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Introduction Classification The abelian normal quotient method

It the automorphism group of a graph acts transitively on the set of arcs,

we say that the graph is arc-transitive.

We classify tetravalent arc-transitive graphs of order 2pq for distinct odd

primes p and q.

Together with the previous work of Zhou and Feng who classified

tetravalent arc-transitive graphs of order 4p and of order 2p2, this
completes the classification of graphs of order 2pq for any two given

primes p and q.

Definitions
1 Whenever the automorphism group of a graph acts regularly on the

set of arcs, we say that the graph is arc-regular.

2 A group is semisimple if it has no nontrivial abelian normal subgroups
(equivalently, a trivial solvable radical).

3 We say that a graph Γ admits a group G if G is isomorphic to some
subgroup of Aut(Γ).
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The classification

Theorem

Let Γ be a tetravalent arc-transitive graph of order 2pq where p and q are
distinct odd primes. Then one of the following holds:

(a) Γ is an arc-regular graph: these have already been classified by Zhou
and Feng;

(b) Γ is isomorphic to the lexicographic product Cpq[2K1] of the cycle Cpq

and the edgeless graph on two vertices 2K1 (wreath graphs);

(c) Γ belongs to a (short) finite list of exceptions.
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Background

1 The classification of tetravalent arc-regular graphs of order 2pq,
where p and q are prime, by Zhou and Feng (2009).

2 The census of tetravalent 2-arc-transitive graphs of small order

(Potočnik, 2009; up to 512 vertices; online up to 727 vertices).

3 The census of tetravalent arc-transitive graphs (Potočnik, Spiga,

Verret, submitted; available online; up to 640 vertices).

4 It follows from the result of Praeger and Xu (1989) that if a

tetravalent graph Γ admits an arc-transitive group G which contains a

non-semiregular abelian normal subgroup N, then Γ ∼= C (2, r , s).
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In the proof, we use the abelian normal quotient method.

The normal quotient method: find a nontrivial intransitive normal

subgroup and consider the quotient. Continue until you reach a

quasiprimitive or a biquasiprimitive group (the base case). Reconstruct the

graph.

The abelian normal quotient method: look for a nontrivial, abelian,

minimal normal subgroup N and consider quotients until you reach a

semisimple group. Note that if N is semiregular, the covers are normal.

The inductive process is easier when dealing with abelian normal

subgroups; the base case is harder to solve in general. A strict order

restriction makes the base for the abelian normal quotient method

relatively simple.
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A sketch of the proof

If the graph is arc-regular, refer to Zhou and Feng.

If the automorphism group has an abelian, minimal normal subgroup

N which is semiregular, consider the quotient graph (if it is not

semiregular, the graph is isomorphic to Cpq[2K1]).

� If the quotient is arc-regular, then so is its normal cover.

� If none of the above, reconstruct the graph from the base case or

consider the next quotient.

The base case: let p and q be distinct, odd primes and let Γ be a

tetravalent graph of order 2pq. If Γ admits an arc-transitive

semisimple group G , then G has a unique minimal normal subgroup

T , which is simple, and G embeds into Aut(T ). Once we obtain a list

of possible candidates for T , it can be show with a bit of help from

Magma and the existing censuses that then Γ is isomorphic to one of

the graphs in the table of exceptions.
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Main theorem: the exceptions

Γ |V (Γ)| G
Γ(v)

v G Description

A1[30, 3] 2 · 3 · 5 C4 S5 L(cdc(F10))

A2[30, 1] 2 · 3 · 5 C2
2

S5 cdc(L(F10))

A1[30, 2] 2 · 3 · 5 C4 S5 D(F10)

A1[30, 5] 2 · 3 · 5 C2
2

S5

A1[42, 3] 2 · 3 · 7 C4 PSL(2, 7) L(F28)

D4 PGL(2, 7)
A1[42, 5] 2 · 3 · 7 D4 PGL(2, 7)
A2[70, 1] 2 · 5 · 7 S4 S7 cdc(O(4))

A2[110, 1] 2 · 5 · 11 A4 PGL(2, 11) Y(5, 22; 5, 11)
A2[182, 2] 2 · 7 · 13 A4 PGL(2, 13)
A2[506, 1] 2 · 11 · 23 A4 PSL(2, 23)
A2[506, 2] 2 · 11 · 23 A4 PSL(2, 23)
A2[506, 3] 2 · 11 · 23 A4 PSL(2, 23)
T2162 2 · 23 · 47 S4 PSL(2, 47)

If Γ admits an arc-transitive semisimple group, it belongs to the table above; if not, it is one of

three other exceptions on 42, 182 or 506 vertices.
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Thank you!
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