Queenstown, NZ, February 2012

Finitely-presented groups in MAGMA

Marston Conder
University of Auckland

m.conder@auckland.ac.nz

Talk 1: Finitely-presented groups

This talk deals with ways of investigating groups defined by generators and relations, such as the triangle groups

$$\Delta(2, p, q) = \langle x, y, z | x^2 = y^p = z^q = xyz = 1 \rangle$$

associated with regular maps (of type $\{p,q\}$ in this case).

Given a group G with finite presentation $G = \langle X | R \rangle$, there are methods for

- finding the order of G (when this is finite)
- ullet enumerating cosets of a finitely-generated subgroup of G
- obtaining a presentation for a finitely-generated subgroup
- finding all subgroups of up to a given index in G
- finding all quotients of G of up to a given order and all nilpotent quotients of G of up to a given class.

Summary of important functions for f.p. groups

- ToddCoxeter(G,H) ... gives a coset table for H in G
- Order(G) ... attempts to find the order of G
- Rewrite(G,H) ... finds a presentation for the subgroup H
- LowIndexSubgroups(G,n) ... finds subgroups of index $\leq n$
- LowIndexNormalSubgroups(G,n) ... finds normal subgroups of index $\leq n$
- AbelianQuotient(G) ... finds the abelianization G/G'
- pQuotient(G,p,c) ... finds p-quotients of G of class $\leq c$
- NilpotentQuotient(G,c) ... finds nilpotent quotients of G of class < c

Coset enumeration

Let $G = \langle X | R \rangle$, and let H be the subgroup generated by some finite set Y of words on the alphabet $X = \{x_1, \dots, x_m\}$.

Methods exist for systematically enumerating the cosets Hg for $g \in G$. It is helpful to store these in a coset table, which shows the effect of multiplying each (numbered) coset Hg by a generator x_i or its inverse x_i^{-1} :

	x_1	x_2	• • •	x_1^{-1}	x_2^{-1}	
1	2	3		4		
2				1		
3					1	
4	1					
:						

Each relation from the defining presentation $\langle X | R \rangle$ for G forces pairs of cosets to be equal: Hgr = Hg for all $g \in G$.

The same thing happens on application of each generator $y \in Y$ to the trivial coset H: Hy = H.

New cosets are defined (if needed), and all such coincidences are processed, until the coset table either 'closes' or has too many rows.

If the coset table closes with n cosets, then |G:H|=n. Moreover, the coset table gives us the natural permutation representation of G on the right coset space (G:H).

If it does not close, then the index |G:H| could be infinite, or just too large to be found (or it might even be small but the computation was not given enough resources).

Schreier coset graphs

Suppose the group G is generated by $X = \{x_1, x_2, \dots, x_m\}$.

Given any transitive permutation representation of G on a set Ω of size n, we may form a graph with vertex-set Ω , and with edges of the form $\alpha - \alpha x_i$ for $1 \le i \le m$.

Similarly, if H is a subgroup of index n in G, we may form a graph whose vertices are the right cosets of H and whose edges are of the form $Hg \longrightarrow Hgx_i$ for $1 \le i \le m$.

These two graphs are the same when Ω is the right coset space (G:H), and H is the stabilizer of a point of Ω . It is called the Schreier coset graph $\Sigma(G,X,H)$.

Schreier coset graphs (cont.)

The Schreier coset graph $\Sigma(G, X, H)$ gives a diagrammatic representation of the natural action of G on cosets of H, and hence is equivalent to the coset table, e.g. as follows:

when $x \mapsto (1,2)(4,5)$ and $y \mapsto (2,3,5,4)$

Some observations

- 1) A spanning tree for the coset graph Σ gives a Schreier transversal T for H in G
- 2) Edges of the coset graph not used in the spanning tree give a Schreier generating-set for H in G:

The edge Hu - Hv given by multiplication by x_i gives the Schreier generator $ux_iv^{-1} = ux_i(\overline{ux_i})^{-1}$ for H.

The Reidemeister-Schreier process

Given a finitely-presented group $G = \langle X | R \rangle$ and a subgroup H of finite index in G, Reidemeister-Schreier theory provides a method for obtaining a presentation for H (in terms of generators and relations):

- 1) Construct the coset graph using the coset table
- 2) Take a spanning tree in the coset graph this gives a Schreier transversal for H in G
- 3) Label the unused edges with Schreier generators
- 4) Apply each of the relators from R to each of the cosets in turn, to obtain the defining relations for H.

Example

Let $G = \langle x, y | x^2, y^3 \rangle$, and let H be the stabilizer of 1 in the permutation representation $x \mapsto (2,3), y \mapsto (1,2,3)$:

Schreier generators

$$A = x$$

$$B = y^{3} (= 1)$$

$$C = yxy$$

$$D = y^{-1}xy^{-1}$$

Relation $x^2 = 1$ gives new relations $A^2 = 1$ and CD = 1Relation $y^3 = 1$ gives new relation B = 1

Thus *H* has presentation $\langle A, C | A^2 \rangle$ via A = x and C = yxy.

Proving finitely-presented groups are infinite

There are several ways of proving a finitely-presented group $G = \langle X | R \rangle$ is infinite, with the help of MAGMA:

- Show the abelianisation G/G' is infinite
- Check to see if G has more generators than relations
- Find a subgroup of G with infinite abelianisation
- Construct an epimorphism onto a known infinite group

Note: the third of these depends on having a collection of subgroups to check—such as all subgroups of small index.

Low index subgroup methods

Again, let $G = \langle X | R \rangle$ be a finitely-presented group, and suppose we want to find all subgroups of small index in G.

Subgroups of index $\leq n$ can be found (up to conjugacy) by a systematic enumeration of coset tables with $\leq n$ rows.

The 'low index subgroups' algorithm starts with the identity subgroup and attempts to enumerate its right cosets. Then (or at any later stage) if more than n cosets are defined, all possible concidences between two cosets are considered.

This sets up a branching process for a backtrack search, which is guaranteed to complete (given sufficient time and memory), by Schreier's subgroup lemma!

Low index normal subgroups

Small homomorphic images of a finitely-presented group G can be found as the groups of permutations induced by G on cosets of subgroups of small index. This gives G/K where K is the core of H, but produces only images that have small degree faithful permutation representations.

Alternatively, the (standard) low index subgroups method can be adapted to produce only normal subgroups.

A new method was developed recently by Derek Holt and his student, which systematically enumerates the possibilities for the composition series of the factor group G/K, for any normal subgroup K of small index in G.

Some references

- W. Bosma, J. Cannon & C. Playoust, The Magma Algebra System I: the user language, *J. Symbolic Comput.* 24 (1997), 235–265.
- M.D.E. Conder, Combinatorial and computational group-theoretic methods in the study of graphs, maps and polytopes with maximal symmetry, in: *Applications of Group Theory to Combinatorics* (ed. J. Koolen, J.H. Kwak & M.Y. Xu), Taylor & Francis, London, 2008, pp. 1–11.
- D.F. Holt, B. Eick & E.A. O'Brien, Handbook of Computational Group Theory, CRC Press, 2005.
- J. Neubüser, An elementary introduction to coset-table methods in computational group theory, Groups St. Andrews 1981, London Math. Soc. Lecture Note Series, vol. 71, 1982, pp. 1–45.
- C.C. Sims, Computation with finitely presented groups, Encyclopedia of Mathematics & its Applications, vol. 48. Cambridge Univ. Press, 1994.