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What is harmonic analysis?

Key idea is to analyse a function by breaking it up into “simple” functions.
The form the simple functions take depends on the situation.

General case Λ a parameter space ϕλ a analysing function. Develop an
analysis operator

Tλ[v ] = 〈v , ϕλ〉

and a synthesis

v(x) =

∫
Tλ[v ]ϕλ(x)dµ(λ)

for µ a suitable measure on Λ.
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Example: Fourier analysis in n dimensions

Λ = Rn

parameter ξ

ϕξ =
1

(2π)n/2
e i〈x ,ξ〉

Tξ[v ] = 〈v , ϕξ〉 =

∫
v(x)ϕξ(x) =

1

(2π)n/2

∫
e−i〈x ,ξ〉v(x)dx

v =

∫
Tξ[u]ϕξ(x)dξ =

1

(2π)n/2

∫
e i〈x ,ξ〉Tξ[v ](ξ)dξ
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Example: Wavelet analysis in 1 dimension

Λ = R2

parameter (a, b)

ϕ(a,b) = |a|−1/2f (a−1(x−b))

with
∫
f (x)dx = 0.

T(a,b)[v ] = 〈v , ϕ(a,b)〉 =

∫
v(x)ϕ(a,b)(x)dx =

1

|a|1/2

∫
v(x)f (a−1(x−b))dx

v =

∫∫
T(a,b)[v ]ϕ(a,b)(x)

dadb

a2
=

∫∫
f (a−1(x − b))T(a,b)[v ]

dadb

|a|3/2
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The importance of L2 spaces

The “action” of analysis/synthesis takes places in L2 where we measure
the size of a function v(x) by

||v ||L2 =

(∫
|v(x)|2dx

)1/2

Equality v = u in this context means

||v − u||L2 =

(∫
|v(x)− u(x)|2dx

)1/2

= 0

Convergence vj → u in this context means

lim
j→∞
||vj − v ||L2 = lim

j→∞

(∫
|vj(x)− v(x)|2dx

)1/2

= 0

So when we say that v is synthesised from Tλ[v ] we mean in the L2 sense.
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Convergence in L2 does not mean pointwise

Consider the function u : R→ R
with

u = h−1/8e−
|x|2

h2

Claim this converges to zero in L2.

||u − 0||L2 =

(∫
h−1/4e−2

|x|2

h2 dx

)1/2

≈
(
h−1/4 × h

)1/2
→ 0
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Other ways of measuring size

Typically we want to study v(x) in other (than L2) function spaces. This
allows a finer understanding of the behaviour of v(x). Often want to know
about concentration of v(x). An important class of functions spaces are
the Lp spaces for 1 ≤ p ≤ ∞. Where

||v ||Lp =

(∫
|v(x)|pdx

)1/p

1 ≤ p <∞

||v ||L∞ = esssup|v(x)|

By knowing about the full family of norms we can understand the types of
potential concentrations.
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What Lp norms measure
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Measuring Concentration

Understanding how the Lp norm of v grows helps us to understand the
local features of a function. Some feature that frequently appear in
solutions to PDE

Point

High L∞ norm

Sharp change in Lp norm when
p <∞

Tube

Lower L∞ norm

Change in Lp norm more gentle
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Submanifold Estimates

Can take cross sections of
functions and study the Lp norm
of the cross section.

Because cross sections are lower
dimensional we can get very fine
information about how v(x)
concentrates to lower
dimensional objects.
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Bilinear estimates

Suppose we want to look at something that has a non-linearity. We then
need to consider how production of functions behave so we might ask
What happens to ||uv ||Lp?

Applications to nonlinear PDE

i∂tv(t, x) + ∆v(t, x) = ±|v(t, x)|αv(t, x)

Interaction between frequency bands
determines regularity properties.
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High vs low frequency contributions

Typically an analysis/synthesis will break up into high/low frequency
bands.

Fourier analysis: For e i〈x ,ξ〉 the frequency is
|ξ| so high/low frequency corresponds to
large/small |ξ|.

Wavelet analysis: For |a|−1/2f (a−1(x − b))
the frequency is |a|−1 so high/low frequency
corresponds to small/large |a|.

We are usually interested what happens to the high frequency
contributions.
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What is Semiclassical Analysis?

Term for a collection of techniques to address various PDE that involve a
parameter h→ 0. For example if we take the Laplacian

∆ = −
n∑

j=1

∂2

∂x2j

and consider its eigenfunctions

∆v = λ2v

when λ is large. Check that e iλ〈x ,ξ〉 for some direction ξ ∈ Rn, |ξ| = 1.

∂2

∂xj
e iλ〈x ,ξ〉 = λ2ξ2j e

iλ〈x ,ξ〉

By setting h = λ−1 and dividing everything through by λ2 we can re-write
this as a semiclassical equation

h2∆e
i
h
〈x ,ξ〉 = e

i
h
〈x ,ξ〉
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Primary objects

Semiclassical differential (and pseudodifferential) operators Built out
of combinations of partial derivatives. Use multi-index notation. Let
α = (α1, . . . , αn) where each αj = Z+ and |α| = α1 + · · ·+ αn.

Dα = Dα1
x1 · · ·D

αn
xn =

(
1

i

∂

∂x1

)α1

· · ·
(

1

i

∂

∂xn

)αn

Then a semiclassical differential operator can be written as

L =
∑
|α|≤N

cα(x)h|α|Dα

where cα(x) is the coefficient associated to Dα (simplest case is constant
coefficient where cα does not depend on x).
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The Fourier transform method

Provides the link for constant coefficient equations.
We use a scaled version of the Fourier transform to analyse/synthesise
v(x).

v(x) =
1

(2πh)n/2

∫
e

i
h
〈x ,ξ〉Tξ[v ]dξ

where

Tξ[v ] =
1

(2πh)n/2

∫
e−

i
h
〈x ,ξ〉v(x)dx

and see what happens when we apply a differential operator.

h
1

i

∂

∂xj
v =

1

(2πh)n/2

∫
e

i
h
〈x ,ξ〉ξjTξ[v ]dξ
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From differential equations to algebraic equations

So we have a relationship between differentiation of v(x) and
multiplication of Tξ[v ].

h|α|Dαv(x)→ ξαTξ[v ]

where
ξα = ξα1

1 ξα2
2 · · · ξ

αn
n .

Suppose that for α = (α1, . . . , αn)

L =
∑
|α|≤N

cαh
|α|Dα

then
L→

∑
|α|≤N

cαξ
α

So we can solve an algebraic equation on the Fourier side then invert to
solve the differential equation L[u] = 0.
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Semiclassical pseudodifferential operator

Can go step further and generalise to allow us to deal with non-constant
coefficient equations. Let p(x , ξ) ∈ C∞(Rn × Rn). Define

p(x , hD)u =
1

(2πh)n

∫
e

i
h
〈x−y ,ξ〉p(x , ξ)u(y)dydξ

and call p(x , hD) the left (or standard) quantisation of the symbol p(x , ξ).
If p(x , ξ) = p(ξ) is independent of x then

p(x , hD) = p(hD) = F−1h p(ξ)Fh

Need requirements on p(x , ξ) to make sure that it is “polynomial like” but

can for example have fractional powers like p(ξ) = (1 + |ξ|2)
2
3 .
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Semiclassical calculus

Tells us how to compose two operators L1, L2.

Tells us when operators are invertible and gives a formula for the
inverse.

Gives a framework in which we can construct explicit local solutions
to Lv = f or (hDt − L)u = 0 type equations.

Allows us to study the high frequency problems from harmonic
analysis by studying the analysing functions φλ(x) as solutions to
partial differential equations.

Major point of connection are the functions e
i
h
〈x ,ξ〉 from a

semiclassical perspective we see them as solutions to an eigenfunction
equation. From the harmonic analysis perspective they are the
“simple” functions that we will use to analyse more general functions
v(x).

M. Tacy (University of Auckland) semiclassical harmonic analysis 11 January 2021 18 / 25



Evolutions equations and eigenfunctions

When we first learn PDE we learn to separate solutions, look for solutions

v(t, x) = f (t)u(x)

for the evolution equation.

(hDt − L)v(t, x) = 0

In this case have a solution

v(t, x) = e
i
h
tu(x)

where
Lu = u

If you can solve the eigenfunction equation you can construct the solutions
to the evolution equation. Want to go the other way. Use evolution
equations to solve for eigenfunctions.
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From eigenfunctions to evolution equations

Suppose that L is a semiclassical differential operator

L =
∑
|α|≤N

cα(x)h|α|Dα

and v is an approximate eigenfunction that is

(L− 1)v = small

We measure smallness in L2 so we say that the quasimode error of v is
||Pv ||L2 = ||(L− 1)v ||L2 . Usually assume that

||Pv ||L2 ≤ Ch ||v ||L2

then we say v is an OL2(h) quasimode of P. Then clearly

(hDt − P)v = hf (x)

So v is an approximate solution to the evolution equation.
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Duhamel method for describing eigenfunctions

Change our perspective.

hf is an error→ hf is an inhomogeneity

We want to think of v(x) as an exact solution to the inhomogeneous
equation

(hDt − L)v(x) = hf

This perspective changes allows us to use Duhamel principle to write

v = U(t)v +
1

h

∫ t

0
U(t − s)[hf (x)]ds

Since this is true for any time t we can time average (up to time for which
we have a good expression for U(t)). Therefore estimating the Lp norms
of the function u is the same as analysing the L2 → Lp mapping properties
of time averages of U(t).
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A parametrix for U(t)

We can write U(t) as a semiclassical FIO and produce an explicit local
representation of it as an oscillatory integral operator.
We use the PDE {

(hDt + p(x , hD))U(t) = 0

U(0) = Id

to produce a parametrix solution

U(t)u =
1

(2πh)n

∫
e

i
h
φ(t,x ,y ,ξ)b(x , y , ξ)u(y)

∂tφ(t, x , y , ξ) = p(x ,∇xφ) φ(0, x , y , ξ) = 〈x − y , ξ〉

This parametrix has the advantage of being a nice explicit representation
for U(t) in terms of an oscillatory integral. We can always do this up to
order one time. This means we are able to use the, well developed, theory
of oscillatory integral operators to extract the mapping properties of U(t).
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Lp estimates for eigenfunctions

(h2∆− 1)v = 0

u obeys the estimates due to
Sogge

||v ||Lp . h−δ(n,p) ||v ||L2

Known to be sharp for
spherical harmonics

Was extended (by Koch-Tataru-Zworski) to a result about
pseudodifferential operators whose symbols obey a curvature assumption.
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Submanifold Lp Estimates for Quasimodes

Burq-Gérard-Tzvetkov for Laplace eigenfunction 2007, Tacy 2010 for
Laplace like operators and order h quasimodes. If Y has dimension k

||v ||Lp(Y ) . h−δ(n,k,p) ||v ||L2(M)

k ≤ n − 2 k = n − 1
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Coming up

Lp estimates for joint quasimodes

Where v obeys two semiclassical equations

P1v = OL2(h)

and

P2v = OL2(h)

What can we say about
||v ||Lp?

Need non-degeneracy conditions on P1, P2. This is where the Fourier
transform method comes into its own as it allows us to analyse some
simple models. More on Wednesday ...
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