## Some of my work on buildings

Jeroen Schillewaert

Department of Mathematics University of Auckland New Zealand

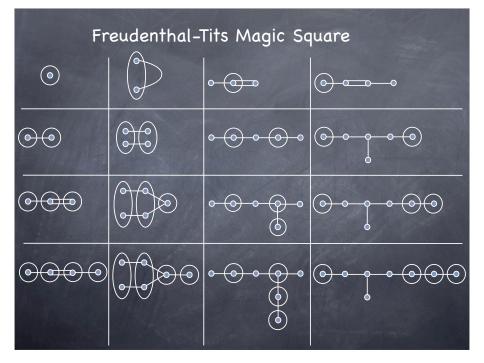
## Table of contents



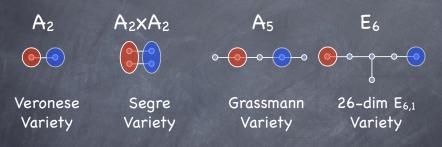




Towards a Tits alternative for Euclidean buildings



## The second row of the Square



Projective planes over (quadratic, not necessarily associative) algebras with zero divisors

#### Algebraic description of the Severi varieties

- Veronese: image of the map  $\mathbb{P}^2(\mathbb{K}) \to \mathbb{P}^5(\mathbb{K}) : (x, y, z) \mapsto (x^2, xy, xz, y^2, yz, z^2)$
- Segre: image of the map  $\mathbb{P}^2(\mathbb{K}) \times \mathbb{P}^2(\mathbb{K}) \to \mathbb{P}^8(\mathbb{K})$ :  $(x, y, z) \times (x', y', z') \mapsto (xx', xy', \cdots, yz', zz')$
- The line Grassmannian variety G<sub>5,1</sub>(K) of P<sup>5</sup>(K) is the set of points of P<sup>14</sup>(K) obtained by taking the images of all lines of P<sup>5</sup>(K) under the Plücker map

$$\rho(\langle (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_m), (\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_m) \rangle) = \left( \begin{vmatrix} \mathbf{x}_i & \mathbf{x}_j \\ \mathbf{y}_i & \mathbf{y}_j \end{vmatrix} \right)_{0 \le i < j \le m}$$

The Cartan variety in P<sup>26</sup>(K) has a more complicated algebraic description, linked to the 27-dimensional E<sub>6</sub> module.

### Axiomatic setup for the second row

- X: point set spanning  $\mathbb{P}^{N}(\mathbb{K}), N \in \mathbb{N} \cup \{\infty\}.$
- Ξ: collection of (*d* + 1)-dimensional subspaces of P<sup>N</sup>(K), where |Ξ| ≥ 2 and 1 ≤ *d* < ∞, such that for each ξ ∈ Ξ, the set X(ξ) := X ∩ ξ is a non-degenerate quadric or ovoid generating ξ.</li>
- The tangent space at x ∈ X to X is the subspace T<sub>x</sub> generated by the tangent spaces to quadrics and singular lines.

#### Definition

We say that the pair  $(X, \Xi)$  is an *axiomatic Veronese variety of type d* (or, briefly, an AVV of type *d*) if it satisfies the following axioms:

- Any pair of points x<sub>1</sub>, x<sub>2</sub> ∈ X lies in at least one element of Ξ;
- if  $\xi_1, \xi_2 \in \Xi$  are distinct, then  $\xi_1 \cap \xi_2 \subseteq X$ ;
- for each  $x \in X$ , dim  $T_x \leq 2d$ .

Second row of the Freudenthal-Tits magic square

Theorem (JS-Van Maldeghem, partly De Schepper, Krauss)

An AVV of type d in  $\mathbb{P}^{N}(\mathbb{K})$  is projectively equivalent to one of the following:

- The quadric Veronese variety  $V_2(\mathbb{K})$  (N = 5);
- the Segre variety  $S_{1,2}(\mathbb{K})$  (N = 5),  $S_{1,3}(\mathbb{K})$  (N = 7) or  $S_{2,2}(\mathbb{K})$  (N = 8);
- the line Grassmannian variety  $\mathcal{G}_{4,1}(\mathbb{K})$  (N = 9) or  $\mathcal{G}_{5,1}(\mathbb{K})$  (N = 14);
- the half-spin variety  $\mathcal{D}_{5,5}(\mathbb{K})$ , and then N = 15;
- the (Cartan) variety  $\mathcal{E}_{6,1}(\mathbb{K})$ , and then N = 26;
- the Veronese variety V<sub>2</sub>(K, A), for some d-dimensional quadratic alternative division algebra A over K. Moreover, if char(K) ≠ 2, then d ∈ {1,2,4,8}. Here, N = 3d + 2 where d = 2<sup>ℓ</sup>.

## Severi's theorem

#### Theorem (Severi (1901))

Every irreducible smooth non-degenerate, secant-defective surface in  $\mathbb{P}^5(\mathbb{C})$  is projectively equivalent to the quadric Veronese variety.

Secant defective: 
$$SX = \overline{\bigcup_{x_1 \neq x_2, x_i \in X} \langle x_1, x_2 \rangle} \neq \mathbb{P}^5(\mathbb{C})$$

The quadric Veronese variety is secant-defective since identifying points on it with symmetric matrices *A* of rank 1, secants can be identified with matrices of rank at most 2, hence in this case *SX* is the cubic hypersurface given by det(A) = 0.

Dale proved a characteristic *p* version of Severi's theorem in 1985.

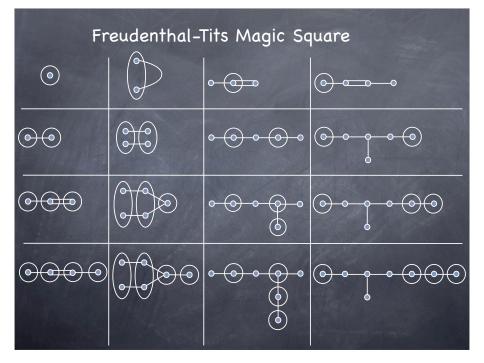
## Zak's theorem

Let X be a smooth irreducible non-degenerate projective variety of dimension d over an algebraically closed field of characteristic zero.

#### Theorem

If X is secant defective then  $N \ge \frac{3}{2}d + 2$ . Moreover if equality occurs then X is either the Veronese variety in  $\mathbb{P}^5(d = 1)$ , the Segre variety in  $\mathbb{P}^8(d = 2)$ , the line Grassmannian in  $\mathbb{P}^{14}(d = 4)$  or the Cartan variety in  $\mathbb{P}^{26}(d = 8)$ .

- d = 1: Severi (1901) and d = 2: Scorza (1908) and conjectured in (1979) by Griffiths-Harris, Fujita-Roberts.
- Case of equality essentially equivalent to Jacobson's classification of Jordan algebras over algebraically closed fields.
- The Severi varieties correspond to the split composition algebras.
- Zak follows from (the split case of) our theorem.



#### **ℝ**-trees

A metric space T is called a *tree* (or  $\mathbb{R}$ -tree) if it satisfies

- (T1) For any two points  $x, y \in T$ , there is a unique geodesic  $\gamma : [0, d(x, y)] \to T$  with  $\gamma(0) = x$  and  $\gamma(d(x, y)) = y$ . We put  $[x, y] = \gamma([0, d(x, y)])$ .
- (T2) If 0 < r < s and if γ : [0, s] → T is an injection such that γ|<sub>[0,r]</sub> and γ|<sub>[r,s]</sub> are geodesics, then γ is a geodesic.

#### Theorem (Serre, Morgan-Shalen)

Let G be a finitely group acting on a tree such that every element of G fixes a point. Then G has a global fixed point.

An end of an  $\mathbb{R}$ -tree *T* is an equivalence class of rays in *T*, with two rays identified if their intersection is a ray.

## From the building at infinity to the global building

#### Theorem (Kramer-JS)

Let X be a thick simplicial Euclidean building and let  $\Delta$  be the spherical building at infinity (with respect to the complete apartment system of X). Let G be a group of type-preserving automorphisms of X. Then the action of G on  $\Delta$  is strongly transitive if and only if the action of G on X is strongly transitive.

- Special case: Caprace and Ciobotaru assuming in addition that *X* is locally finite and that *G* is a closed subgroup of Aut(*X*).
- Special case of trees: Burger and Mozes.
- Ciobotaru and Rousseau proved an analogon of this special case in the more general context of hovels.

## Klein's criterion aka the Ping-pong Lemma

#### Theorem

Let G be a group acting on a set X, and let  $\Gamma_1, \Gamma_2 \leq G$  with  $|\Gamma_1| \geq 3$ and  $|\Gamma_2| \geq 2$  and let  $\Gamma = \langle \Gamma_1, \Gamma_2 \rangle$ . Assume there exist non-empty sets  $X_1, X_2 \subset X$  with  $X_2 \not\subset X_1$  such that  $\gamma(X_2) \subset X_1 \ \forall \gamma \in \Gamma_1, \gamma \neq 1$  and  $\gamma(X_1) \subset X_2 \ \forall \gamma \in \Gamma_2, \gamma \neq 1$ . Then  $\Gamma = \Gamma_1 \star \Gamma_2$ .

Application: The Sanov subgroup in SL(2,  $\mathbb{Z}$ ) generated by  $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ 

and  $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$  is a free group. It has index 12 in SL(2,  $\mathbb{Z}$ ). Exercise: Can you find subsets of  $\mathbb{R}^2$  to make ping-pong work?

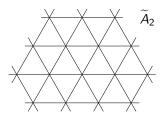
## **Tits alternatives**

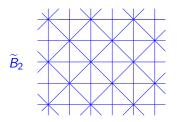
A group G is said to satisfy the Tits alternative if every subgroup of G is either virtually soluble or contains a free subgroup of rank 2.

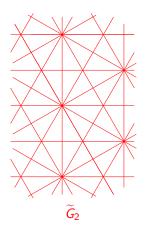
Theorem (Tits) Finitely generated linear groups satisfy the Tits alternative.

- The ping-pong lemma is a crucial ingredient in the proof.
- A finitely generated group has polynomial growth if and only if it is virtually nilpotent (Gromov).
- Open question: Do CAT(0) groups, i.e. groups which act geometrically on CAT(0) spaces satisfy the Tits alternative?

# Apartments in Euclidean buildings of dimension 2







## A local to global result for groups acting on $\mathbb{R}$ -buildings

#### Theorem (JS, Struyve and Thomas)

Let G be a finitely generated group of automorphisms of an affine building X of type  $\tilde{A}_2$  or  $\tilde{C}_2$ . If every element of G fixes a point of X, then G fixes a point of X.

By considering finitely generated subgroups and using a theorem of Caprace and Lytchak we can extend to non-finitely generated groups as follows.

#### Corollary

Suppose a group G acts on a complete affine building X of type  $\tilde{A}_2$  or  $\tilde{C}_2$  such that every element of G fixes a point of X. Then G fixes a point in the bordification  $\overline{X} = X \cup \partial X$  of X.

## Reductions

Let *G* be finitely generated acting on *X* which is an  $\mathbb{R}$ -building of type  $\tilde{A}_2$  or  $\tilde{C}_2$ . Then we may assume the following

- Every point of X is a special vertex.
- X is metrically complete (passing to the ultrapower).
- *G* is type-preserving (finite-index subgroup + Bruhat-Tits fixed point theorem)

#### Lemma

Let G be a group acting isometrically on a complete 2-dimensional Euclidean building X. If  $A := \operatorname{Fix}(G_A)$  and  $B := \operatorname{Fix}(G_B)$  are two nonempty fixed point sets of finitely generated subgroups  $G_A$  and  $G_B$ both of whose isometries are all elliptic, then there exist points  $\alpha^* \in A$ and  $\beta^* \in B$  such that  $d(\alpha^*, \beta^*) = d(A, B)$ .

## The ideas of the proof

#### Lemma

Suppose G has two proper finitely generated subgroups  $G_0$  and  $G_1$  such that the respective fixed point sets  $B_0 := Fix(G_0)$  and  $B_1 := Fix(G_1)$  are nonempty and disjoint. Then G contains a hyperbolic element.

- Pick  $a_0 \in B_0, a_1 \in B_1$  such that  $d(a_0, a_1) = d(B_0, B_1)$ .
- Find a "good"  $g_1 \in G_1$  and define  $a_2 = g_1 a_0$ ,  $G_2 = g_1 G_0 g_1^{-1}$  with fixed set  $B_2 = g_1 B_0$ . Obtain "good"  $g_2$  and define  $a_3 = g_2 a_1$ .
- Define  $g = g_2g_1$  and inductively  $a_i = ga_{i-2}$  and  $g_i = gg_{i-2}g^{-1}$ .
- For all  $i \ge 1$ , we have  $a_i, a_{i+1} \in A_i, \xi \in \partial A_i$  and  $\angle_{a_i}(\xi, a_{i+1}) \ge \frac{2\pi}{3}$ .
- Show g has unbounded orbit using Busemann functions of geodesic rays b<sub>γ</sub>(x) := lim<sub>t→∞</sub>[d(x, γ(t)) − t].

#### Hausdorff distance I

Two (nonempty) subsets U, V of a metric space X have Hausdorff distance at most r if

$$U \subseteq B_r(V)$$
 and  $V \subseteq B_r(U)$ .

In this case we write Hd(U, V) < r. We define for  $U, V \subseteq X$  the Hausdorff distance as

$$Hd(U, V) = \inf\{r > 0 \mid Hd(U, V) < r\}$$

For example, a nonempty subset is bounded if and only if it has finite Hausdorff distance from some point.

### Hausdorff distance II

More generally, we say that *V* dominates *U* if  $U \subseteq B_r(V)$  for some r > 0, and we write then

$$U \subseteq_{Hd} V.$$

This defines a preorder on the subsets of *X*.

We call two Weyl simplices  $a, a' \subseteq X$  Hausdorff equivalent if they have finite Hausdorff distance. The equivalence class of a is denoted  $\partial a$ . The preorder  $\subseteq_{Hd}$  induces a partial order on these equivalence classes.

#### Related work I

- Parreau: similar result for subgroups Γ of connected reductive groups G over certain fields F, where Γ is generated by a bounded subset of G(F) and the action is on the completion of the associated Bruhat–Tits building.
- Breuillard and Fujiwara: quantitative version of Parreau's result for discrete Bruhat–Tits buildings and asked whether their result holds for the isometry group of an arbitrary affine building.
- Leder and Varghese (using work of Sageev): similar result for groups acting on finite-dimensional CAT(0) cube complexes.
- False for infinite-dimensional CAT(0) cubical complexes: Osajda using actions of infinite free Burnside groups.

## Related work II

Recently, Norin, Osajda and Przytycki proved:

#### Theorem

Let X be a CAT(0) triangle complex and let G be a finitely generated group acting on X with no global fixed point. Assume that either each element of G fixing a point of X has finite order, or X is locally finite, or X has rational angles. Then G has an element with no fixed point in X.

#### Remark

Note that CAT(0) triangle complexes include discrete buildings of type  $\tilde{G}_2$ . They use Helly's theorem together with sophisticated results including Masur's theorem on periodic trajectories in rational billiards, and Ballmann and Brin's methods for finding closed geodesics in 2-dimensional locally CAT(0) complexes.

## Non-discrete Euclidean buildings

A metric space X with a collection  $\mathcal{F}$  of charts (isometric injections of a Euclidean model space  $\mathbb{A}$  into X) is a *Euclidean building* if

**(EB1)** For all  $\varphi \in \mathcal{F}$  and  $w \in W\mathbb{R}^n$ ,  $\varphi \circ w$  is in  $\mathcal{F}$ .

**(EB2)** The charts are *W*-compatible, more precisely If  $f, f' \in \mathcal{F}$ , then  $X = f^{-1}(f'(\mathbb{A}))$  is a closed and convex subset of  $\mathbb{A}$ , and  $f_{\uparrow}X = f' \circ w_{\uparrow}X$  for some  $w \in W$ .

(EB3) Any two points  $x, y \in X$  are contained in some affine apartment.

**(EB4)** If  $a, b \subseteq X$  are Weyl chambers, then there is an affine apartment A such that the intersections  $A \cap a$  and  $A \cap b$  contain Weyl chambers.

**(EB5)** If  $A_1, A_2, A_3$  are affine apartments which intersect pairwise in half spaces, then  $A_1 \cap A_2 \cap A_3 \neq \emptyset$ .

## The spherical building at infinity

Let  $\partial_A X$  denote the set of all equivalence classes of Weyl simplices, partially ordered by domination  $\subseteq_{Hd}$ . For every affine apartment *A*, the poset  $\partial A$  consisting of the Weyl simplices contained in *A* may be viewed as a sub-poset of  $\partial_A X$ .

**Proposition** The poset  $\partial_A X$  is a spherical building. The map  $A \mapsto \partial A$  is a one-to-one correspondence between the affine apartments in X and the apartments of the spherical building  $\partial_A X$ .