
Discrete groups of automorphisms of surfaces

with given genus
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Action of a discrete group

Let Sg be an orientable surface of genus g, (compact, connected,. . . )

Discrete group G acting on S

a group of self-homeomorphisms of S, s.t. each orbit forms a discrete set
a point stabiliser under an action of G is cyclic (dihedral ⇒ non-orientable)
compact connected surface Sg ⇐⇒ G is finite,

Regular cover of a surface is Sg/G = Sγ is a quotient orbifold
Quotient orbifold – an orientable surface of genus γ with r points distinguished,
every branch-point is endowed with branch-index mi > 1. Orbifold signature
(γ; {m1, . . . , mr}).
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How to relate a surface and its cover?

Euler characteristic of Sg is χ = 2 − 2g;

Regular cover of a surface is Sg/G = Sγ , γ ≤ g, a quotient orbifold

Smooth cover of an orientable surface (|G|-folded cover)

(2 − 2g) = |G|(2 − 2γ);

Quotient orbifold is an ‘ordinary’ surface of genus γ – no branch-points

Branched cover of an orientable surface (Riemann-Hurwitz equation)

2 − 2g = |G|

�
2 − 2γ −

r�

i=1

�
1 −

1
mi

��
; ∀i : mi ≥ 2 ∈ Z; mi | |G| ;

mi is the order of the cyclic stabiliser of ith branch-point

Hurwitz condition: |G| ≤ 84(g − 1), when S is of genus g > 1, compact,
connected, orientable
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How to relate a surface and its cover?

Euler characteristic of Sg is χ = 2 − 2g;

Regular cover of a surface is Sg/G = Sγ , γ ≤ g, a quotient orbifold

Smooth cover of an orientable surface (|G|-folded cover)

(2 − 2g) = |G|(2 − 2γ);

Quotient orbifold is an ‘ordinary’ surface of genus γ – no branch-points

Branched cover of an orientable surface (Riemann-Hurwitz equation)

2 − 2g = |G|

�
2 − 2γ −

r�

i=1

�
1 −

1
mi

��
; ∀i : mi ≥ 2 ∈ Z; mi | |G| ;

mi is the order of the cyclic stabiliser of ith branch-point

Hurwitz condition: |G| ≤ 84(g − 1), when S is of genus g > 1, compact,
connected, orientable

Discrete groups of automorphisms. . . (J. Karabáš, SODO 2012) 3 / 14



Classification: the main idea

Theorem (Koebe Theorem)
Every discrete group acting on Sg is an epimorphic image of π1(O) for some
g-admissible orbifold O with signature (γ; {m1, m2, . . . , mr}).

(�S , π1(O))

U

��

K

��
(Sg, G)

G
��

(O(γ; {m1, . . . , mr }), 1)

The orbifold fundamental group π1(O) is a Fuchsian group F with signature
(γ; {m1, m2, . . . , mr})

F = �x1, . . . , xr , a1, b1, . . . , aγ , bγ | xm1
1 = xm2

2 = . . . = xmr
r = 1,

γ�

i=1

[ai , bi ]
r�

j=1

xj = 1�.
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Classification: the procedure

Requirements: g > 1 - genus of a surface

Output: list of all actions of finite groups on Sg.

1 solve Riemann-Hurwitz equation numerically;
2 construct Fuchsian groups F(γ, {m1, . . . , mr}) given by solutions of (1);

low-index subgroups approach
3’ search for all low-index normal subgroups of index |G|;
4’ for every K � F test whether ε : F → F/K is order-preserving on elliptic

generators of F ; STOP.
or examining epimorphisms F → G

3” given F and G construct all epimorphisms F → G;
4” test whether contructed epimorphisms are order-preserving on elliptic

generators of F ;
5” choose epimorphisms which will represent classes of equivalences of actions;

STOP.
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Classification: the procedure

Requirements: g > 1 - genus of a surface

Output: list of all actions of finite groups on Sg.

1 solve Riemann-Hurwitz equation numerically;
2 construct Fuchsian groups F(γ, {m1, . . . , mr}) given by solutions of (1);

low-index subgroups approach
3’ search for all low-index normal subgroups of index |G|;
4’ for every K � F test whether ε : F → F/K is order-preserving on elliptic

generators of F ; STOP.
or examining epimorphisms F → G

3” given F and G construct all epimorphisms F → G;
4” test whether contructed epimorphisms are order-preserving on elliptic

generators of F ;
5” choose epimorphisms which will represent classes of equivalences of actions;

STOP.

Discrete groups of automorphisms. . . (J. Karabáš, SODO 2012) 5 / 14
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Riemann-Hurwitz equation: numeric solutions

Rieman-Hurwitz equation

2 − 2g = |G|

�
2 − 2γ −

r�

i=1

�
1 −

1
mi

��

Criteria for a solution:

1 γ ≤ g,
2 r ≤ 2g + 2,
3 ∀i : mi ≥ 2 ∈ Z,
4 ∀i : |G| ≡ 0 mod mi ,
5 |G| ≤ 84(g − 1).

We obtain a set of pairs (signature of an orbifold, order of respective group)

|G|, (γ; {m1, . . . , mr}).

Not every signature is g-admissible: RHe holds, but an action of G does not
exist.

(0; {7, 3, 2}) is not 2-admissible,
(0; {5, 4, 2}) is not 3-admissible, etc. . .
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Riemann-Hurwitz equation: numeric solutions

Rieman-Hurwitz equation

2 − 2g = |G|

�
2 − 2γ −

r�

i=1

�
1 −

1
mi

��

Criteria for a solution:

1 γ ≤ g,
2 r ≤ 2g + 2,
3 ∀i : mi ≥ 2 ∈ Z,
4 ∀i : |G| ≡ 0 mod mi ,
5 |G| ≤ 84(g − 1).

We obtain a set of pairs (signature of an orbifold, order of respective group)

|G|, (γ; {m1, . . . , mr}).

Not every signature is g-admissible: RHe holds, but an action of G does not
exist.

(0; {7, 3, 2}) is not 2-admissible,
(0; {5, 4, 2}) is not 3-admissible, etc. . .

Discrete groups of automorphisms. . . (J. Karabáš, SODO 2012) 6 / 14
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Arithmetics vs. group theory: genus 2 actions

|G| Orbifold Actions |G| Orbifold Actions
1 (2; {}) 1 12 (0; {3, 2, 2, 2}) D12
2 (1; {2, 2}) C2 12 (0; {4, 4, 3}) C3 : C4
2 (0; {2, 2, 2, 2, 2, 2}) C2 12 (0; {6, 3, 3}) —
3 (1; {3}) — 12 (0; {6, 6, 2}) C6 × C2
3 (0; {3, 3, 3, 3}) C3 12 (0; {12, 4, 2}) —
4 (1; {2}) — 15 (0; {5, 3, 3}) —
4 (0; {2, 2, 2, 2, 2}) C2 × C2 16 (0; {8, 4, 2}) QD16
4 (0; {4, 4, 2, 2}) C4 18 (0; {18, 3, 2}) —
5 (0; {5, 5, 5}) C5 20 (0; {5, 5, 2}) —
6 (0; {3, 3, 2, 2}) C6, S3 24 (0; {4, 3, 3}) SL(2, 3)
6 (0; {6, 2, 2, 2}) — 24 (0; {6, 4, 2}) (C6 × C2) : C2
6 (0; {6, 6, 3}) C6 24 (0; {12, 3, 2}) —
8 (0; {4, 2, 2, 2}) D8 30 (0; {10, 3, 2}) —
8 (0; {4, 4, 4}) Q8 36 (0; {9, 3, 2}) —
8 (0; {8, 8, 2}) C8 40 (0; {5, 4, 2}) —
9 (0; {9, 3, 3}) — 48 (0; {8, 3, 2}) GL(2, 3)

10 (0; {10, 5, 2}) C10 84 (0; {7, 3, 2}) —
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Canonical presentation of orbifold fundamental group

1 canonical quotient map M̄ is a bouquet of r loops on the surface of genus γ,
2 every loop is the boundary of a face containing exactly one branch-point

with respective branch-index mi ,
3 outer face of the map is an (r + 2γ)-gon; contains no branch-point.

O(0; {2, 2, 3, 3}) O(1; {3, 3})

�x, y, z, w | x2 = y2 = z3 = w3 = xyzw = 1� �x, y, a, b | x3 = y3 = [a, b]xy = 1�
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Main result

Previous results

Broughton ’89 classification for genera 2 and 3 (not all actions shown)
Bogopolski ’91 classification for genus 4
Kuribayashi and Kimura 90’s classification for genus 5

State-of-art

Abstract structure of groups and g-admissible orbifold types were dermined
up to genus 24, for large groups much further (see Conder’s web page,
|G| ≥ 4(g − 1))
At present we have completed the list of actions up to genus 8, see
http://www.savbb.sk/˜karabas/science.html#rhsu
Small 9-admissible troublemakers with more than 105 kernels: C2 × C2 of
types (1; {28

}) or (0; {212
}), C2 × C2 × C2 of types (1; {42, 2}) or (0; {28

}),
D8 of type (0; {28

})
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A sample of results: Small genera

Discrete groups with actions on S0

1 1 O(0; ∅) A4 1 O(0; {2, 3, 3})
Cm Epi

O
(π1(O), Cm) O(0; {m, m}) S4 1 O(0; {2, 3, 4})

D2m ? O(0; {2, 2, m}) A5 1 O(0; {2, 3, 5})

By R.-H. bound, for g > 1 there are finitely many g-admissible orbifolds.
see http://www.savbb.sk/˜karabas/science.html#rhsu, for 2 ≤ g ≤ 24

Discrete groups with actions on S2

1 1 (2; ∅) Q8 6 (0; {4, 4, 4})
C2 1 (0; {26}) D8 6 (0; {23, 4})
C2 4 (1; {2, 2}) C10 4 (0; {2, 5, 10})
C3 6 (0; {34}) C2 × C6 12 (0; {2, 6, 6})
C4 2 (0; {22, 42}) C3 � C4 2 (0; {3, 4, 4})
C2 × C2 60 (0; {25}) D12 6 (0; {23, 3})
C5 12 (0; {5, 5, 5}) C8 � C2 2 (0; {2, 4, 8})
C6 2 (0; {3, 6, 6}) C2 � (C2 × C6) 2 (0; {2, 4, 6})
C6 2 (0; {22, 32}) SL2(3) 2 (0; {3, 3, 4})
S3 2 (0; {22, 32}) GL2(3) 2 (0; {2, 3, 8})
C8 4 (0; {2, 8, 8})
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A sample of results: Numbers of admissible pairs (group-signature)

g # adm. pairs max. |G| g # adm. pairs max. |G|

2 21 48 14 229 1092
3 49 168 15 407 504
4 64 120 16 386 720
5 93 192 17 >732 1344
6 87 150 18 337 168
7 148 504 19 789 720
8 108 336 20 425 228
9 270 320 21 940 480

10 226 432 22 628 1008
11 232 240 23 716 192
12 201 120 24 625 216
13 454 360
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A sample of results: Maximal actions

g |G| Orbifold Epi
O

(Sg, G) G
2 48 (0, {8, 3, 2}) 2 GL(2, 3)
3 168 (0, {7, 3, 2}) 2 PSL(3, 2)
4 120 (0, {5, 4, 2}) 1 S5
5 192 (0, {8, 3, 2}) 4 (((C4 × C2) : C4) : C3) : C2
6 150 (0, {10, 3, 2}) 4 ((C5 × C5) : C3) : C2
7 504 (0, {7, 3, 2}) 3 PSL(2, 8)
8 336 (0, {8, 3, 2}) 2 PSL(3, 2) : C2
9 320 (0, {5, 4, 2}) 4 (((C2 × Q8) : C2) : C5) : C2
10 432 (0, {8, 3, 2}) 2 (((C3 × C3) : Q8) : C3) : C2
11 240 (0, {6, 4, 2}) 2 C2 × S5
12 120 (0, {15, 4, 2}) 4 (C5 × A4) : C2
13 360 (0, {10, 3, 2}) 2 A5 × S3
14 1092 (0, {7, 3, 2}) 6 PSL(2, 13)
15 504 (0, {9, 3, 2}) 3 PSL(2, 8)
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Maximal actions, continued

g |G| Orbifold Epi
O

(Sg, G) G
16 720 (0, {8, 3, 2}) 2 A6 : C2
17 1344 (0, {7, 3, 2}) 2 (C2 × C2 × C2).PSL(3, 2)
18 168 (0, {21, 4, 2}) 6 (C7 × A4) : C2
19 720 (0, {5, 4, 2}) 4 C2 × A6
20 228 (0, {6, 6, 2}) 24 C2 × ((C19 : C3) : C2)
21 480 (0, {6, 4, 2}) 2 (C2 × C2 × A5) : C2
22 1008 (0, {8, 3, 2}) 4 (C3 × PSL(3, 2)) : C2
23 192 (0, {48, 4, 2}) 8 (C3 × (C16 : C2)) : C2
24 216 (0, {27, 4, 2}) 9 ((C2 × C2) : C27) : C2

All shown maximal actions are ’triangular’

Question: Does there exist a maximal action possessing non-triangular
g-admissible signature?

YES: g = 126, |G| = 1500, (0; {3, 23
}) (Conder)

Discrete groups of automorphisms. . . (J. Karabáš, SODO 2012) 13 / 14
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A sample of results: Small discrete groups

g Signature #C2 #C4 × C2 g Signature #C2 #C4 × C2

2 (1, {22}) 4 6 (2, {26}) 16
2 (0, {26}) 1 6 (1, {210}) 4
3 (2, {}) 15 6 (0, {214}) 1
3 (1, {24}) 4 7 (4, {}) 255
3 (0, {28}) 1 7 (3, {24}) 64
3 (0, {42, 22}) 32 7 (2, {28}) 16
4 (2, {22}) 16 7 (1, {212}) 4
4 (1, {26}) 4 7 (0, {216}) 1
4 (0, {210}) 1 7 (1, {23}) 288
5 (3, {}) 63 7 (1, {42}) 192
5 (2, {24}) 16 7 (0, {42, 24}) 320
5 (1, {28}) 4 7 (0, {44, 2}) 176
5 (0, {212}) 1 8 (4, {22}) 256
5 (1, {22}) 120 8 (3, {26}) 64
5 (0, {42, 23}) 104 8 (2, {210}) 16
5 (0, {44}) 48 8 (1, {214}) 4
6 (3, {22}) 64 8 (0, {218}) 1
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