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Talk 1: Finitely-presented groups

This talk deals with ways of investigating groups defined by
generators and relations, such as the triangle groups

A(2,p,q) = (z,y,2|z° =P =29 =ayz=1)
associated with regular maps (of type {p,q} in this case).

Given a group G with finite presentation G = (X | R), there
are methods for

finding the order of G (when this is finite)

enumerating cosets of a finitely-generated subgroup of G
obtaining a presentation for a finitely-generated subgroup
finding all subgroups of up to a given index in G

finding all quotients of G of up to a given order
and all nilpotent quotients of G of up to a given class.



Summary of important functions for f.p. groups

e ToddCoxeter(G,H) ... gives a coset table for H in GG

e Order(G) ... attempts to find the order of G

e Rewrite(G,H) ... finds a presentation for the subgroup H
e LowIndexSubgroups(G,n) ... finds subgroups of index <n

e LowIndexNormalSubgroups(G,n) ... finds normal subgroups
of index < n

e AbelianQuotient(G) ... finds the abelianization G/G’
e pQuotient(G,p,c) ... finds p-quotients of G of class <c
e NilpotentQuotient(G,c) ... finds nilpotent quotients of G

of class < c



Coset enumeration

Let G = (X |R), and let H be the subgroup generated by
some finite set Y of words on the alphabet X = {z1,...,zm}.

Methods exist for systematically enumerating the cosets Hg
for g € G. It is helpful to store these in a coset table, which
shows the effect of multiplying each (numbered) coset Hg

by a generator x; or its inverse z;1:
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Each relation from the defining presentation (X |R) for G
forces pairs of cosets to be equal: Hgr = Hg for all g € G.

The same thing happens on application of each generator
y €Y to the trivial coset H: Hy = H.

New cosets are defined (if needed), and all such coincidences
are processed, until the coset table either ‘closes’ or has too
many rows.

If the coset table closes with n cosets, then |G : H| = n.
Moreover, the coset table gives us the natural permutation
representation of G on the right coset space (G:H).

If it does not close, then the index |G: H| could be infinite,
or just too large to be found (or it might even be small but
the computation was not given enough resources).



Schreier coset graphs

Suppose the group G is generated by X = {z1,zo,...,xm}.

Given any transitive permutation representation of G on a
set 2 of size n, we may form a graph with vertex-set €2, and
with edges of the form a — ax; for 1 <i:<m.

Similarly, if H is a subgroup of index n in G, we may form
a graph whose vertices are the right cosets of H and whose
edges are of the form Hg — Hgx; for 1 <i:<m.

These two graphs are the same when 2 is the right coset
space (G:H), and H is the stabilizer of a point of Q2. It is
called the Schreier coset graph (G, X, H).



Schreier coset graphs (cont.)

The Schreier coset graph >(G, X, H) gives a diagrammatic
representation of the natural action of G on cosets of H,
and hence is equivalent to the coset table, e.g. as follows:

. y TR
) 1] 2 1 2 1
21 1 3 1 4
2 4 3| 3 5 3 2
4| 5 2 5 5
5 5| 4 4 4 3

when z+— (1,2)(4,5) and y+~— (2,3,5,4)



Some observations

1) A spanning tree for the coset graph X gives a Schreier
transversal T for H in GG

2) Edges of the coset graph not used in the spanning tree
give a Schreier generating-set for H in G

Hv = Huxy

Hx,, Ha:kacl_l

The edge Hu — Hwv given by multiplication by xz; gives the
Schreier generator ux;v~ ! = ux;(uz;)~ ! for H.



The Reidemeister-Schreier process

Given a finitely-presented group G = (X | R) and a subgroup
H of finite index in G, Reidemeister-Schreier theory pro-
vides a method for obtaining a presentation for H (in terms
of generators and relations):

1) Construct the coset graph — using the coset table

2) Take a spanning tree in the coset graph — this gives
a Schreier transversal for H in G

3) Label the unused edges with Schreier generators

4) Apply each of the relators from R to each of the cosets
in turn, to obtain the defining relations for H.



Example

Let G = (z,y|x2,4y3), and let H be the stabilizer of 1 in the
permutation representation z — (2,3), y+— (1,2,3):

Schreier generators
Hy
A==z
A D B =y3 (=1)
C' = yaxy
Hy_l D = y_lxy_l

Relation z2 = 1 gives new relations A2=1 and CD =1
Relation y3 1 gives new relation B=1

Thus H has presentation (A,C|A?) via A=z and C = yzy.



Proving finitely-presented groups are infinite

T here are several ways of proving a finitely-presented group
G = (X | R) is infinite, with the help of MAGMA:

Show the abelianisation G /G’ is infinite

Check to see if G has more generators than relations
Find a subgroup of G with infinite abelianisation
Construct an epimorphism onto a known infinite group

Note: the third of these depends on having a collection of
subgroups to check—such as all subgroups of small index.



Low index subgroup methods

Again, let G = (X |R) be a finitely-presented group, and
suppose we want to find all subgroups of small index in G.

Subgroups of index < n can be found (up to conjugacy) by
a systematic enumeration of coset tables with < n rows.

The ‘low index subgroups’ algorithm starts with the identity
subgroup and attempts to enumerate its right cosets. Then
(or at any later stage) if more than n cosets are defined, all
possible concidences between two cosets are considered.

This sets up a branching process for a backtrack search,
which is guaranteed to complete (given sufficient time and
memory), by Schreier’'s subgroup lemmal



Low index normal subgroups

Small homomorphic images of a finitely-presented group G
can be found as the groups of permutations induced by G on
cosets of subgroups of small index. This gives G/K where K
is the core of H, but produces only images that have small
degree faithful permutation representations.

Alternatively, the (standard) low index subgroups method
can be adapted to produce only normal subgroups.

A new method was developed recently by Derek Holt and his
student, which systematically enumerates the possibilities
for the composition series of the factor group G/K, for any
normal subgroup K of small index in G.
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