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Rank of a permutation group

G transitive permutation group on Ω

G also acts on Ω× Ω via

(α, β)g = (αg , βg )

The rank of G is the number of orbits of G on Ω× Ω.

• {(α, α) | α ∈ Ω} is one orbit.

• G has rank 2 if and only if {(α, β) | α 6= β} is an orbit, that
is, if and only if G is 2-transitive.
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Suborbits

There is a one-to-one correspondence between orbits of Gα on Ω
and orbits of G on Ω× Ω given by

βGα ←→ (α, β)G

Hence the rank of G is also the number of orbits of Gα on Ω.



Wreath Products

Let H 6 Sym(∆) and K 6 Sk .

Define H wrK = Hk o K , where K acts on Hk by permuting
coordinates.

The group H wrK has two natural actions:

• imprimitive action: on ∆× {1, . . . , k} where

(δ, i)(h1,...,hk )σ = (δhi , iσ)

∆

1 2 3 . . . k

Note that G permutes the sets ∆× {i}.
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Wreath Products II

• product action: on ∆k , where

(δ1, . . . , δk)(h1,...,hk ) = (δh11 , . . . , δ
hk
k )

(δ1, . . . , δk)σ = (δ
1σ−1 , . . . , δkσ−1 )



Systems of imprimitivity

A transitive group is called imprimitive if it preserves some
nontrivial partition of Ω.

Called primitive otherwise.

The stabiliser of a partition into b parts of size a in Sab is

Sa wrSb
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Systems of imprimitivity II

G imprimitive with system of imprimitivity B.

• GB, the subgroup of Sym(B) induced by G , is transitive.

• all blocks in B have the same size

• GB
B , the subgroup of Sym(B) induced by the setwise stabiliser

GB , is transitive;

• action of G is isomorphic to a subgroup of GB
B wrGB
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2-transitive groups

All 2-transitive groups are primitive.

Burnside’s Theorem: A 2-transitive group is either:

• almost simple, that is T 6 G 6 Aut(T ) with T a nonabelian
simple group, or

• a subgroup of AGL(d , p).

All finite 2-transitive groups were classified as a consequence of the
Classification of Finite Simple Groups.
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Rank 3 groups

Study goes back to Donald G. Higman in 1964.

Some examples:

• Sn acting on 2-subsets.

• PGLn(q) acting on 2-subspaces

• Higman-Sims group on 100 points.

• Sn wrS2 acting in product action on ∆2, where |∆| = n,

• Sa wrSb acting imprimitively on ab points.
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Primitive rank 3 groups

All primitive rank 3 groups have been classified. They are either

• almost simple (Bannai, Kantor-Liebler, Liebeck-Saxl)

• a subgroup of AGL(d , p) (Liebeck)

• a subgroup of H wr S2 acting on ∆2, where H is an almost
simple 2-transitive group on ∆



Imprimitive rank 3 groups

Recall that an imprimitive group G is a subgroup of GB
B wrGB.

If G has rank 3 then both GB
B and GB are 2-transitive.

B is the unique system of imprimitivity.

Conversely, if H 6 Sym(B) and K 6 Sk are both 2-transitive then
H wrK has rank 3.

Which subgroups of H wrK have rank 3?
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A characterisation

Theorem

Suppose that G is an imprimitive group with

• GB
B a 2-transitive almost simple group with socle T

• GB 6 Sk is 2-transitive.

Then G has rank 3 if and only if one of the following holds:

1 T k 6 G

2 G is quasiprimitive and rank 3

3 k = 2 and G = M10, PGL(2, 9) or Aut(A6) acting on 12
points;

4 k = 2 and G = Aut(M12) acting on 24 points.



Quasiprimitive groups

A permutation group is called quasiprimitive if every nontrivial
normal subgroup is transitive.

Every primitive group is quasiprimitive.

If G is quasiprimitive and imprimitive then it acts faithfully on any
system of imprimitivity B.

Lemma

An imprimitive, block faithful rank 3 group is almost simple.

Theorem

All imprimitive, block faithful almost simple groups such that GB

and GB
B are 2-transitive have been classified.
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Theorem

A quasiprimitive rank 3 group is either primitive or listed in the
table.

G k m GB
B extra conditions

M11 11 2 C2

G > PSL(2, q) q + 1 2 C2 q ≡ 1 (mod 4) plus
other conditions on G

G > PSL(a, q) qa−1
q−1 m AGL(1,m) a ≥ 3, m prime plus

other conditions
PGL(3, 4) 21 6 PSL(2, 5)
PΓL(3, 4) 21 6 PGL(2, 5)
PSL(3, 5) 31 5 S5

PSL(5, 2) 31 8 A8

PΓL(3, 8) 73 28 Ree(3)
PSL(3, 2) 7 2 C2

PSL(3, 3) 13 3 S3


