Discrete groups of automorphisms of surfaces with given genus

Ján Karabáš and Roman Nedela

Mathematical Institute, Slovak Academy of Sciences, Banská Bystrica Matej Bel University, Banská Bystrica Slovakia

SODO 2012, Queenstown, February 13, 2012

Let S_g be an orientable surface of genus g, (compact, connected,...)

Discrete group G acting on \mathcal{S}

- \blacksquare a group of self-homeomorphisms of $\mathcal{S},$ s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_g \iff G$ is finite,

Regular cover of a surface is $S_q/G = S_\gamma$ is a quotient orbifold

Let S_g be an orientable surface of genus g, (compact, connected,...) Discrete group G acting on S

- a group of self-homeomorphisms of S, s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_g \iff G$ is finite,

Regular cover of a surface is $S_q/G = S_\gamma$ is a quotient orbifold

Let S_g be an orientable surface of genus g, (compact, connected,...) Discrete group G acting on S

- \blacksquare a group of self-homeomorphisms of $\mathcal{S},$ s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_q \iff G$ is finite,

Regular cover of a surface is $S_q/G = S_\gamma$ is a *quotient orbifold*

Let S_g be an orientable surface of genus g, (compact, connected,...) Discrete group G acting on S

- a group of self-homeomorphisms of S, s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_g \iff G$ is finite,

Regular cover of a surface is $S_q/G = S_\gamma$ is a quotient orbifold

Let \mathcal{S}_g be an orientable surface of genus g, (compact, connected,...)

Discrete group G acting on \mathcal{S}

- a group of self-homeomorphisms of \mathcal{S} , s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_g \iff G$ is finite,

Regular cover of a surface is $S_g/G = S_\gamma$ is a quotient orbifold

Let \mathcal{S}_g be an orientable surface of genus g, (compact, connected,...)

Discrete group G acting on \mathcal{S}

- a group of self-homeomorphisms of \mathcal{S} , s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_g \iff G$ is finite,

Regular cover of a surface is $S_g/G = S_\gamma$ is a quotient orbifold

Let S_g be an orientable surface of genus g, (compact, connected,...)

Discrete group G acting on \mathcal{S}

- a group of self-homeomorphisms of \mathcal{S} , s.t. each orbit forms a discrete set
- a point stabiliser under an action of G is cyclic (dihedral \Rightarrow non-orientable)
- compact connected surface $S_g \iff G$ is finite,

Regular cover of a surface is $S_g/G = S_\gamma$ is a quotient orbifold

Regular cover of a surface is $S_g/G = S_\gamma$, $\gamma \leq g$, a quotient orbifold

Smooth cover of an orientable surface (|G|-folded cover)

$$(2 - 2g) = |G|(2 - 2\gamma);$$

Quotient orbifold is an 'ordinary' surface of genus γ – no branch-points Branched cover of an orientable surface (Riemann-Hurwitz equation)

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right); \ \forall i : m_i \ge 2 \in \mathbb{Z}; \ m_i ||G|;$$

 m_i is the order of the cyclic stabiliser of *i*th branch-point

Regular cover of a surface is $\mathcal{S}_g/G = \mathcal{S}_\gamma$, $\gamma \leq g$, a quotient orbifold

Smooth cover of an orientable surface (|G|-folded cover)

$$(2 - 2g) = |G|(2 - 2\gamma);$$

Quotient orbifold is an 'ordinary' surface of genus γ – no branch-points

Branched cover of an orientable surface (Riemann-Hurwitz equation)

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right); \ \forall i : m_i \ge 2 \in \mathbb{Z}; \ m_i ||G|;$$

 m_i is the order of the cyclic stabiliser of *i*th branch-point

Regular cover of a surface is $\mathcal{S}_g/G = \mathcal{S}_\gamma$, $\gamma \leq g$, a quotient orbifold

Smooth cover of an orientable surface (|G|-folded cover)

$$(2 - 2g) = |G|(2 - 2\gamma);$$

Quotient orbifold is an 'ordinary' surface of genus γ – no branch-points Branched cover of an orientable surface (Riemann-Hurwitz equation)

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right); \ \forall i : m_i \ge 2 \in \mathbb{Z}; \ m_i ||G|;$$

 m_i is the order of the cyclic stabiliser of *i*th branch-point

Regular cover of a surface is $\mathcal{S}_g/G = \mathcal{S}_\gamma$, $\gamma \leq g$, a quotient orbifold

Smooth cover of an orientable surface (|G|-folded cover)

$$(2 - 2g) = |G|(2 - 2\gamma);$$

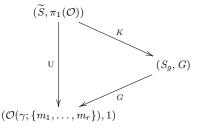
Quotient orbifold is an 'ordinary' surface of genus γ – no branch-points Branched cover of an orientable surface (Riemann-Hurwitz equation)

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right); \ \forall i : m_i \ge 2 \in \mathbb{Z}; \ m_i ||G|;$$

 m_i is the order of the cyclic stabiliser of *i*th branch-point

Theorem (Koebe Theorem)

Every discrete group acting on S_g is an epimorphic image of $\pi_1(\mathcal{O})$ for some g-admissible orbifold \mathcal{O} with signature $(\gamma; \{m_1, m_2, \ldots, m_r\})$.

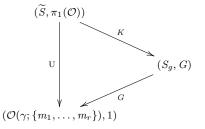


The orbifold fundamental group $\pi_1(\mathcal{O})$ is a Fuchsian group F with signature $(\gamma; \{m_1, m_2, \ldots, m_r\})$

$$F = \langle x_1, \dots, x_r, a_1, b_1, \dots, a_\gamma, b_\gamma \mid x_1^{m_1} = x_2^{m_2} = \dots = x_r^{m_r} = 1, \prod_{i=1}^{\gamma} [a_i, b_i] \prod_{j=1}^r x_j = 1 \rangle.$$

Theorem (Koebe Theorem)

Every discrete group acting on S_g is an epimorphic image of $\pi_1(\mathcal{O})$ for some g-admissible orbifold \mathcal{O} with signature $(\gamma; \{m_1, m_2, \ldots, m_r\})$.



The orbifold fundamental group $\pi_1(\mathcal{O})$ is a Fuchsian group F with signature $(\gamma; \{m_1, m_2, \ldots, m_r\})$

$$F = \langle x_1, \dots, x_r, a_1, b_1, \dots, a_\gamma, b_\gamma \mid x_1^{m_1} = x_2^{m_2} = \dots = x_r^{m_r} = 1, \prod_{i=1}^{\gamma} [a_i, b_i] \prod_{j=1}^r x_j = 1 \rangle.$$

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of *F*;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

Output: list of all actions of finite groups on S_g .

1 solve Riemann-Hurwitz equation numerically;

- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

```
Requirements: g > 1 - genus of a surface
```

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

```
Requirements: g > 1 - genus of a surface
```

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

```
Requirements: g > 1 - genus of a surface
```

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

```
or examining epimorphisms F \to G
```

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of *F*;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of *F*;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

Output: list of all actions of finite groups on S_g .

- 1 solve Riemann-Hurwitz equation numerically;
- 2 construct Fuchsian groups $F(\gamma, \{m_1, \dots, m_r\})$ given by solutions of (1); low-index subgroups approach
- 3' search for all low-index normal subgroups of index |G|;
- 4' for every $K \trianglelefteq F$ test whether $\varepsilon : F \to F/K$ is order-preserving on elliptic generators of F; STOP.

- 3" given F and G construct all epimorphisms $F \rightarrow G$;
- 4" test whether contructed epimorphisms are order-preserving on elliptic generators of F;
- 5" choose epimorphisms which will represent classes of equivalences of actions; STOP.

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right)$$

Criteria for a solution:

- 1 $\gamma \leq g$,
- **2** $r \le 2g + 2$,
- $\forall i: m_i \geq 2 \in \mathbb{Z},$
- $\forall i : |G| \equiv 0 \mod m_i,$
- **5** $|G| \le 84(g-1).$

We obtain a set of pairs (signature of an orbifold, order of respective group)

 $|G|, (\gamma; \{m_1, \ldots, m_r\}).$

Not every signature is g-admissible: RHe holds, but an action of G does not exist.

• $(0; \{7, 3, 2\})$ is not 2-admissible, • $(0; \{5, 4, 2\})$ is not 3-admissible, et

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right)$$

Criteria for a solution:

 $\gamma \leq g$, $r \leq 2g + 2$, $\forall i : m_i \geq 2 \in \mathbb{Z}$, $\forall i : |G| \equiv 0 \mod m_i$, $|G| \leq 84(g - 1)$.

We obtain a set of pairs (signature of an orbifold, order of respective group)

 $|G|, (\gamma; \{m_1, \ldots, m_r\}).$

Not every signature is g-admissible: RHe holds, but an action of G does not exist.

(0; {7,3,2}) is not 2-admissible,
(0; {5,4,2}) is not 3-admissible, etc...

Discrete groups of automorphisms...(J. Karabáš, SODO 2012)

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right)$$

Criteria for a solution:

 $\gamma \leq g$, $r \leq 2g + 2$, $\forall i : m_i \geq 2 \in \mathbb{Z}$, $\forall i : |G| \equiv 0 \mod m_i$, $|G| \leq 84(g - 1)$.

We obtain a set of pairs (signature of an orbifold, order of respective group)

 $|G|, (\gamma; \{m_1, \ldots, m_r\}).$

Not every signature is g-admissible: RHe holds, but an action of G does not exist.

(0; {7,3,2}) is not 2-admissible,
(0; {5,4,2}) is not 3-admissible, etc...

Discrete groups of automorphisms...(J. Karabáš, SODO 2012)

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right)$$

Criteria for a solution:

 $\gamma \leq g$, $r \leq 2g + 2$, $\forall i : m_i \geq 2 \in \mathbb{Z}$, $\forall i : |G| \equiv 0 \mod m_i$, $|G| \leq 84(g - 1)$.

We obtain a set of pairs (signature of an orbifold, order of respective group)

 $|G|, (\gamma; \{m_1, \ldots, m_r\}).$

Not every signature is g-admissible: RHe holds, but an action of G does not exist.

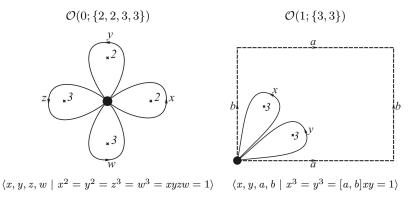
- $(0; \{7, 3, 2\})$ is not 2-admissible,
- $(0; \{5, 4, 2\})$ is not 3-admissible, etc...

Discrete groups of automorphisms...(J. Karabáš, SODO 2012)

Arithmetics vs. group theory: genus 2 actions

G	Orbifold	Actions	G	Orbifold	Actions
1	$(2; \{\})$	1	12	$(0; \{3, 2, 2, 2\})$	D_{12}
2	$(1; \{2, 2\})$	C_2	12	$(0; \{4, 4, 3\})$	$C_3: C_4$
2	$(0; \{2, 2, 2, 2, 2, 2\})$	C_2	12	$(0; \{6, 3, 3\})$	—
3	$(1; \{3\})$	—	12	$(0; \{6, 6, 2\})$	$C_6 \times C_2$
3	$(0; \{3, 3, 3, 3\})$	C_3	12	$(0; \{12, 4, 2\})$	—
4	$(1; \{2\})$		15	$(0; \{5, 3, 3\})$	—
4	$(0; \{2, 2, 2, 2, 2\})$	$C_2 \times C_2$	16	$(0; \{8, 4, 2\})$	QD_{16}
4	$(0; \{4, 4, 2, 2\})$	C_4	18	$(0; \{18, 3, 2\})$	—
5	$(0; \{5, 5, 5\})$	C_5	20	$(0; \{5, 5, 2\})$	—
6	$(0; \{3, 3, 2, 2\})$	C_6 , S_3	24	$(0; \{4, 3, 3\})$	SL(2, 3)
6	$(0; \{6, 2, 2, 2\})$		24	$(0; \{6, 4, 2\})$	$(C_6 \times C_2) : C_2$
6	$(0; \{6, 6, 3\})$	C_6	24	$(0; \{12, 3, 2\})$	—
8	$(0; \{4, 2, 2, 2\})$	D_8	30	$(0; \{10, 3, 2\})$	—
8	$(0; \{4, 4, 4\})$	Q_8	36	$(0; \{9, 3, 2\})$	—
8	$(0; \{8, 8, 2\})$	C_8	40	$(0; \{5, 4, 2\})$	—
9	$(0; \{9, 3, 3\})$	—	48	$(0; \{8, 3, 2\})$	GL(2, 3)
10	$(0; \{10, 5, 2\})$	C_{10}	84	$(0; \{7, 3, 2\})$	

- **1** canonical quotient map $\bar{\mathbf{M}}$ is a bouquet of r loops on the surface of genus γ ,
- 2 every loop is the boundary of a face containing exactly one branch-point with respective branch-index m_i ,
- **3** outer face of the map is an $(r + 2\gamma)$ -gon; contains no branch-point.



Broughton '89 classification for genera 2 and 3 (not all actions shown)

Bogopolski '91 classification for genus 4

Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Broughton '89 classification for genera 2 and 3 (not all actions shown) Bogopolski '91 classification for genus 4

Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Broughton '89 classification for genera 2 and 3 (not all actions shown) Bogopolski '91 classification for genus 4 Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Broughton '89 classification for genera 2 and 3 (not all actions shown) Bogopolski '91 classification for genus 4 Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Broughton '89 classification for genera 2 and 3 (not all actions shown) Bogopolski '91 classification for genus 4 Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Broughton '89 classification for genera 2 and 3 (not all actions shown) Bogopolski '91 classification for genus 4 Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Broughton '89 classification for genera 2 and 3 (not all actions shown) Bogopolski '91 classification for genus 4 Kuribayashi and Kimura 90's classification for genus 5

- Abstract structure of groups and g-admissible orbifold types were dermined up to genus 24, for large groups much further (see Conder's web page, |G| ≥ 4(g − 1))
- At present we have completed the list of actions up to genus 8, see http://www.savbb.sk/~karabas/science.html#rhsu
- Small 9-admissible troublemakers with more than 10^5 kernels: $C_2 \times C_2$ of types $(1; \{2^8\})$ or $(0; \{2^{12}\})$, $C_2 \times C_2 \times C_2$ of types $(1; \{4^2, 2\})$ or $(0; \{2^8\})$, D_8 of type $(0; \{2^8\})$

Discrete groups with actions on \mathcal{S}_0

By R.-H. bound, for g > 1 there are finitely many g-admissible orbifolds. see http://www.savbb.sk/~karabas/science.html#rhsu, for $2 \le g \le 24$

Discrete groups with actions on \mathcal{S}_2

A sample of results: Numbers of admissible pairs (group-signature)

g	# adm. pairs	max. $ G $	g	# adm. pairs	max. $ G $
2	21	48	14	229	1092
3	49	168	15	407	504
4	64	120	16	386	720
5	93	192	17	>732	1344
6	87	150	18	337	168
7	148	504	19	789	720
8	108	336	20	425	228
9	270	320	21	940	480
10	226	432	22	628	1008
11	232	240	23	716	192
12	201	120	24	625	216
13	454	360			

g	$ \mathbf{G} $	Orbifold	$\operatorname{Epi}_{\mathcal{O}}(\mathcal{S}_g, \operatorname{G})$	G
2	48	$(0, \{8, 3, 2\})$	2	GL(2,3)
3	168	$(0, \{7, 3, 2\})$	2	PSL(3, 2)
4	120	$(0, \{5, 4, 2\})$	1	S_5
5	192	$(0, \{8, 3, 2\})$	4	$(((C_4 \times C_2) : C_4) : C_3) : C_2$
6	150	$(0, \{10, 3, 2\})$	4	$((C_5 \times C_5) : C_3) : C_2$
7	504	$(0, \{7, 3, 2\})$	3	PSL(2, 8)
8	336	$(0, \{8, 3, 2\})$	2	$PSL(3,2): C_2$
9	320	$(0, \{5, 4, 2\})$	4	$(((C_2 \times Q_8) : C_2) : C_5) : C_2$
10	432	$(0, \{8, 3, 2\})$	2	$(((C_3 \times C_3) : Q_8) : C_3) : C_2$
11	240	$(0, \{6, 4, 2\})$	2	$C_2 \times S_5$
12	120	$(0, \{15, 4, 2\})$	4	$(C_5 \times A_4) : C_2$
13	360	$(0, \{10, 3, 2\})$	2	$A_5 \times S_3$
14	1092	$(0, \{7, 3, 2\})$	6	PSL(2, 13)
15	504	$(0, \{9, 3, 2\})$	3	PSL(2,8)

g	$ \mathbf{G} $	Orbifold	$\operatorname{Epi}_{\mathcal{O}}(\mathcal{S}_g, \mathrm{G})$	G
16	720	$(0, \{8, 3, 2\})$	2	$A_6: C_2$
17	1344	$(0, \{7, 3, 2\})$	2	$(C_2 \times C_2 \times C_2).PSL(3,2)$
18	168	$(0, \{21, 4, 2\})$	6	$(C_7 \times A_4) : C_2$
19	720	$(0, \{5, 4, 2\})$	4	$C_2 \times A_6$
20	228	$(0, \{6, 6, 2\})$	24	$C_2 \times ((C_{19}:C_3):C_2)$
21	480	$(0, \{6, 4, 2\})$	2	$(C_2 \times C_2 \times A_5) : C_2$
22	1008	$(0, \{8, 3, 2\})$	4	$(C_3 \times PSL(3,2)): C_2$
23	192	$(0, \{48, 4, 2\})$	8	$(C_3 \times (C_{16} : C_2)) : C_2$
24	216	$(0, \{27, 4, 2\})$	9	$((C_2 \times C_2) : C_{27}) : C_2$

Question: Does there exist a maximal action possessing non-triangular *g*-admissible signature?

g	$ \mathbf{G} $	Orbifold	$\operatorname{Epi}_{\mathcal{O}}(\mathcal{S}_g, \mathrm{G})$	G
16	720	$(0, \{8, 3, 2\})$	2	$A_6: C_2$
17	1344	$(0, \{7, 3, 2\})$	2	$(C_2 \times C_2 \times C_2).PSL(3,2)$
18	168	$(0, \{21, 4, 2\})$	6	$(C_7 \times A_4) : C_2$
19	720	$(0, \{5, 4, 2\})$	4	$C_2 \times A_6$
20	228	$(0, \{6, 6, 2\})$	24	$C_2 \times ((C_{19}:C_3):C_2)$
21	480	$(0, \{6, 4, 2\})$	2	$(C_2 \times C_2 \times A_5) : C_2$
22	1008	$(0, \{8, 3, 2\})$	4	$(C_3 \times PSL(3,2)) : C_2$
23	192	$(0, \{48, 4, 2\})$	8	$(C_3 \times (C_{16} : C_2)) : C_2$
24	216	$(0, \{27, 4, 2\})$	9	$((C_2 \times C_2) : C_{27}) : C_2$

Question: Does there exist a maximal action possessing non-triangular *g*-admissible signature?

g	$ \mathbf{G} $	Orbifold	$\operatorname{Epi}_{\mathcal{O}}(\mathcal{S}_g, \mathrm{G})$	G
16	720	$(0, \{8, 3, 2\})$	2	$A_6: C_2$
17	1344	$(0, \{7, 3, 2\})$	2	$(C_2 \times C_2 \times C_2).PSL(3,2)$
18	168	$(0, \{21, 4, 2\})$	6	$(C_7 \times A_4) : C_2$
19	720	$(0, \{5, 4, 2\})$	4	$C_2 \times A_6$
20	228	$(0, \{6, 6, 2\})$	24	$C_2 \times ((C_{19}:C_3):C_2)$
21	480	$(0, \{6, 4, 2\})$	2	$(C_2 \times C_2 \times A_5) : C_2$
22	1008	$(0, \{8, 3, 2\})$	4	$(C_3 \times PSL(3,2)): C_2$
23	192	$(0, \{48, 4, 2\})$	8	$(C_3 \times (C_{16} : C_2)) : C_2$
24	216	$(0, \{27, 4, 2\})$	9	$((C_2 \times C_2) : C_{27}) : C_2$

Question: Does there exist a maximal action possessing non-triangular *g*-admissible signature?

g	$ \mathbf{G} $	Orbifold	$\operatorname{Epi}_{\mathcal{O}}(\mathcal{S}_g, \mathrm{G})$	G
16	720	$(0, \{8, 3, 2\})$	2	$A_6: C_2$
17	1344	$(0, \{7, 3, 2\})$	2	$(C_2 \times C_2 \times C_2).PSL(3,2)$
18	168	$(0, \{21, 4, 2\})$	6	$(C_7 \times A_4) : C_2$
19	720	$(0, \{5, 4, 2\})$	4	$C_2 \times A_6$
20	228	$(0, \{6, 6, 2\})$	24	$C_2 \times ((C_{19}:C_3):C_2)$
21	480	$(0, \{6, 4, 2\})$	2	$(C_2 \times C_2 \times A_5) : C_2$
22	1008	$(0, \{8, 3, 2\})$	4	$(C_3 \times PSL(3,2)): C_2$
23	192	$(0, \{48, 4, 2\})$	8	$(C_3 \times (C_{16} : C_2)) : C_2$
24	216	$(0, \{27, 4, 2\})$	9	$((C_2 \times C_2) : C_{27}) : C_2$

Question: Does there exist a maximal action possessing non-triangular *g*-admissible signature?

g	$ \mathbf{G} $	Orbifold	$\operatorname{Epi}_{\mathcal{O}}(\mathcal{S}_g, \mathrm{G})$	G
16	720	$(0, \{8, 3, 2\})$	2	$A_6: C_2$
17	1344	$(0, \{7, 3, 2\})$	2	$(C_2 \times C_2 \times C_2).PSL(3,2)$
18	168	$(0, \{21, 4, 2\})$	6	$(C_7 \times A_4) : C_2$
19	720	$(0, \{5, 4, 2\})$	4	$C_2 \times A_6$
20	228	$(0, \{6, 6, 2\})$	24	$C_2 \times ((C_{19}:C_3):C_2)$
21	480	$(0, \{6, 4, 2\})$	2	$(C_2 \times C_2 \times A_5) : C_2$
22	1008	$(0, \{8, 3, 2\})$	4	$(C_3 \times PSL(3,2)): C_2$
23	192	$(0, \{48, 4, 2\})$	8	$(C_3 \times (C_{16} : C_2)) : C_2$
24	216	$(0, \{27, 4, 2\})$	9	$((C_2 \times C_2) : C_{27}) : C_2$

Question: Does there exist a maximal action possessing non-triangular *g*-admissible signature?

g	Signature	$\#C_2$	$\#C_4 \times C_2$	g	Signature	$\#C_2$	$\#C_4 \times C_2$
2	$(1, \{2^2\})$	4		6	$(2, \{2^6\})$	16	
2	$(0, \{2^6\})$	1		6	$(1, \{2^{10}\})$	4	
3	$(2, \{\})$	15		6	$(0, \{2^{14}\})$	1	
3	$(1, \{2^4\})$	4		7	$(4, \{\})$	255	
3	$(0, \{2^8\})$	1		7	$(3, \{2^4\})$	64	
3	$(0, \{4^2, 2^2\})$		32	7	$(2, \{2^8\})$	16	
4	$(2, \{2^2\})$	16		7	$(1, \{2^{12}\})$	4	
4	$(1, \{2^6\})$	4		7	$(0, \{2^{16}\})$	1	
4	$(0, \{2^{10}\})$	1		7	$(1, \{2^3\})$		288
5	$(3, \{\})$	63		7	$(1, \{4^2\})$		192
5	$(2, \{2^4\})$	16		7	$(0, \{4^2, 2^4\})$		320
5	$(1, \{2^8\})$	4		7	$(0, \{4^4, 2\})$		176
5	$(0, \{2^{12}\})$	1		8	$(4, \{2^2\})$	256	
5	$(1, \{2^2\})$		120	8	$(3, \{2^6\})$	64	
5	$(0, \{4^2, 2^3\})$		104	8	$(2, \{2^{10}\})$	16	
5	$(0, \{4^4\})$		48	8	$(1, \{2^{14}\})$	4	
6	$(3, \{2^2\})$	64		8	$(0, \{2^{18}\})$	1	