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Purpose

Aim of this report

In this report I first give a brief survey of one-regular graphs.
Then I will talk about a conjecture, that is the existence of
one-regular 3-valent graphs of order 4m for an odd integer m,
which was answered by Conder and the author.
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Definitions and basic facts

Regular permutation groups

Let G be a permutation group on Ω, that is, G ≤ SΩ.

G is transitive on Ω: for any two points in Ω there is a
permutation in G mapping one to the other.

G is regular on Ω: for any two points in Ω there is one and
only one permutation in G mapping one to the other, that
is, only the identity element in the transitive subgroup fixes
a point.

A regular permutation group is ‘the smallest possible
transitive group’.
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Definitions and basic facts

Notation for graphs

X : a simple graph (no loops or multiple edges).

V (X ), E(X ): the vertex set and the edge set.

The automorphism group Aut(X ) of a graph X : the group
of all permutations on V (X ) preserving the adjacency of X ,
that is, mapping an edge to an edge.

X is vertex-transitive or edge-transitive: Aut(X ) is transitive
on V (X ) or E(X ), respectively.
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Definitions and basic facts

Notation for graphs

s-arc: an (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices s.t.
{vi , vi+1} ∈ E(X ), vi−1 6= vi+1.

s-arc-transitive: Aut(X ) acts transitively on the set of s-arcs
in X .

0-arc-transitive: vertex-transitive.

1-arc-transitive: arc-transitive or symmetric

s-arc-regular graph: Aut(X ) acts regularly on the set of
s-arc of X .

one-regular graph: 1-arc-regular graph.
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Definitions and basic facts

Cayley graph

G: a finite group, S ⊂ G, 1 6∈ S, S = S−1 = {s−1 | ∈ S}.

Cayley graph Cay(G, S): vertex set V = G, edge set
E = {(g, sg) | g ∈ G, s ∈ S}

Cay(G, S) is connected ⇔ G = 〈S〉.

Right regular representation R(G) of G: the permutation
group {R(g) | g ∈ G} on G, where R(g) : x 7→ xg, ∀x ∈ G
is a permutation on G. Clearly, R(G) ≤ Aut(Cay(G, S)),
acting regularly on V (X ).

Characterization: A graph X is a Cayley graph on G ⇔
Aut(X ) has a regualr subgroup isomorphic to G.
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Definitions and basic facts

Basic facts about one-regular graphs

If an s-arc-regular graph is not connected, it must be a
union of one vertex and a connected s-arc-regular graph.

A 2-valent (regular) graph is one-regular if and only if it is a
cycle Cn for some positive integer n ≥ 3. On the other
hand, Cn is s-regular for any s ≥ 2.

When one consider one-regular graph, it is supposed that
the graph is connected and has valency greater than 2.

Some examples of cubic s-regular graphs: the 2-regular
complete graph K4, the 2-regular three dimensional
hypercube Q3, the 3-regular Petersen graph O3.
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One-regular graphs based on valencies

One-regular graphs with valency greater than 4

One may easily obtain a classification of one-regular
graphs of prime order by Burnside Theorem. (also see
[1, 2]).

Cheng and Oxley in [3] give a classification of one-regular
graphs of order twice a prime.

Kwak et al [21] Constructed infinitely many one-regular
graphs of valency 4k .

Kwak et al [20] constructed an infinite family of one-regular
Cayley graphs on dihedral groups of any even valency.
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One-regular graphs based on valencies

One-regular graphs with valency greater than 4

Kwak et al 2008 [18] constructed an infinite family of
one-regular Cayley graphs on dihedral groups of any
prescribed valency. In particular, a classification of
one-regular Cayley graphs on a dihedral group of valency
5 can be reduced.

Feng and Li [10] classified one-regular Cayley graphs of
prime valency on dihedral groups, and as a result,
one-regular graphs of square free order of prime valency
were classified.

Infinitely many one-regular Cayley graphs of valency 6 on
dihedral groups were constructed by Hwang, Kwak and Oh
[19, 27].
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One-regular graphs based on valencies

One-regular graphs with valency 4

Hwang, Kwak and Oh [19, 27] constructed infinitely many
tetravalent one-regular Cayley graphs on dihedral groups.

Wang, Xu and Zhou [29, 30] classified one-regular Cayley
graphs of valency 4 on dihedral groups.

Note that Du, Malnič and Marušič [8] classified
2-arc-transitive Cayley graphs on dihedral groups.

Xu [33] give a classification of tetravalent one-regular
circulant graphs.

Xu and Xu [31] give a classification of tetravalent
one-regular Cayley graphs on abelian groups.
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One-regular graphs based on valencies

One-regular graphs with valency 4

All tetravalent one-regular graphs of order p or pq are
circulant, and a classification of such graphs can be easily
deduced from [32].

Zhou and Feng [35, 37] classified tetravalent one-regular
graphs of order 2pq, where p and q are primes.

An infinite family of tetravalent one-regular Cayley graphs
on alternating groups was constructed by Marušič in [22].

An infinite family of infinite one-regular graphs of valency 4
was constructed by Malnič et al [23].
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One-regular graphs based on valencies

One-regular graphs with valency 3

The first one-regular cubic graphs was constructed by
Frucht in [28].

Conder and Dobcsányi [5] classified one-regular
(s-regular) cubic graphs of order up to 768.

Marušič and Pisanski [24] classified one-regular (s-regular)
Cayley graphs of valency 3 on a dihedral group.

Zhou and Feng [36] classified cubic one-regular graphs of
square-free order.

Kutnar and Marušič [17] classified one-regular (s-regular)
Cayley graphs of valency 3 on a generalized dihedral
group.
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One-regular graphs based on valencies

One-regular graphs with valency 3

Feng and Kwak [14] constructed an infinite family of cubic
one-regular Cayley graphs on alternating groups.

Du and Wang [9] proved that there is no cubic one-regular
Cayley graphs on PSL(2, p), where p ≥ 5 is a prime.

Feng, Kwak, et al [11, 16, 12, 15, 13] classified cubic
one-regular (s-regular) graphs of order 2p2, 2p3, mp and
mp2 for m = 4, 6, 8, 10, where p is a prime.

Oh [25, 26] classified cubic one-regular (s-regular) graphs
of order 14p and 16p.
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A conjecture on one-regular cubic graphs

By checking all cubic one-regular graphs discovered
before, there is no cubic one-regular graphs of order 4
times an odd integer. Then a natural conjecture follows:

Conjecture [36]: There is no cubic one-regular graphs of
order 4m for any odd integer m.

However, the conjecture is not true. Recently, Conder and
Feng [4] answered the above conjecture negatively by
proving the following results.
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Main results: Theorems 1 and 2

Theorem 1: Let X be a one-regular cubic graph of order
4m where m is odd. Then X is a normal cover of a base
graph Y , where Y has an arc-regular group of
automorphisms that is isomorphic to a subgroup of
Aut(PSL(2, q)) containing PSL(2, q) for some odd
prime-power q.

To state the second result, we need some notation. Let p
be an odd prime and let K = GF(p3) be the field of order
p3. Denote by α the Frobenius automorphism of K :
α : x 7→ xp. For any matrix M ∈ SL(2, K ), denote by M the
image of M under the natural homomorphism from
SL(2, K ) to PSL(2, K ) = SL(2, K )/Z (SL(2, K )).
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Main results: Theorems 1 and 2

Theorem 2: For any element t ∈ K such that t3 lies outside
the base field F = GF(p), let

U =

(
1 −2t

t−1 −1

)
, V = Uα =

(
1 −2tp

t−p −1

)
,

W = V α =

(
1 −2tp2

t−p2 −1

)
.

Then
(1) the images U, V and W generate PSL(2, K ), and
(2) the Cayley graph Cay(PSL(2, K ), {U, V , W}) is a

one-regular cubic graph.
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Main Ideas for Theorem 1

skeleton Proof of Theorem 1

Let A = Aut(X ), P ∈ Syl2(A). Then |A| = 3|V (X )| = 12m
and |P| = 4, so P ∼= Z4 or Z2 × Z2.

P ∼= Z4 7→ NA(P)/CA(P) . Aut(P) ∼= Z2 (N/C theorem).

|NA(P)/CA(P)| = 2 7→ (P ≤ CA(P)) |NA(P)| is divisible by
2× 4 = 8, contradiction.

|NA(P)/CA(P)| = 1 7→ NA(P) = CA(P) 7→ there is T E A
such that A = TP and T ∩ P = 1 (Burnside), so
|T | = |A|/|P| = 12m/4 = 3m 7→ (|V (X )| = 4m) T has four
orbits on V (X ) 7→ T is semiregular on V (X ) (Lorimer),
contradiction.
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Main Ideas for Theorem 1

skeleton Proof of Theorem 1

Let P ∼= Z2 × Z2. Let N be the largest normal subgroup of
A of odd order. Then N has at least four orbits and X is a
normal cover of XN (Lorimer).

Gorenstein-Walter theorem 7→ A/N ∼= P, or A7, or a
subgroup of Aut(PSL(2, q)) containing PSL(2, q) for some
odd q

A/N ∼= P 7→ |N| = 3m and N is semiregular on V (X )
(Lorimer), which is impossible.

Clearly, A/N 6∼= A7 because 8 - |A|.

A/N ∼= a subgroup of Aut(PSL(2, q)) containing PSL(2, q)
for some odd q.
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Main Ideas for Theorem 2

skeleton Proof of Theorem 2

Let S = {U, V , W}, G = PSL(2, K ), X = Cay(G, S), and
A = Aut(X ).

The fact that 〈U, V , W 〉 = PSL(2, K ) is proved by
considering maximal subgroups of PSL(2, q), which was
first given by Dickson [6].

To prove that X is one-regular, it suffices to show that
A = R(G) o Aut(G, S) and Aut(G, S) = 〈α〉, where α is the
automorphism of G induced by α.

Xu et al. [34] 7→ A = R(G) o Aut(G, S). Clearly,
|Aut(G, S)| = 3 or 6. The former implies
A = R(G) o Aut(G, S). We only need to show that the
latter cannot happen.
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Main Ideas for Theorem 2

skeleton Proof of Theorem 2

Suppose |Aut(G, S)| = 6. Let B = 〈R(G), α〉. Then
|A : B| = 2 and B ∼= PΣL(2, K ). Let C = CA(B), the
centralizer of B in A.

C ∩ B = Z (B) = 1 7→ |C| = 1 or 2. Note that A1
∼= S3.

|C| = 2 7→ A = B × C 7→ A1
∼= A/R(G) ∼= Z6, contradiction.

|C| = 1 7→ A . Aut(B) (N/C theorem)
∼= Aut(PΣL(2, K )) ∼= PΓL(2, K ) 7→ A ∼= PΓL(2, K ) (order).

A1
∼= A/R(G) ∼= PΓL(2, K )/PSL(2, K ) ∼= Z6, contradiction.
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Thanks!
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