A Classification of Orientable Regular Embeddings of Complete Multipartite Graphs

Shaofei Du

School of Mathematical Sciences Capital Normal University Beijing, 100048, China

Symmetries of Discrete Object Conference and MAGAA Workshop Queenstown, New Zealand Feb 13-17, 2012.

http://arxiv.org/abs/1202.1974 . Joint Work with Mr Junyang Zhang

Content

 $K_{m[n]}$: Complete multipartite graph, m parts, each part contains n vertices, any two vertices in different parts are adjacent

- 1. Definitions
- 2. Regular Embeddings of $K_{m[1]}$, $K_{2[n]}$, $K_{m[p]}$
- 3. Regular Embeddings of $K_{m[n]}$, $m \ge 3$, $n \ge 2$

1. Definitions

Surfaces and Embeddings

Surface S: closed, connected 2-manifold;

Classification of Surfaces:

- (i) Orientable Surfaces: S_g , $g = 0, 1, 2, \dots$, v + f e = 2 2g
- (ii) Nonorientable Surfaces: N_k , $k = 0, 1, 2, \dots$, v + f e = 2 k

Embeddings of a graph X in the surface is a continuous one-to-one function $i: X \to S$.

2-cell Embeddings: each region is homemorphic to an open disk.

Topological Map \mathcal{M} : a 2-cell embedding of a graph into a surface. The embedded graph X is called the *underlying graph* of the map.

Automorphism of a map \mathcal{M} : an automorphism of the underlying graph X which can be extended to self-homeomorphism of the surface.

Orientation-Preserving Automorphism of an orientable map ${\mathcal M}$: an automorphism of Preserving Orientation of the map

Automorphism group $\operatorname{Aut}(\mathcal{M})$: all the automorphisms of the map \mathcal{M} .

Orientation-preserving automorphisms group $\operatorname{Aut}^+\mathcal{M}$ of \mathcal{M} : all the oientation-preserving automorphism.

Flag: incident vertex-edge-face triple

Arc: incident vertex-edge pair

Remark: $Aut(\mathcal{M})$ acts semi-regularly on the flags of X.

Remark: $\operatorname{Aut}^+(\mathcal{M})$ acts semi-regularly on the arcs of X.

Regularity of Maps

Regular Map: $Aut(\mathcal{M})$ acts regularly on the flags.

Orientable Regular Map: $\operatorname{Aut}^+(\mathcal{M})$ acts regularly on the arcs.

Reflexible Map: Orientable Regular, admiting orientation-reversing automorphisms

Chiral Map: Orientable Regular, without any orientation-reversing automorphisms

Regular Map: 'Nonorientable Regular Map' + 'Reflexible Orientable Regular Map'

Orientable Regular Map: 'Reflexible Orientable Regular Map' + 'Chiral Orientable Regular Map'

Combinatorial and Algebraic Map

Combinatorial Orientable Map:

graph X = (V, D), with vertex set V = V(X), dart (arc) set D = D(X).

arc-reversing involution L: interchanging the two arcs underlying every given edge.

rotation R: cyclically permutes the arcs initiated at v for each vertex $v \in V(X)$.

Map \mathcal{M} with underlying graph X: the triple $\mathcal{M} = \mathcal{M}(X; R, L)$.

Remarks:

Monodromy group $Mon(\mathcal{M}) := \langle R, L \rangle$ acts transitively on D.

Given two maps

$$\mathcal{M}_1 = \mathcal{M}(X_1; R_1, L_1), \ \mathcal{M}_2 = \mathcal{M}(X_2; R_2 L_2),$$

Map isomorphism: bijection $\phi: D(X_1) \to D(X_2)$ such that

$$L_1\phi = \phi L_2, R_1\phi = \phi R_2$$

Automorphism ϕ of \mathcal{M} : if $\mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M}$;

Automorphism group: $Aut(\mathcal{M})$

Algebraic Orientable Maps:

Orientable Regular Map:

$$G = \operatorname{Aut}(\mathcal{M}) = \langle r, I \rangle \cong \operatorname{Mon}(\mathcal{M}) = \langle R, L \rangle$$

$$\mathcal{M} = \mathcal{M}(G; r, l)$$

$$G_v = \langle r \rangle$$
.

2. Regular Embeddings of $K_{m[1]}$, $K_{2[n]}$, $K_{m[p]}$

1. Complete graphs $K_{m[1]}$:

Orientrable:

N.L. Biggs, Classification of complete maps on orientable surfaces, *Rend. Mat.* (6) **4** (1971), 132-138.

L.D. James and G.A. Jones, Regular orientable imbeddings of complete graphs, *J. Combin. Theory Ser. B* **39** (1985), 353–367.

Nonorientrable:

S. E. Wilson, Cantankerous maps and rotary embeddings of K_n , J. Combin. Theory Ser. B **47** (1989), 262–273.

m must be of order 3, 4 or 6.

2. Complete bipartite graphs $K_{2[n]}$:

Nonorientable Case:

J.H.Kwak and Y.S.Kwon, Classification of nonorientable regular embeddings complete bipartite graphs, *J. Combin. Theory, Ser. B* **101(2011) 191-205.**

Orientable Case:

Survey paper: G.A. Jones, Maps on surfaces and Galois groups, *Math. Slovaca* **47** (1997), 1-33.

General approach: R. Nedela, M. Škoviera and A. Zlatoš, Regular embeddings of complete bipartite graphs, *Discrete Math.* **258**(2002) 379-381.

Partial Results:

n = pq J.H. Kwak and Y.S. Kwon Regular orientable embeddings of complete bipartite graphs, *J. Graph Theory* **50**(2005), 105-122.

Reflexible maps:, J. H. Kwak and Y. S. Kwon Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs, *Discrete Math.* **308**(2008) 2156-2166.

 $(n,\phi(n))=1$: G.A. Jones, R. Nedela and M. Škoviera G. A. Jones, R. Nedela and M. Škoviera, Complete bipartite graphs with a unique regular embedding, *J. Combin. Theory Ser. B* **98**(2008), 241-248.

Complete Classification:

 $n = p^k$, p is odd prime: G.A. Jones, R. Nedela and M. Škoviera

Regular embeddings of $K_{n,n}$ where n is an odd prime power, European J. Combin. **28**(2007), 1863-1875.

 $n=2^k$, S.F. Du, G.A.Jones, J.H. Kwak, R. Nedela and M. Škoviera,

Regular embeddings of $K_{n,n}$ where n is a power of 2. I: Metacyclic case, *European J. Combin.* **28** (2007), 1595-1608.

Regular embeddings of Kn,n where n is a power of 2. II: Nonmetacyclic case, European J. Combin. 31(7), 1946-1956. 2010.

Any n: G.A. Jones,

Regular embeddings of complete bipartite graphs: classification and enumeration, *Proc. London Math. Soc.* **101**(2010), 427-453.

- 3. Complete multipartite graphs $K_{m[p]}$:
- S. F. Du, J. H. Kwak, R. Nedela, Regular embeddings of complete multipartite graphs, *European J. Combin.* **26**(2005), 505-519.

3. Regular Embeddings of $K_{m[n]}$, $m \ge 3$, $n \ge 2$

Theorem

Classification Theorem: For $m \geq 3$ and $n \geq 2$, let $K_{m[n]}$ be the complete multipartite graph with m parts, while each part contains n vertices. Let \mathcal{M} be an orientable regular embedding of $K_{m[n]}$. Let $G = \operatorname{Aut}(\mathcal{M})$, H the subgroup of G fixing each part setwise and $P \in Syl_p(G)$. Then \mathcal{M} is isomorphic to one of the following five families of maps \mathcal{M}_i , where $1 \leq i \leq 5$:

[1]
$$m = p \ge 3$$
, $n = p^e$: p a prime, $e \ge 1$,

$$H \cong \mathbb{Z}_p^2$$
 for $e = 1$, H is nonabelian for $e \geq 2$, $\operatorname{Exp}(P) = p^{e+1}$:

$$G_1(p,e) = \langle a,c | a^{p^e(p-1)} = c^{p^{e+1}} = 1, c^a = c^r \rangle \cong Z_{p^{e+1}} : Z_{\phi(p^e)},$$
 where $\mathbb{Z}_{p^{e+1}}^* = \langle r \rangle;$

$$\mathcal{M}_1(p,e,j) = \mathcal{M}(G_1;a^j,a^{rac{p^e(p-1)}{2}}c)$$
, where $j \in \mathbb{Z}_{p^e(p-1)}^*$.

[2]
$$m = n = p \ge 3$$
, p a prime, $H \cong \mathbb{Z}_p^2$ and $\operatorname{Exp}(P) = p$:

$$G_2(p) = \langle w, z, c, g \mid \langle w, z \rangle \cong \mathbb{Z}_p^2, c^p = g^{p-1} = 1, c^g = c^t, w^c = wz, z^c = z, w^g = w, z^g = z^t \rangle \cong Z_p^2 : (Z_p : Z_{p-1}),$$
 where $\mathbb{Z}_p^* = \langle t \rangle$;

$$\mathcal{M}_2(p,j) = \mathcal{M}(G_2; (wg)^j, (wg)^{\frac{p-1}{2}}c)$$
, where $j \in \mathbb{Z}_{p-1}^*$.

[3] m = p = 3, $n = k3^e$ for $3 \nmid k$, either e = 0, 1 and $k \ge 2$ or $e \ge 2$, H is abelian:

$$G_3(k,e,l) = \langle a,b \mid a^{2\cdot 3^e k} = b^2 = 1, a^2 = x, x^b = y, [x,y] = 1, y^a = x^{-1}y^{-1}, (ab)^3 = x^{3^{e-1}kl}y^{-3^{e-1}kl}\rangle,$$
 where $l = 0$ for $e = 0$; and $l = 0, 1$ for $e \ge 1$;

$$\mathcal{M}_3(k, e, l, j) = \mathcal{M}(G_3; a^j, b)$$
, where $(l, j) = (0, 1), (1, \pm 1)$.

[4]
$$m = p = 3$$
, $n = k3^e$ for $3 \nmid k$, $k \ge 2$, $e \ge 2$, H is nonabelian, Exp $(P) = 3^{e+1}$:

$$G_4(k,e) = \langle a,b \mid a^{2\cdot 3^e k} = b^2 = 1, c = a^{3^e}b, a^{2\cdot 3^e} = x_1, x_1^b = y_1, [x_1,y_1] = 1, y_1^a = x_1^{-1}y_1^{-1}, c^{3^{e+1}} = 1, c^a = c^2x_1^uy_1^{\frac{u-1}{2}}\rangle,$$
 where $u3^e \equiv 1 \pmod{k}$;

$$\mathcal{M}_4(k,e,j) = \mathcal{M}(\mathit{G}_4;\mathit{a}^j,\mathit{b})$$
, where $j \in \mathbb{Z}^*_{2k \cdot 3^e}$

$$\mathcal{M}_4(k,e,j_1)\cong\mathcal{M}_4(k,e,j_2)$$
 if and only if $j_1\equiv j_2 (\mathrm{mod}\ 2\cdot 3^e).$

[5)]
$$m = p = 3$$
, $n = 9k$ for $3 \nmid k$, H is nonabelian, $Exp(P) = 9$:

$$G_5(k,I)=\langle a,b\mid a^{18k}=b^2=1, a^2=x, x^b=y, [x,y]=x^{3k}y^{-3k}, y^a=x^{-1}y^{-1}, (ab)^3=x^{3lk}y^{-3lk}\rangle,$$
 where $I=0$ or ± 1 ;

$$\mathcal{M}_5(k,l,j) = \mathcal{M}(G_5;a^j,b)$$
, where $j=\pm 1$.

 Table 1:

 Enumerations of the resulting maps

Enumerations of the resulting maps					
Maps	Number	Reflexible	Type $\{s,t\}$		
		or Chiral	<i>s</i> -gon, valency <i>t</i>		
$\mathcal{M}_1(p,e,j)$	$\phi(p^e)\phi(p-1)$	С	$\{p^{e}(p-1), p^{e}(p-1)\}$		
			if $p \equiv 1 \pmod{4}$,		
			$\{\frac{p^{e}(p-1)}{2}, p^{e}(p-1)\}$		
			if $p \equiv 3 \pmod{4}$		
$\mathcal{M}_2(3,1)$	1	R	{3,6}		
$\mathcal{M}_2(p,j), p \geq 5$	$\phi(p-1)$	C	$\{p(p-1), p(p-1)\}$		
			if $p \equiv 1 \pmod{4}$,		
			$\{\frac{p(p-1)}{2}, p(p-1)\}$		
			if $p \equiv 3 \pmod{4}$		
$\mathcal{M}_3(k,e,0,1)$	1	R	$\{3, 2 \cdot 3^e k\}$		
$\mathcal{M}_3(k,e,1,\pm 1)$	2	С	$\{9, 2 \cdot 3^e k\}$		
$\mathcal{M}_4(k,e,j)$	$2 \cdot 3^{e-1}$	С	$\{3^{e+1}, 2 \cdot 3^e k\}$		
$\mathcal{M}_5(k,l,j)$	6	С	$\{3, 18k\}$ if $l = 0$,		
, , , , ,			$\{9, 18k\}$ if $I = \pm 1$		

Table 2: Total numbers of regular embeddings of $K_{m[n]}$, $n=3^e k, 3 \nmid k$

		•	•[]	' I
m	n	Reflexible	Chiral	Total
3	<i>k</i> ≥ 2	1	0	1
	$3k, k \ge 1$	1	2	3
	$9k, k \ge 1$	1	14	15
	$3^e k, k \geq 1,$	1	$2 \cdot 3^{e-1} + 2$	$2\cdot 3^{e-1}+3$
	$e \ge 3$			
$p \ge 5$	p	0	$p\phi(p-1)$	$p\phi(p-1)$
	$p^e(e \geq 2)$	0	$\phi(p^e)\phi(p-1)$	$\phi(p^e)\phi(p-1)$

Outline of Proof

1. Isobicyclic group H:

 $H = \langle x \rangle \langle y \rangle$, where |x| = |y| = n, $\langle x \rangle \cap \langle y \rangle = 1$ and $x^{\alpha} = y$ for an involution $\alpha \in \text{Aut}(H)$.

 $n = p^k$ and p is odd prime: H is metacyclic, Huppert

 $n = 2^k$: metacyclic + 3 nonmetacyclic groups

Du, Jones, Kwak, Nedela and Škoviera

Also, Janko, Israel J. Math. 166 (2008), 313-347.

Lemma

Let (H, x, y) be a n-isobicyclic triple. Then H has a characteristic series

$$1 = H_0 < H_1 < \cdots < H_l = H$$

of subgroups $H_i = H^{s_i} = \langle x^{s_i} \rangle \langle y^{s_i} \rangle$ with $H_i/H_{i-1} \cong \mathbb{Z}_{p_i} \times \mathbb{Z}_{p_i}$ for all $i \in [I]$, where $p_1 \geq \cdots \geq p_I$ are the prime divisors of n and $s_i = n/(p_1 \cdots p_i)$.

Lemma

Suppose that (H, x, y) is a n-isobicyclic triple and p is the maximal prime divisor of n. Let $L = H^{n/p}$. Then $H/C_H(L)$ is an isobicyclic group.

2. Key Theorems:

Theorem

Let $\mathcal M$ be a regular embedding of $K_{m[n]}$, where $m \geq 4$ and $n \geq 2$, and let H be the kernel of $G = \operatorname{Aut}(\mathcal M)$ on the set of m parts. Then

- 1. m = p and $n = p^e$ for some prime $p \ge 5$;
- 2. Z(G) = 1 and H is a n-isobicyclic group.

Proof

Step 1: m is a prime power, $\overline{G} \cong \mathrm{AGL}(1,m)$ and H is a n-isobicyclic group.

Step 2: $C_G(H_i) = C_H(H_i)$ and $C_{G/H_i}(H/H_i) = Z(H/H_i)$, where $H_i = H^{s_i}$ for $s_i = n/(p_1 \cdots p_i)$ and $n = p_1 \cdots p_l$ where $p_1 \ge \cdots \ge p_l$ are primes.

Step 3: m is a prime, $\overline{G} \cong AGL(1,p)$

Step 4: Show that $n = p^e$ for some e.

Theorem

Suppose m=3 and $n=3^ek$ with $e\geq 0$ and $3\nmid k$. Then $H=Q\times K$, where Q is a 3^e -isobicyclic group and K is an abelian k-isobicyclic group.

Proof:

- Step 1: Show that H is nilpotent.
- Step 2: Each Hall 3'-subgroup of H is abelian.

Subclass 1: $m = p \ge 3$ and $n = p^e$:

$$G/H \cong Z_p : Z_{p-1}, H = Z_{p^e}Z_{p^e}$$
, isobicyclic, metacyclic

1.1 Exp
$$(P) = p^{e+1}$$
:
 $G_1(p, e) = \langle a, c | a^{p^e(p-1)} = c^{p^{e+1}} = 1, c^a = c^r \rangle$

1.2 Exp $(P) = p^e$, H is nonabelian:

$$G_5(1, I) = \langle a, b \mid a^{18} = b^2 = 1, a^2 = x, x^b = y, [x, y] = x^3 y^{-3}, y^a = x^{-1} y^{-1}, (ab)^3 = x^{3I} y^{-3I} \rangle$$
, where $I = 0$ or ± 1 ;

1.3 Exp $(P) = p^e$, H is abelian:

$$G_2(p) = \langle w, z, c, g \mid \langle w, z \rangle \cong \mathbb{Z}_p^2, c^p = g^{p-1} = 1, c^g = c^t, w^c = wz, z^c = z, w^g = w, z^g = z^t \rangle \cong Z_p^2 : (Z_p : Z_{p-1})$$

$$G_3(1, e, I) = \langle a, b \mid a^{2 \cdot 3^e} = b^2 = 1, a^2 = x, x^b = y, [x, y] = 1, y^a = x^{-1}y^{-1}, (ab)^3 = x^{3^{e-1}I}y^{-3^{e-1}I}\rangle, e \ge 2, I = 0, 1$$

Subclass 2: m = 3, $n = k3^e$, $k \ge 2$, $3 \nmid k$

$$G/H\cong S_3$$
, $H=Q imes K$, $Q=Z_{3^e}Z_{3^e}$, isobicyclic, metacyclic $K=Z_k imes Z_k$

2.1 Q is abelian:

$$G_3(k,e,l) = \langle a,b \mid a^{2\cdot 3^e k} = b^2 = 1, a^2 = x, x^b = y, [x,y] = 1, y^a = x^{-1}y^{-1}, (ab)^3 = x^{3^{e-1}kl}y^{-3^{e-1}kl} \rangle$$
, where $k \geq 2$, $l = 0$ for $e = 0$; and $l = 0, 1$ for $e \geq 1$.

2.2 Q is nonabelian, $Exp(P) = 3^{e+1}$

$$G_4(k,e) = \langle a,b \mid a^{2\cdot 3^e k} = b^2 = 1, c = a^{3^e} b, a^{2\cdot 3^e} = x_1, x_1^b = y_1, [x_1,y_1] = 1, y_1^a = x_1^{-1}y_1^{-1}, c^{3^{e+1}} = 1, c^a = c^2 x_1^u y_1^{\frac{u-1}{2}} \rangle,$$
 where $u3^e \equiv 1 \pmod{k}$;

2.3 Q is nonabelian, Exp $(P) = 3^e$

$$G_5(k, I) = \langle a, b \mid a^{18k} = b^2 = 1, a^2 = x, x^b = y, [x, y] = x^{3k}y^{-3k}, y^a = x^{-1}y^{-1}, (ab)^3 = x^{3lk}y^{-3lk} \rangle,$$
 where $I = 0$ or ± 1 .

Thank You Very Much!