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Kmin: Complete multipartite graph,
m parts, each part contains n vertices,

any two vertices in different parts are adjacent
1. Definitions

2. Regular Embeddings of K1), Kon): Kimjp]
3. Regular Embeddings of K,,, m >3, n> 2
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Surfaces and Embeddings
Surface S: closed, connected 2-manifold;

Classification of Surfaces:
(i) Orientable Surfaces: S,, g =0,1,2,---,
v+f—-e=2-2g

(ii) Nonorientable Surfaces: N, k =0,1,2,---,
v+f—e=2—k

Embeddings of a graph X in the surface is a continuous one-to-one
function i : X — S.

2-cell Embeddings: each region is homemorphic to an open disk.
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Topological Map M: a 2-cell embedding of a graph into a
surface. The embedded graph X is called the underlying graph of
the map.

Automorphism of a map M : an automorphism of the underlying
graph X which can be extended to self-homeomorphism of the
surface.

Orientation-Preserving Automorphism of an orientable map M :
an automorphism of Preserving Orientation of the map

Automorphism group Aut(M) : all the automorphisms of the map
M.

Orientation-preserving automorphisms group Aut* M of M: all
the oientation-preserving automorphism.
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Flag: incident vertex-edge-face triple
Arc: incident vertex-edge pair
Remark: Aut(M) acts semi-regularly on the flags of X.

Remark: Aut™ (M) acts semi-regularly on the arcs of X.
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Regularity of Maps
Regular Map: Aut(M) acts regularly on the flags.
Orientable Regular Map: Aut™ (M) acts regularly on the arcs.

Reflexible Map: Orientable Regular, admiting orientation-reversing
automorphisms

Chiral Map: Orientable Regular, without any orientation-reversing
automorphisms
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Regular Map: ‘Nonorientable Regular Map' + ‘Reflexible
Orientable Regular Map'

Orientable Regular Map: ‘Reflexible Orientable Regular Map* +
‘Chiral Orientable Regular Map'
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Combinatorial and Algebraic Map

Combinatorial Orientable Map:

graph X = (V, D), with vertex set V = V(X), dart (arc) set
D = D(X).

arc-reversing involution L: interchanging the two arcs underlying
every given edge.

rotation R: cyclically permutes the arcs initiated at v for each
vertex v € V(X).

Map M with underlying graph X:
the triple M = M(X; R, L).

Shaofei Du Orientable Regular Embeddings of K,



Remarks:
Monodromy group Mon(M) := (R, L) acts transitively on D.

Given two maps

M1 = M(X1; Ry, L), Mo = M(X2; Re Ly),

Map isomorphism: bijection ¢ : D(X1) — D(Xz) such that

Li¢p = ¢Lo, R1p = ¢Ro

Automorphism ¢ of M : if My = My = M;

Automorphism group: Aut(M)
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Algebraic Orientable Maps:

Orientable Regular Map:

G = Aut(M) = (r, ) 2 Mon(M) = (R, L)
M= M(G;r, 1)

G, = (r).
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2. Regular Embeddings of K11, Koy, Kinfp]

1. Complete graphs Ky}
Orientrable:

N.L. Biggs, Classification of complete maps on orientable surfaces,
Rend. Mat. (6) 4 (1971), 132-138.

L.D. James and G.A. Jones, Regular orientable imbeddings of
complete graphs, J. Combin. Theory Ser. B 39 (1985), 353-367.

Nonorientrable:

S. E. Wilson, Cantankerous maps and rotary embeddings of K, J.
Combin. Theory Ser. B 47 (1989), 262-273.

m must be of order 3, 4 or 6.
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2. Complete bipartite graphs K[,
Nonorientable Case:

J.H.Kwak and Y.S.Kwon, Classification of nonorientable regular
embeddings complete bipartite graphs, J. Combin. Theory, Ser. B
101(2011) 191-205.
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Orientable Case:

Survey paper: G.A. Jones, Maps on surfaces and Galois groups,
Math. Slovaca 47 (1997), 1-33.

General approach: R. Nedela, M. Skoviera and A. Zlatos,
Regular embeddings of complete bipartite graphs, Discrete Math.
258(2002) 379-381.
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Partial Results:

n = pq J.H. Kwak and Y.S. Kwon
Regular orientable embeddings of complete bipartite graphs, J.
Graph Theory 50(2005), 105-122.

Reflexible maps:, J. H. Kwak and Y. S. Kwon

Classification of reflexible regular embeddings and self-Petrie dual
regular embeddings of complete bipartite graphs, Discrete Math.
308(2008) 2156-2166.

(n,¢(n)) = 1: G.A. Jones, R. Nedela and M. Skoviera

G. A. Jones, R. Nedela and M. Skoviera, Complete bipartite graphs
with a unique regular embedding, J. Combin. Theory Ser. B
98(2008), 241-248.
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Complete Classification:
n = pk, p is odd prime: G.A. Jones, R. Nedela and M. Skoviera

Regular embeddings of K;, , where n is an odd prime power,
European J. Combin. 28(2007), 1863-1875.

n=2% S.F. Du, G.A.Jones, J.H. Kwak, R. Nedela and
M. ékoviera,

Regular embeddings of K, , where n is a power of 2. |: Metacyclic
case, European J. Combin. 28 (2007), 1595-1608.

Regular embeddings of Kn,n where n is a power of 2. Il:
Nonmetacyclic case, European J. Combin. 31( 7), 1946-1956.
2010.

Any n: G.A. Jones,

Regular embeddings of complete bipartite graphs: classification
and enumeration, Proc. London Math. Soc. 101(2010), 427-453.

Shaofei Du Orientable Regular Embeddings of K,



3. Complete multipartite graphs K :

S. F. Du, J. H. Kwak, R. Nedela,

Regular embeddings of complete multipartite graphs, European J.
Combin. 26(2005), 505-519.
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3. Regular Embeddings of Knfe, m> 3, n > 2

Theorem

Classification Theorem: For m > 3 and n > 2, let K[, be the
complete multipartite graph with m parts, while each part contains
n vertices. Let M be an orientable regular embedding of K.
Let G = Aut(M), H the subgroup of G fixing each part setwise
and P € Syl,(G). Then M is isomorphic to one of the following
five families of maps M;, where 1 < i <b5:
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[1] m=p >3, n=p° paprime e>1,
H = Zf, for e = 1, H is nonabelian for e > 2, Exp (P) = p¢*!:
Gi(p,e) = (a,claP"(P~1) = P! =1 ¢ = ¢) = Zper1 : Zy(pey,

where Zr .., = (r);

p(p—1)

Mi(p,e.j) = M(G1;@.a 2 c), wherej € Z¥, , ..
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[2]m:n:p23,paprime,H%Z%andEXP(P):PZ

GQ(P) = <W,Z, ¢, 8 | <sz> = Z%,CP = gp—l =1, c& = Cta we =
wz,z¢ =z, w8 = w,z8 = z') = Zg (Zp : Zp-1),
where Z; = (t);

p—1

Ma(p.j) = M(Gy; (wgy, (wg) ™' c), where j € Zj, .
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[3] m = p =3, n= k3¢ for 31k, either e =0,1 and k > 2 or
e > 2, H is abelian:

Gi(k,e,)) = (a,b| ®3 kK =p> =122 =x,x = y,[x,y] =
1,y? = Xflyfl (ab)3 _ X3€*1k1y739*1k/>
where | =0fore=0;and /| =0,1 for e > 1;

M3(k7 €, Ia,/) - M(G3; aja b)r where (/7./) = (07 1)7 (17:*:1)
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[4] m=p=3, n=k3%for3tk, k>2 e>2,
H is nonabelian, Exp (P) = 3¢*1:

Ga(k,e) = (a,b| a®>3k =p? =1,c=a*b,a®> = x;,xP =

-1
o -1 -1 3e+1 o 2
)/13[X13}/1]—1a}’f—X1 b4 , C _]-aCa_CX]l_I_yl2 >1

where u3¢ = 1(mod k);

<

Ma(k,e,j) = M(Gy; @, b), where j € Z5, 5.
May(k, e, 1) = Ma(k, e, j2) if and only if j1 = jo(mod 2 - 3°).
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[5)] m= p =3, n=09k for 31k, H is nonabelian, Exp (P) = 9:

Gs(k, /) =(a,b|a"® =p?=1,2° =x, x> = y,[x,y] =
x3ky =3k ya — x—1,-1 (ab)3 _ X3Ikyf3lk>7
where | =0 or +1;

MS(k, /,j) = M(G5; aj7 b), where j = +1.
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Table 1:
Enumerations of the resulting maps

Maps Number Reflexible | Type {s, t}
or Chiral | s-gon, valency t
Mi(p, e, )) o(p®)o(p — 1) C {pe(p—1),p°(p—1)}
if p=1 (mod 4),
{#E2pe(p = 1)}
if p=3 (mod 4)
Ma(p,j),p>5 | o(p—1) C {p(p—1),p(p—1)}

if p=1 (mod 4),
{22, p(p — 1)}

if p=3 (mod 4)
Ms(k,e,0,1) |1 R (3,2 3%}
Ms(k,e,1,+1) | 2 C (9,23}
Ma(k, e,j 2.3¢1 C (35412 3¢k}
Ms(k, 1, ) 6 C (3,18k} if I = 0,

{9, 18K} if | = +1
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Table 2:
Total numbers of regular embeddings of K5, n = 3%k,31 k

m n Reflexible Chiral Total

3 k>?2 1 0 1
3k, k>1 1 2 3
Ok, k>1 1 14 15
3¢k, k> 1, 1 2.3¢7142 2.3¢°143

e>3

o

p>5 p po(p —1) po(p —1)
pe(e >2) 0 P(p°)o(p —1) | &(p)é(p —1)
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QOutline of Proof

1. Isobicyclic group H:

H = (x)(y), where |x| = |y| =n, (x) N (y) =1 and x* = y for an
involution o € Aut(H).

n = pX and pis odd prime: H is metacyclic, Huppert
n = 2K: metacyclic + 3 nonmetacyclic groups
Du, Jones, Kwak, Nedela and Skoviera

Also, Janko, Israel J. Math. 166 (2008), 313-347.
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Lemma

Let (H, x, y) be a n-isobicyclic triple. Then H has a characteristic
series

l=Hy<Hi<:---<H =H
of subgroups H; = H% = (x%)(y®) with H;/Hi_1 = Zp, x Zp, for
all i € [I], where p1 > --- > p; are the prime divisors of n and
si=n/(p1-pi)-

Suppose that (H, x,y) is a n-isobicyclic triple and p is the maximal
prime divisor of n. Let L = H"/P. Then H/Cy(L) is an isobicyclic

group.
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2. Key Theorems:

Theorem

Let M be a regular embedding of Ky, where m > 4 and n > 2,
and let H be the kernel of G = Aut(M) on the set of m parts.
Then

1. m= p and n = p® for some prime p > 5;

2. Z(G) =1 and H is a n-isobicyclic group.
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Proof

Step 1: mis a prime power, G = AGL(1,m) and H is a
n-isobicyclic group.

Step 2: Cg(H;) = Cy(H;) and Cg/p,(H/H;) = Z(H/H;), where
H; = H for s; =n/(p1---p;) and n= p; - - - p; where
p1 > --- > p; are primes.

Step 3: mis a prime, G = AGL(1, p)

Step 4: Show that n = p€ for some e. O
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Suppose m = 3 and n = 3%k with e > 0 and 31 k. Then
H = Q x K, where Q is a 3¢-isobicyclic group and K is an abelian
k-isobicyclic group.

Proof

Step 1: Show that H is nilpotent.
Step 2: Each Hall 3’-subgroup of H is abelian.
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Subclass 1: m = p > 3 and n = p*:

G/H=Z,:Z, 1, H= Z,Z,e, isobicyclic, metacyclic

1.1 Exp (P) = ptL:
Gi(p, e) = (a, cl|aP’(P~1) = Pt = 1,c?=c"

1.2 Exp (P) = p®, H is nonabelian:

Gs(1,)=(a,b|a®=b> =122 =x, x> =y, [x,y] =
x3y=3 y? = x71y=1 (ab)3 = x3'y 3!\, where | = 0 or +1;
1.3 Exp (P) = p®, H is abelian:
Go(p) = (w,z,c,g | (w,z) = ZI%,CP =gPl=1c8=ct,w=
wz,z¢ =z, w8 =w,28 = 2) =2 72 : (Z,: Z,1)

Gi(l,e,/)=(a,b|a*¥ =b> =122 =x,x’ =y, [x,y] = 1,y% =
x1y=1 (ab)3 = X3y =3 e >2,1=0,1
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Subclass 2: m=3, n=k3°, k>2, 31tk

G/H=S3, H=Q x K, Q = Z3eZ3¢, isobicyclic, metacyclic
K= Zk X Zk

2.1 Q is abelian:

Gs(k,e, )= ( b|a?¥k=p=1,22=x,x0=y,[x,y] =
1,y? = xty~ (a ) X3 1k/y—3e—1k/>
where k > 2, /| =0fore=0;and /=0,1 for e > 1.

2.2 Q is nonabelian, Exp (P) = 3¢*!

Ga(k,e) = (a,b | a®¥ kK =p?> =1,c =a%b,a*% = =x xP =

— e+1
yi, s =1L yf = x 1)/1 17 o =1,¢° —CX1Y1 ),

where u3¢ = 1(mod k);
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2.3 Q is nonabelian, Exp (P) = 3¢

Gs(k,1) = (a,b | A%k =p2 =122 =x,x =y, [x,y] =

X3kyf3k7ya — Xflyfl, (ab)3 — X3lkyf3lk>7

where | =0 or £1.
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End

Thank You Very Much |
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