0
of genus 3



n=3 :

Look for polyhedra inducing tesselations of H3 and being of sim-
ple combinatorial type with *“large” dihedral angles

Check e.g. all cocompact hyperbolic Coxeter groups with few
generators and small weights...

e Candidate is the (arithmetic) Coxeter group
0—=o0—o—0 of covolume ~ 0.03589

associated to a right-angled regular dodecahedron {5, 3}

e T. Chinburg-E. Friedmann, 1986 :
%VOI3(o—oio—o) ~ 0.0195 = %0.03905

realises the minimal volume of all arithmetic hyperbolic 3-orbifolds

° F. Gehring-G. Martin announced a result that this value is
in fact minimal for ALL hyperbolic 3-orbifolds of finite volume

Part I of the proof is published in Ann. Math., 2009; Part II ?



n=4 :

The hyperbolic 120-cell {5,3,3} with symmetry group generated
by the (arithmetic) Coxeter group I : oio —o0—0—0

Passing to its rotational subgroup I, the space ]HI“/I" iS an ori-
ented compact arithmetic 4-orbifold. Now :

Theorem (M. Belolipetsky, 2004)

Let n > 2 even. Among all orientable compact arithmetic n-
orbifolds there is precisely one of minimal volume; it is defined
over Q(v/5). Forn =4 this is " which has covolume w2 /5400



Minimal volume of arithmetic hyperbolic orbifolds
- the case of odd dimensions > 5 -

Let ' < POg(n,1) be discrete and arithmetical w.r.t. the number
field £ with quotient space Q = H"/I".

Theorem (V. Emery, Ph.D. 2009, Fribourg)

For n = 2r-1 > 5, a orientable compact arithmetic hyperbolic
n-orbifold Q% of minimal volume is defined over ko = Q(v/5) and
of volume

. 5r2—r/2 . 11r—1/2 . (7“ . 1)
VOln(Qo) — Lﬁo/ko( ) H

221“—1,n-7‘

(21 —
(2m )4

Cko(QZ)

where (g is the quartic field with a defining polynomial z* — z3 +
2x — 1 (and of discriminant —275), and where (;, denotes the
Dedekind zeta function and Ly, = C,/Cko IS the L-function cor-
responding to the quadratic extension £y /ko

o This theorem completes Belolipetsky's results for all n > 4

o Together with Belolipetsky, Emery proved the unicity of the

minimal volume orbifold QF !

Consider the first interesting case Q7 in odd dimensions



Geometric identification of Q3

Theorem (V. Emery—K, 2012)

The orientable double cover of the quotient space of H® by the
Coxeter 5-prism group

[ : 0O—0—0—0—0—0--:0

is the (unique) orientable compact arithmetic hyperbolic 5-orbifold
Q3 of minimal volume

Idea of proof :

(I) By the result of Emery,

15, /775
(%) vols(Qg) = 9\/23147:{;_1 Cho (2)Chio (4) Lo /16 (3)

= 0.001534719168635618646691803724

(II) By the unicity statement in Emery’s theorem, we need only
to compute the covolume of the Coxeter 5-prism

[ : 0O—0—0—0—0—0-+:0

which is a simply truncated Coxeter orthoscheme (one ultra-
ideal vertex, cut away by its polar hyperplane). It can be seen as
characteristic polytope of the 5-dimensional (truncated) cousin
of the 120-cell {5, 3,3}

~> a quick excursion into the realm of
hyperbolic simplex volume formulae



Hyperbolic volume in 3 dimensions

Formula of Lobachevsky

For an orthoscheme R C H2 as given by a weighted linear graph
of length 4,

vols(R) =  { To(a+6) — To(a — 0) + Jo(% + 5 — 0)+

HIR(5 ~ A= 0) + Ly +0) — Je(y+0) } .

1/2
(COSQB—SiI’IQa Sin2’y> /

0 < 0 = arctan <

N3

COS «x COS 7y
JIQ(x):/ Iog|25int|dt:/ log |1 — exp(2it)| dt

I sin(@kz) 1, o
_EZT_EImLIQ(e )
k=1

Lobachevsky’s function

Example :

1
VO|3(o—6—o———o——o) = 3 Jl(g) ~ 0.042289



Hyperbolic volume in 5 dimensions

Theorem (K, 1992) For a 5-orthoscheme R

O (©] O (0] O (©]

with cos®a + cos? 3+ cos~? = 1, the volume is given by

1

vols(Ra) = %{Jls(a) +I6(8) - STL(5 — N}~

1 s T 3
_1_6{JI3(§ +a+4+p3) + JI3(§ —a+0B8)}+ 6_4C(3)

With JI3($) — %C(?}) _ fox JIQ(t)dt Z COS(Qka) 1 Re L|3(€2Z$)

Examples :

Vols( o—o—t0—o0—o0-10) — I

v1 :VOI5(o—oio—5/—20—oio) = ﬁ{ﬁ3(%)+L53)}

vp = Volg( o 5/2 oio—o—S/—Qoio) — 15—2%

v =vols(0 22002022080y = Lz +242)

Observe : All these polytopes are non-compact !



By using scissors congruence methods
(cutting, moving, pasting...)

VOls( 0o—o—0—o0—0—0)

Uy = VO|5( o)

5/2 _

5 _5/2_ 5 _5/2

5
o—o0

Uy = VO|5( o)

5
w = VOlg( 0o—o—o0—o0—o0

5/2

oio)

O - -

0)

= {301 — 2v2 + 3vz} — H{u1 — uz}

On-going work

We are trying to express the covolume of the Coxeter group

by scissors congruences in a way as above for w being the covol-

ume of

O—O0—O0——0O0—©0

This is not at all easy.....

5/2

.0



Numerical computation

Use Schlafli's volume differential formula in the hyperbolic
case

1
dVOIn = m Z VOIn_Q(F) dOéF
F

Together with Lobachevsky's formula, it allows to deduce the
simple integral expression

-1 / {TL(5(1) +6(1)) — TL(5(1) — 6(1))+
w/5

+IL(Z - 0()) — J(Z +0())+
+IL(5 4 0() — T3 — 0() + 2 T(3 — 0(1)) } dt

~ 0.0007673595843178093233459018621 ,

where
ap = S arccos i

sinx

Tr) = arCCosS —————
ﬁ( ) vV 4asin?z—1

0(x) = arctan \/1 —2tan?3(z).

The index two subgroup g of orientation preserving isometries
5 .
of o—o—o—o0—o0—o0---0 has also the numerical covolume

(%) = 0.001534719168635618646691803724



The three smallest compact arithmetic 5-orbifolds

(III) By the same method (based on Prasad’s volume formula),
Emery computed the second and third smallest volumes of ori-
ented compact arithmetic 5-orbifolds

Group Hyperbolic covolume

Mo 0.00153459236... (x)

M 0.00306918472. ..

> 0.00396939286. . .
Consequences :

(a) The orientation preserving subgroup g in the Coxeter group

5 .
Ny ; o—o—o—o—o—o0---0 has minimal covolume ]

(b) By arithmetic considerations : [Mo:M1] =2

Geometrically : A fundamental polytope for the reflection sub-
group in "1 arises by doubling along the Coxeter face simplex with

graph oio—o—o—o which is orthogonal to all neighboring
facets

(c) Similarly to (a), for the arithmetic volume

5 _ 9V/515 ~
volz(H>/I2) = 23—7T15¢k0(2)gk0(4)L£2/k0(3) 2~ 0.00396939286

where 0 =Q(/w) ZQla]/(z* —22 - 1), w =1L

the value equals (numerically) twice the volume of the truncated
Coxeter 5-prism




Arithmetic proof ingredients

( as used by Belolipetsky for 4 <n =0 (2) and
by Emery for 5<n=1(2) )

e Prasad’'s covolume formula for principal arithmetic subgroup

1(2r-1)
. 272 _p 'D 2 .
p(Spin(n,1)/A) =D, > (D[jk]> o e,
k

where 7 is the field above, Di denotes the absolute value of the
discriminant of a number field K, £(P) = H ey(v) is an Euler

product of certain local factors of A, and

UGVf

(r—1)! 1 (20 — 1)!

) ="y (2m)?2

e Work of Borel-Prasad
e Bruhat-Tits theory for the local factors in Prasad’s formula

e some particular technical aspects and difficulties for odd n :

e.d., the algebraic group whose real points is POg(n, 1) has an al-
gebraic simply connected covering being a 4-covering; the group
POg(n,1) is of type D, for which there exist outer forms.



