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Freudenthal-Tits Magic Square



The second row of the Square
A2 A2xA2 A5 E6

Veronese
Variety

Segre
Variety

Grassmann
Variety

26-dim E6,1

Variety

Projective planes over (quadratic, not necessarily 
associative) algebras with zero divisors



Algebraic description of the Severi varieties

Veronese: image of the map
P2(K)→ P5(K) : (x , y , z) 7→ (x2, xy , xz, y2, yz, z2)

Segre: image of the map P2(K)× P2(K)→ P8(K) :

(x , y , z)× (x ′, y ′, z ′) 7→ (xx ′, xy ′, · · · , yz ′, zz ′)

The line Grassmannian variety G5,1(K) of P5(K) is the set of
points of P14(K) obtained by taking the images of all lines of P5(K)

under the Plücker map

ρ(〈(x0, x1, . . . , xm), (y0, y1, . . . , ym)〉) =

(∣∣∣∣∣
xi xj

yi yj

∣∣∣∣∣

)

0≤i<j≤m

.

The Cartan variety in P26(K) has a more complicated algebraic
description, linked to the 27-dimensional E6 module.
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Axiomatic setup for the second row

X : point set spanning PN(K), N ∈ N ∪ {∞}.

Ξ: collection of (d + 1)-dimensional subspaces of PN(K), where |Ξ| ≥ 2
and 1 ≤ d <∞, such that for each ξ ∈ Ξ, the set X (ξ) := X ∩ ξ is a
non-degenerate quadric or ovoid generating ξ.

The tangent space at x ∈ X to X is the subspace Tx generated by the
tangent spaces to quadrics and singular lines.

Definition
We say that the pair (X ,Ξ) is an axiomatic Veronese variety of type d (or,
briefly, an AVV of type d) if it satisfies the following axioms:

Any pair of points x1, x2 ∈ X lies in at least one element of Ξ;

if ξ1, ξ2 ∈ Ξ are distinct, then ξ1 ∩ ξ2 ⊆ X ;

for each x ∈ X , dim Tx ≤ 2d .
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Second row of the Freudenthal-Tits magic square

Theorem (JS-Van Maldeghem, partly De Schepper, Krauss)

An AVV of type d in PN(K) is projectively equivalent to one of the following:

The quadric Veronese variety V2(K) (N = 5);

the Segre variety S1,2(K) (N = 5), S1,3(K) (N = 7) or S2,2(K) (N = 8);

the line Grassmannian variety G4,1(K) (N = 9) or G5,1(K) (N = 14);

the half-spin variety D5,5(K), and then N = 15;

the (Cartan) variety E6,1(K), and then N = 26;

the Veronese variety V2(K,A), for some d-dimensional quadratic
alternative division algebra A over K. Moreover, if char(K) 6= 2, then
d ∈ {1,2,4,8}. Here, N = 3d + 2 where d = 2`.
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Severi’s theorem

Theorem (Severi (1901))
Every irreducible smooth non-degenerate, secant-defective surface in
P5(C) is projectively equivalent to the quadric Veronese variety.

Secant defective: SX = ∪x1 6=x2,xi∈X 〈x1, x2〉 6= P5(C)

The quadric Veronese variety is secant-defective since identifying
points on it with symmetric matrices A of rank 1, secants can be
identified with matrices of rank at most 2, hence in this case SX is the
cubic hypersurface given by det(A) = 0.

Dale proved a characteristic p version of Severi’s theorem in 1985.
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Zak’s theorem
Let X be a smooth irreducible non-degenerate projective variety of
dimension d over an algebraically closed field of characteristic zero.

Theorem
If X is secant defective then N ≥ 3

2d + 2. Moreover if equality occurs
then X is either the Veronese variety in P5(d = 1), the Segre variety in
P8(d = 2), the line Grassmannian in P14(d = 4) or the Cartan variety
in P26(d = 8).

d = 1: Severi (1901) and d = 2: Scorza (1908) and conjectured in
(1979) by Griffiths-Harris, Fujita-Roberts.
Case of equality essentially equivalent to Jacobson’s classification of
Jordan algebras over algebraically closed fields.
The Severi varieties correspond to the split composition algebras.
Zak follows from (the split case of) our theorem.
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Freudenthal-Tits Magic Square



R-trees
A metric space T is called a tree (or R-tree) if it satisfies

(T1) For any two points x , y ∈ T , there is a unique geodesic
γ : [0,d(x , y)]→ T with γ(0) = x and γ(d(x , y)) = y . We put
[x , y ] = γ([0,d(x , y)]).

(T2) If 0 < r < s and if γ : [0, s]→ T is an injection such that γ|[0,r ]
and γ|[r ,s] are geodesics, then γ is a geodesic.

Theorem (Serre, Morgan-Shalen)
Let G be a finitely group acting on a tree such that every element of G
fixes a point. Then G has a global fixed point.

An end of an R-tree T is an equivalence class of rays in T , with two
rays identified if their intersection is a ray.
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From the building at infinity to the global building
Theorem (Kramer-JS)
Let X be a thick simplicial Euclidean building and let ∆ be the
spherical building at infinity (with respect to the complete apartment
system of X). Let G be a group of type-preserving automorphisms of
X. Then the action of G on ∆ is strongly transitive if and only if the
action of G on X is strongly transitive.

Special case: Caprace and Ciobotaru assuming in addition that X
is locally finite and that G is a closed subgroup of Aut(X ).

Special case of trees: Burger and Mozes.

Ciobotaru and Rousseau proved an analogon of this special case
in the more general context of hovels.
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Klein’s criterion aka the Ping-pong Lemma

Theorem
Let G be a group acting on a set X , and let Γ1, Γ2 ≤ G with |Γ1| ≥ 3
and |Γ2| ≥ 2 and let Γ = 〈Γ1, Γ2〉. Assume there exist non-empty sets
X1,X2 ⊂ X with X2 6⊂ X1 such that γ(X2) ⊂ X1 ∀γ ∈ Γ1, γ 6= 1 and
γ(X1) ⊂ X2 ∀γ ∈ Γ2, γ 6= 1. Then Γ = Γ1 ? Γ2.

Application: The Sanov subgroup in SL(2,Z) generated by

(
1 2
0 1

)

and

(
1 0
2 1

)
is a free group. It has index 12 in SL(2,Z).

Exercise: Can you find subsets of R2 to make ping-pong work?
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Tits alternatives

A group G is said to satisfy the Tits alternative if every subgroup of G
is either virtually soluble or contains a free subgroup of rank 2.

Theorem (Tits)
Finitely generated linear groups satisfy the Tits alternative.

The ping-pong lemma is a crucial ingredient in the proof.

A finitely generated group has polynomial growth if and only if it is
virtually nilpotent (Gromov).

Open question: Do CAT(0) groups, i.e. groups which act
geometrically on CAT(0) spaces satisfy the Tits alternative?
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Apartments in euclidean buildings of
dimension 2

Ã2

B̃2

G̃2



A local to global result for groups acting on R-buildings
Theorem (JS, Struyve and Thomas)
Let G be a finitely generated group of automorphisms of an affine
building X of type Ã2 or C̃2. If every element of G fixes a point of X ,
then G fixes a point of X .

By considering finitely generated subgroups and using a theorem of
Caprace and Lytchak we can extend to non-finitely generated groups
as follows.

Corollary

Suppose a group G acts on a complete affine building X of type Ã2 or
C̃2 such that every element of G fixes a point of X . Then G fixes a
point in the bordification X = X ∪ ∂X of X.
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Reductions
Let G be finitely generated acting on X which is an R-building of type
Ã2 or C̃2. Then we may assume the following

Every point of X is a special vertex.

X is metrically complete (passing to the ultrapower).

G is type-preserving (finite-index subgroup + Bruhat-Tits fixed
point theorem)

Lemma
Let G be a group acting isometrically on a complete 2-dimensional
Euclidean building X. If A := Fix(GA) and B := Fix(GB) are two
nonempty fixed point sets of finitely generated subgroups GA and GB

both of whose isometries are all elliptic, then there exist points α? ∈ A
and β? ∈ B such that d(α?, β?) = d(A,B).
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The ideas of the proof
Lemma
Suppose G has two proper finitely generated subgroups G0 and G1

such that the respective fixed point sets B0 := Fix(G0) and
B1 := Fix(G1) are nonempty and disjoint. Then G contains a
hyperbolic element.

Pick a0 ∈ B0,a1 ∈ B1 such that d(a0,a1) = d(B0,B1).

Find a "good" g1 ∈ G1 and define a2 = g1a0, G2 = g1G0g−1
1 with fixed

set B2 = g1B0. Obtain "good" g2 and define a3 = g2a1.

Define g = g2g1 and inductively ai = gai−2 and gi = ggi−2g−1.

For all i ≥ 1, we have ai ,ai+1 ∈ Ai , ξ ∈ ∂Ai and ∠ai (ξ,ai+1) ≥ 2π
3 .

Show g has unbounded orbit using Busemann functions of geodesic
rays bγ(x) := limt→∞[d(x , γ(t))− t ].
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Hausdorff distance I

Two (nonempty) subsets U,V of a metric space X have Hausdorff
distance at most r if

U ⊆ Br (V ) and V ⊆ Br (U).

In this case we write Hd(U,V ) < r . We define for U,V ⊆ X the
Hausdorff distance as

Hd(U,V ) = inf{r > 0 | Hd(U,V ) < r}

For example, a nonempty subset is bounded if and only if it has finite
Hausdorff distance from some point.

J. Schillewaert (University of Auckland) Buildings 18 / 17



Hausdorff distance II

More generally, we say that V dominates U if U ⊆ Br (V ) for some
r > 0, and we write then

U ⊆Hd V .

This defines a preorder on the subsets of X .

We call two Weyl simplices a,a′ ⊆ X Hausdorff equivalent if they have
finite Hausdorff distance. The equivalence class of a is denoted ∂a.
The preorder ⊆Hd induces a partial order on these equivalence
classes.
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Related work I

Parreau: similar result for subgroups Γ of connected reductive
groups G over certain fields F , where Γ is generated by a bounded
subset of G(F ) and the action is on the completion of the
associated Bruhat–Tits building.

Breuillard and Fujiwara: quantitative version of Parreau’s result for
discrete Bruhat–Tits buildings and asked whether their result
holds for the isometry group of an arbitrary affine building.

Leder and Varghese (using work of Sageev): similar result for
groups acting on finite-dimensional CAT(0) cube complexes.

False for infinite-dimensional CAT(0) cubical complexes: Osajda
using actions of infinite free Burnside groups.
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Related work II
Recently, Norin, Osajda and Przytycki proved:

Theorem
Let X be a CAT(0) triangle complex and let G be a finitely generated
group acting on X with no global fixed point. Assume that either each
element of G fixing a point of X has finite order, or X is locally finite, or
X has rational angles. Then G has an element with no fixed point in X.

Remark
Note that CAT(0) triangle complexes include discrete buildings of type
G̃2. They use Helly’s theorem together with sophisticated results
including Masur’s theorem on periodic trajectories in rational billiards,
and Ballmann and Brin’s methods for finding closed geodesics in
2-dimensional locally CAT(0) complexes.
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Non-discrete Euclidean buildings

A metric space X with a collection F of charts (isometric injections of a
Euclidean model space A into X ) is a Euclidean building if

(EB1) For all ϕ ∈ F and w ∈WRn, ϕ ◦ w is in F .

(EB2) The charts are W -compatible, more precisely If f , f ′ ∈ F , then
X = f−1(f ′(A)) is a closed and convex subset of A, and f�X = f ′ ◦ w�X for
some w ∈W .

(EB3) Any two points x , y ∈ X are contained in some affine apartment.

(EB4) If a,b ⊆ X are Weyl chambers, then there is an affine apartment A
such that the intersections A ∩ a and A ∩ b contain Weyl chambers.

(EB5) If A1,A2,A3 are affine apartments which intersect pairwise in half
spaces, then A1 ∩ A2 ∩ A3 6= ∅.
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The spherical building at infinity

Let ∂AX denote the set of all equivalence classes of Weyl simplices,
partially ordered by domination ⊆Hd . For every affine apartment A, the
poset ∂A consisting of the Weyl simplices contained in A may be
viewed as a sub-poset of ∂AX .

Proposition The poset ∂AX is a spherical building. The map A 7→ ∂A
is a one-to-one correspondence between the affine apartments in X
and the apartments of the spherical building ∂AX .

J. Schillewaert (University of Auckland) Buildings 23 / 17


	The Freudenthal-Tits magic square
	Non-discrete Euclidean buildings
	Towards a Tits alternative for Euclidean buildings
	Appendix

