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Purpose

Aim of this report

In this report | first give a brief survey of one-regular graphs.
Then | will talk about a conjecture, that is the existence of
one-regular 3-valent graphs of order 4m for an odd integer m,
which was answered by Conder and the author.
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Definitions and basic facts

Regular permutation groups

@ Let G be a permutation group on Q, that is, G < Sq.

@ G is transitive on Q: for any two points in Q there is a
permutation in G mapping one to the other.

@ Gis regular on Q: for any two points in Q2 there is one and
only one permutation in G mapping one to the other, that
is, only the identity element in the transitive subgroup fixes
a point.

@ A regular permutation group is ‘the smallest possible
transitive group’.
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Definitions and basic facts

Notation for graphs

@ X: a simple graph (no loops or multiple edges).
@ V(X), E(X): the vertex set and the edge set.

@ The automorphism group Aut(X) of a graph X: the group
of all permutations on V(X) preserving the adjacency of X,
that is, mapping an edge to an edge.

@ X is vertex-transitive or edge-transitive: Aut(X) is transitive
on V(X) or E(X), respectively.
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Definitions and basic facts

Notation for graphs

@ s-arc: an (s+ 1)-tuple (vp, vy, ..., Vs_1, Vs) Of vertices s.t.
{Vvi, Vig1} € E(X), Vieq # Vigq.

@ s-arc-transitive: Aut(X) acts transitively on the set of s-arcs
in X.

@ O-arc-transitive: vertex-transitive.
@ 1-arc-transitive: arc-transitive or symmetric

@ s-arc-regular graph: Aut(X) acts regularly on the set of
s-arc of X.

@ one-regular graph: 1-arc-regular graph.
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Definitions and basic facts

Cayley graph

G: afinite group, SC G,1¢ S,S=S"={s"1| € S}.

@ Cayley graph Cay(G, S): vertex set V = G, edge set
E={(9,59) g€ GsseS}

@ Cay(G, S) is connected < G = (S).

@ Right regular representation R(G) of G: the permutation
group {R(g) | g € G} on G, where R(g) : x — xg, ¥Yx € G
is a permutation on G. Clearly, R(G) < Aut(Cay(G, S)),
acting regularly on V(X).

@ Characterization: A graph X is a Cayley graph on G <
Aut(X) has a regualr subgroup isomorphic to G.
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Definitions and basic facts

Basic facts about one-regular graphs

@ If an s-arc-regular graph is not connected, it must be a
union of one vertex and a connected s-arc-regular graph.

@ A 2-valent (regular) graph is one-regular if and only if it is a
cycle C,, for some positive integer n > 3. On the other
hand, C, is s-regular for any s > 2.

@ When one consider one-regular graph, it is supposed that
the graph is connected and has valency greater than 2.

@ Some examples of cubic s-regular graphs: the 2-regular
complete graph Ky, the 2-regular three dimensional
hypercube Qs, the 3-regular Petersen graph Os.
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One-regular graphs based on valencies

One-regular graphs with valency greater than 4

@ One may easily obtain a classification of one-regular
graphs of prime order by Burnside Theorem. (also see

[1, 2]).

@ Cheng and Oxley in [3] give a classification of one-regular
graphs of order twice a prime.

@ Kwak et al [21] Constructed infinitely many one-regular
graphs of valency 4k.

@ Kwak et al [20] constructed an infinite family of one-regular
Cayley graphs on dihedral groups of any even valency.
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One-regular graphs based on valencies

One-regular graphs with valency greater than 4

@ Kwak et al 2008 [18] constructed an infinite family of
one-regular Cayley graphs on dihedral groups of any
prescribed valency. In particular, a classification of
one-regular Cayley graphs on a dihedral group of valency
5 can be reduced.

@ Feng and Li [10] classified one-regular Cayley graphs of
prime valency on dihedral groups, and as a result,
one-regular graphs of square free order of prime valency
were classified.

@ Infinitely many one-regular Cayley graphs of valency 6 on
dihedral groups were constructed by Hwang, Kwak and Oh
[19, 27].
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One-regular graphs based on valencies

One-regular graphs with valency 4

@ Hwang, Kwak and Oh [19, 27] constructed infinitely many
tetravalent one-regular Cayley graphs on dihedral groups.

@ Wang, Xu and Zhou [29, 30] classified one-regular Cayley
graphs of valency 4 on dihedral groups.

@ Note that Du, Malni¢ and Marusic¢ [8] classified
2-arc-transitive Cayley graphs on dihedral groups.

@ Xu [33] give a classification of tetravalent one-regular
circulant graphs.

@ Xu and Xu [31] give a classification of tetravalent
one-regular Cayley graphs on abelian groups.
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One-regular graphs based on valencies

One-regular graphs with valency 4

@ All tetravalent one-regular graphs of order p or pqg are
circulant, and a classification of such graphs can be easily
deduced from [32].

@ Zhou and Feng [35, 37] classified tetravalent one-regular
graphs of order 2pg, where p and g are primes.

@ An infinite family of tetravalent one-regular Cayley graphs
on alternating groups was constructed by Marusic in [22].

@ An infinite family of infinite one-regular graphs of valency 4
was constructed by Malnic¢ et al [23].
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One-regular graphs based on valencies

One-regular graphs with valency 3

@ The first one-regular cubic graphs was constructed by
Frucht in [28].

@ Conder and Dobcsanyi [5] classified one-regular
(s-regular) cubic graphs of order up to 768.

@ Marusi¢ and Pisanski [24] classified one-regular (s-regular)
Cayley graphs of valency 3 on a dihedral group.

@ Zhou and Feng [36] classified cubic one-regular graphs of
square-free order.

@ Kutnar and Marusic¢ [17] classified one-regular (s-regular)
Cayley graphs of valency 3 on a generalized dihedral

group.
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One-regular graphs based on valencies

One-regular graphs with valency 3

@ Feng and Kwak [14] constructed an infinite family of cubic
one-regular Cayley graphs on alternating groups.

@ Du and Wang [9] proved that there is no cubic one-regular
Cayley graphs on PSL(2, p), where p > 5 is a prime.

@ Feng, Kwak, et al [11, 16, 12, 15, 13] classified cubic
one-regular (s-regular) graphs of order 2p?, 2p°, mp and
mp? for m = 4,6,8,10, where p is a prime.

@ Oh [25, 26] classified cubic one-regular (s-regular) graphs
of order 14p and 16p.



A Conjecture

A conjecture on one-regular cubic graphs

@ By checking all cubic one-regular graphs discovered
before, there is no cubic one-regular graphs of order 4
times an odd integer. Then a natural conjecture follows:

@ Conjecture [36]: There is no cubic one-regular graphs of
order 4m for any odd integer m.

@ However, the conjecture is not true. Recently, Conder and
Feng [4] answered the above conjecture negatively by
proving the following results.
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Main results: Theorems 1 and 2

@ Theorem 1: Let X be a one-regular cubic graph of order
4m where mis odd. Then X is a normal cover of a base
graph Y, where Y has an arc-regular group of
automorphisms that is isomorphic to a subgroup of
Aut(PSL(2, g)) containing PSL(2, q) for some odd
prime-power q.

@ To state the second result, we need some notation. Let p
be an odd prime and let K = GF(p?) be the field of order
p?. Denote by a the Frobenius automorphism of K:

o : x — xP. For any matrix M € SL(2, K), denote by M the
image of M under the natural homomorphism from
SL(2, K) to PSL(2,K) = SL(2,K)/Z(SL(2, K)).
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Main results: Theorems 1 and 2

@ Theorem 2: For any element t € K such that t° lies outside
the base field F = GF(p), let

1 -2t W (1 2P
U:<t1 _1>7V:U_<t_p —1 >’

N 1 2t
Then

(1) the images U, V and W generate PSL(2, K), and
(2) the Cayley graph Cay(PSL(2,K),{U, V,W})is a
one-regular cubic graph.
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Main Ideas for Theorem 1

skeleton Proof of Theorem 1

@ Let A= Aut(X), P € Syl,(A). Then |A] = 3|V(X)| =12m
and |P| =4,s0 P> Zy0r Zy X Zo.

@ P =74+ Na(P)/Ca(P) < Aut(P) = Zp (N/C theorem).

@ [Na(P)/Ca(P)| =2 — (P < Ca(P)) |INa(P)| is divisible by
2 x 4 = 8, contradiction.

@ [Na(P)/Ca(P)| =1+ Na(P) = Ca(P) — thereis T< A
suchthat A= TP and T N P =1 (Burnside), so
|T| = |A|/|P| =12m/4 = 3m  (|V(X)| = 4m) T has four
orbits on V(X) — T is semiregular on V(X) (Lorimer),
contradiction.
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Main Ideas for Theorem 1

skeleton Proof of Theorem 1

@ Let P =7, x Zo. Let N be the largest normal subgroup of
A of odd order. Then N has at least four orbits and X is a
normal cover of Xy (Lorimer).

@ Gorenstein-Walter theorem — A/N = P, or A7, or a
subgroup of Aut(PSL(2, q)) containing PSL(2, q) for some
odd g

@ A/N= P — |N| =3mand N is semiregular on V(X)
(Lorimer), which is impossible.

@ Clearly, A/N 2 A; because 81 |A|.

@ A/N = a subgroup of Aut(PSL(2, q)) containing PSL(2, q)
for some odd q.
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Main Ideas for Theorem 2

skeleton Proof of Theorem 2

@ Let S={U,V,W}, G=PSL(2,K), X = Cay(G, S), and
A = Aut(X).

@ The fact that (U, V, W) = PSL(2, K) is proved by
considering maximal subgroups of PSL(2, q), which was
first given by Dickson [6].

@ To prove that X is one-regular, it suffices to show that
A= R(G) x Aut(G, S) and Aut(G, S) = (a), where @ is the
automorphism of G induced by «.

@ Xuetal [34] — A= R(G) x Aut(G, S). Clearly,
|Aut(G, S)| = 3 or 6. The former implies
A= R(G) x Aut(G, S). We only need to show that the
latter cannot happen.
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Main Ideas for Theorem 2

skeleton Proof of Theorem 2

@ Suppose |Aut(G, S)| = 6. Let B= (R(G),@). Then
|A: Bl =2and B=PXL(2,K). Let C = Ca(B), the
centralizer of Bin A.

@ CNB=2Z(B)=1—|C|=1or2. Note that A; = S;.
@ |C|=2— A=Bx Cw— Ay = A/R(G) = Ze, contradiction.

@ |C| =1+~ A< Aut(B) (N/C theorem)
=~ Aut(PXL(2,K)) 2 PIL(2,K) — A= PI'L(2, K) (order).

@ A1 = A/R(G) =PIL(2,K)/PSL(2, K) = Zg, contradiction.
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