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CODES FROM DESARGUESIAN PROJECTIVE PLANES

▶ A: Incidence matrix of PG(2,q), q = ph, p prime:
▶ rows=lines of PG(2,q)
▶ columns=points of PG(2,q)
▶ with entry

aij = { 1 if point j belongs to line i ,
0 otherwise.

▶ C1(2,q): row span of A
▶ Generated over Fp.
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CODES FROM DESARGUESIAN PROJECTIVE PLANES

The code C1(2,q), q = ph has:
▶ Length n = q2 + q + 1,

▶ Dimension: (p+1
2 )h

+ 1 (Hamada/Goethals-Delsarte)
▶ Distance d=minimum weight =? .
↝ blocking sets.
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THE DUAL CODE

DEFINITION
The dual code C⊥ of C:
Set of vectors v with v .c = 0 for all c ∈ C.

For C1(2,q)⊥ ∶
▶ Length n = q2 + q + 1,

▶ Dimension: q2 + q + 1 − ((p+1
2 )h

+ 1)
▶ Distance d =?.
↝ sets without tangents.
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THE DUAL CODE

OBSERVATION

▶ If G is a generator matrix for C, then vGt
= 0 for all v ∈ C⊥.

▶ A matrix H such that cH t
= 0 for all c ∈ C is is called a

parity check matrix for C.
▶ Parity check matrix of C=generator matrix of C⊥ and vice

versa.
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CONICS IN A PROJECTIVE PLANE

DEFINITION
A conic in PG(2,q) is a set of points whose coordinates
(x0, y0, z0) satisfy a homogeneous quadratic equation.

EXAMPLE
The set of points (x , y , z) with y2

= xz is a conic.

{(1, t , t2) ∶ t ∈ K} ∪ {(0,0,1)}
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CONICS IN A PROJECTIVE PLANE

THEOREM
In PG(2,K), all non-empty irreducible conics are projectively
equivalent to

{(1, t , t2) ∶ t ∈ K} ∪ {(0,0,1)}.

OBSERVATION

{(1, t , t2) ∶ t ∈ Fq} ∪ {(0,0,1)}
has q + 1 points; so every non-degenerate conic in PG(2,q)
has q + 1 points.
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CONICS IN A PROJECTIVE PLANE

▶ Every line meets an irreducible conic in either 0,1 or 2
points.

▶ Every point lies on a unique tangent line to an irreducible
conic.
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OVALS

DEFINITION
An oval is a set of points S no three of which lie on a line and
such that every point lies on a unique tangent line to the oval.

In PG(2,q): an oval has q + 1 points.
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OVALS

DEFINITION
An oval is a set of points S no three of which lie on a line and
such that every point lies on a unique tangent line to the oval.
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OVALS AND CONICS

Every non-singular conic is an oval; but is every oval in
PG(2,q) a conic?
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OVALS AND CONICS

THEOREM (SEGRE 1955)
Every set of q + 1 points in PG(2,q), q odd, such that no three
are collinear, is the set of points on a conic.
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OVALS AND CONICS
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THE MAXIMUM NUMBER OF POINTS ON AN ARC

DEFINITION
A (planar) arc is a set of points in a projective plane, no three of
which are collinear.
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SIDE NOTE: ARCS AND MDS CODES

DEFINITION
An arc is a set of points in a projective space in general position
(no n points contained in an n − 2-space).

FOLKLORE THEOREM
Arcs and MDS codes (codes meeting the Singleton bound) are
equivalent objects

An introduction to codes from finite projective planes



SIDE NOTE: ARCS AND MDS CODES

Take coordinates for points of arc as columns of a parity-check
matrix.

EXAMPLE
(1,0,0), (1,1,1), (1,2,4), (1,3,4), (1,4,1), (0,0,1) is an arc of
PG(2,5).

Let H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0
0 1 2 3 4 0
0 1 4 4 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then H is a parity check matrix for a code with
▶ n = 6
▶ k = 3
▶ d = 4

▶ So the Singleton bound gives d = 4 ≤ n − k + 1 = 4: MDS
code

▶ Reed-Solomon code
Why is d = 4?
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SIDE NOTE: ARCS AND MDS CODES

STANDARD LEMMA
A matrix H is a parity check matrix for a code with distance d if
and only if all sets of d − 1 columns are linearly independent
and there are d dependent columns.

OPEN PROBLEM
MDS Conjecture: An arc of PG(k − 1,q), with k ≤ q, has size at
most q + 1, unless q is even and k = 3 or k = q − 1, in which
case it has size at most q + 2.
A linear MDS code of dimension k over Fq has length at most
q + 1 unless q is even and k = 3 or k = q − 1, in which case it
has length at most q + 2.

▶ The MDS conjecture is true for q prime (S. Ball 2012).
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BACK TO ARCS IN PG(2,q)

An arc in PG(2,q) is a set of points no three of which are
collinear. Let A be an arc in PG(2,q), then

∣A∣ ≤ q + 2.
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THE MAXIMUM NUMBER OF POINTS ON AN ARC

LEMMA (BOSE (1947) )
Let A be an arc in PG(2,q), q odd, then

∣A∣ ≤ q + 1.
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ARCS AND HYPEROVALS

DEFINITION
An arc in PG(2,q), q even, containing q + 2 points is called a
hyperoval.

Every line meets a hyperoval in 0 or 2 points.

EXAMPLE
The set

{(1, t , t2) ∶ t ∈ F2h} ∪ {(0,0,1} ∪ {0,1,0)}

is a hyperoval.
More generally, for even q, every conic has a nucleus in
PG(2,q) and forms a hyperoval. These hyperovals are the
regular hyperovals.
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HYPEROVALS

OBSERVATION
Not every hyperoval is a regular hyperoval.
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HYPEROVALS

An introduction to codes from finite projective planes



THE DUAL CODE OF C1(2,q)

▶ Rows of generator matrix of C1(2,q): lines of PG(2,q)

▶ Generator matrix=parity check matrix of C1(2,q)⊥.
▶ c ∈ C1(2,q)⊥ ⟺ c.` = 0 for all lines of PG(2,q)
▶ Codeword of C1(2,q)⊥ corresponds to a set of points such

that every line contains 0 or at least 2 of them
▶ This is a set without tangents.

COROLLARY
The minimum weight for C1(2,q)⊥ is at least q + 2.
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THE DUAL CODE OF C1(2,q)

▶ If q is even, a codeword corresponds to a set S of points
that every line intersects S in an even number of points.

▶ A hyperoval is a set of q + 2 points, no three collinear.
▶ Hyperovals in PG(2,q) exist iff q is even.

COROLLARY
The minimum weight of C1(2,q)⊥, q even is q + 2.
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THE DUAL CODE OF C1(2,q)

SETS WITHOUT TANGENTS

▶ Every codeword of C⊥1 gives rise to a set without tangents,
but not vice versa.

▶ If q is odd: smallest size of set without tangents not known
▶ Lower bound (Blokhuis - Seress -Wilbrink 1991)

q + 1
4

√
2q + 2 points

▶ Example of size 2p − 2 for p prime.

▶ The minimum weight of C1(2,p)⊥, p prime, is 2p.
▶ The minimum weight of C1(2,q)⊥, q odd, non-prime???
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CODES FROM DESARGUESIAN PROJECTIVE PLANES

CONICS AND HYPEROVALS

KM-ARCS

BLOCKING SETS
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FURTHER CODEWORDS OF C1(2,q), q EVEN

RECALL
The minimum weight of C1(2,q)⊥, q even is q + 2. Every line
meets the support of a codeword in an even number of points,
so the weight of each codeword is even.

Is there a codeword of weight q + 4?

LEMMA
The support of a codeword of weight q + 4 is necessarily a set
of size q + 4 such that every line meets in 0,2 or 4 points.
↝ KM-arcs.
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KM-ARCS
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INTRODUCTION
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BASIC PROPERTIES

THEOREM
(KORCHMÁROS-MAZZOCCA,
GÁCS-WEINER)
If A is a KM-arc of type t in
PG(2,q), 2 ≤ t < q, then
▶ q is even;
▶ t is a divisor of q.

If t > 2, then
▶ there are q

t + 1 different
t-secants to A, and they are
concurrent.

The common point of the t-secants
is called the t-nucleus.

N
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A KM-ARC OF TYPE q/2

EXAMPLE (*)
Let Tr: Fq → F2 ∶ x ↦ x + x2 + x4 + ⋅ ⋅ ⋅ + xq/2

S0 = {(1,0, x) ∣ Tr(x) = 0}
S1 = {(1,1, y) ∣ Tr(y) = 1}

S∞ = {(0,1, z) ∣ Tr(z) = 0}

Then, S0 ∪ S1 ∪ S∞ is a KM-arc of type q/2. Its q/2-secants
are Y = 0, X + Y = 0 and X = 0. The q/2-nucleus is (0,0,1).

THEOREM (DE BOECK–VDV 2015)
A set of q + q/2 points in PG(2,q) such that every line meets in
0,2 or q/2 points is equivalent to example (*). It is necessarily
a translation KM-arc.
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are Y = 0, X + Y = 0 and X = 0. The q/2-nucleus is (0,0,1).

THEOREM (DE BOECK–VDV 2015)
A set of q + q/2 points in PG(2,q) such that every line meets in
0,2 or q/2 points is equivalent to example (*). It is necessarily
a translation KM-arc.
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FAMILIES OF KM-ARCS

OVERVIEW: INFINITE FAMILIES OF KM-ARCS OF TYPE 2i
IN

PG(2,2h) FOR

(A) h − i ∣ h (Korchmáros–Mazzocca, Gács–Weiner)
(B) h − i + 1 ∣ h (Gács–Weiner; iterative construction)

(C) i = h − 2 (Vandendriessche, De Boeck-VdV 2015)
(D) i = h − 3 (De Boeck-VdV 2017)
(E) i = h − 4 for some h (De Boeck-VdV 2017)

(F) i = 1 Hyperovals
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A CONJECTURE

THEOREM (GÁCS-WEINER)
A KM-arc of type t in PG(2,q) determines a Vandermonde set
on each of its t-secants.

DEFINITION
T = {y1, . . . , yn} ⊆ Fq is a Vandermonde set if ∑n

i=0 yk
i = 0 for all

k = 0, . . . ,n − 2.

CONJECTURE (VANDENDRIESSCHE)
A KM-arc of type t in PG(2,q) together with its nucleus
determines an F2-linear set on each of its t-secants.
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KM-ARCS

If there is a line L such that the subgroup of the pointwise
stabiliser of L stabilising A acts transitively on the points of A
outside L, then A is a translation KM-arc with translation line L.

THEOREM (DE BOECK–VDV 2015)
Translation KM-arcs of type 2i in PG(2,2h) and i-clubs of rank h
in PG(1,2h) are equivalent objects.

▶ Via i-clubs: examples of type 2i , with i = h − 1, i = h − 2,
h − i∣h, h − i + 1∣h.

▶ No 2-club in PG(2,32), but there is a KM-arc of type 4 in
PG(2,32) and PG(2,64).
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KM-ARCS

DE BOECK–VDV 20??
If there are only points of weight 1 and 2, then the number of
points of weight 2 is contained in
[q−2

√
q+1,q+2

√
q+1]∪{2q,2q+1,2q+2,3q,3q+1,q2+1}.

In particular, there are no Fq-linear 2-clubs in PG(1,q5).
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CODES FROM DESARGUESIAN PROJECTIVE PLANES

CONICS AND HYPEROVALS

KM-ARCS

BLOCKING SETS
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HISTORY

▶ Origins in game theory (J. Von Neumann – O. Morgenstern
1944)

▶ M. Richardson (1956), J. Di Paola (1966), A.A. Bruen
(1970)
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HISTORY

▶ M. Richardson. On finite projective games. Proc. Amer.
Math. Soc. 7, 458–465, 1956.

▶ Subsets of a set of players are called coalitions. Winning
coalitions can force a decision. A blocking coalition can
block every decision: it contains at least one player of each
winning coalition.
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BLOCKING SETS: DEFINITION

DEFINITION FOR PROJECTIVE PLANES
A set of points B in a projective plane Π such that every line of
Π contains at least 1 point of B is a blocking set.

MINIMAL BLOCKING SETS
A blocking set B in Π is called minimal if no proper subset of B
is a blocking set.
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EXAMPLES IN PG(2,q)

A line: q + 1 points

A projective triangle in PG(2,q), q odd: 3(q + 1)/2 well-chosen
points on a triangle
A Baer subplane PG(2,√q), q square: q +

√
q + 1 points.

TRIVIAL BLOCKING SETS
A blocking set B in PG(2,q) is called trivial if it contains a line.

SMALL BLOCKING SETS
A blocking set B in PG(2,q) is called small if ∣B∣ < 3(q + 1)/2.
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A (TRIVIAL) LOWER BOUND

THEOREM (R.C. BOSE, R.H. BURTON (1966))
If B is a blocking set in a projective plane of order q, then
∣B∣ ≥ q + 1 and ∣B∣ = q + 1 if and only if B is a line.
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BLOCKING SETS: LOWER BOUND

THEOREM (A. BRUEN)
Let B be a non-trivial blocking set in a projective plane Π of
order q. Then ∣B∣ ≥ q +

√
q + 1 and equality holds if and only if

B is a Baer subplane.
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BAER SUBPLANES AND BLOCKING SETS

Πq: projective plane of order q, q square
Π
′: Baer subplane of Πq
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BAER SUBPLANES AND BLOCKING SETS

▶ P lies on q + 1 lines of Πq

▶ At most one of these meets Π
′ in a line (so contains

√
q + 1

points)
▶ The other at least q points of Π

′ are connected to P by
distinct lines.

▶ So the points of Π
′ block all lines of Π
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BLOCKING SETS: CLASSIFICATION RESULTS

RECALL
A blocking set in PG(2,q) is small if its size is less than
3(q + 1)/2.

THEOREM (A. BLOKHUIS (1994))
A small minimal blocking set in PG(2,p), p prime, is a line.

THEOREM (T. SZŐNYI (1997))
A small minimal blocking set in PG(2,p2), p prime, is a line or a
Baer subplane.
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BLOCKING SETS: CLASSIFICATION RESULTS

THEOREM (O. POLVERINO(1998))
A small minimal blocking set in PG(2,p3), p prime, is a line or is
projectively equivalent to
{(x , xp

,1)∣x ∈ Fp3} ∪ {(x , xp
,0)∣x ∈ Fp3} or

{(x , x + xp + xp2

,1)∣x ∈ Fp3} ∪ {(x , x + xp + xp2

,0)∣x ∈ Fp3}.

REMARKS

▶ Either p3 + p2 + p + 1 points or p3 + p2 + 1 points.
▶ of Rédei-type: there is a line with ∣B∣ − p3 points of the

blocking set B.
▶ consists of p3 affine points, together with their determined

directions.
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DIRECTIONS DETERMINED BY A POINT SET

▶ Take a (blue) point set of size q.
▶ The green points are the directions determined by the blue

point set.
▶ Each line ≠ L∞ through a red point is a tangent line to the

blue point set.
▶ Union of the blue and green point set is a minimal blocking

set.
▶ If the green set has size < q/2, the blocking set is small.
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DIRECTIONS DETERMINED BY A POINT SET

▶ Pointset of size q, not at the line at infinity Z = 0 and not
determining the ’vertical’ direction: {(x , f (x),1)∣x ∈ Fq}.

▶ Directions determined by a function f over a finite field.
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FUNCTIONS DETERMINING FEW DIRECTIONS

THEOREM (S. BALL - A. BLOKHUIS - A. BROUWER - L.
STORME - T. SZŐNYI, S. BALL)
Let f be a function from Fq to Fq, q = ph, for some prime p, and
let N be the number of directions determined by f .

Let s = pe

be maximal such that any line with a direction determined by f
is incident with a multiple s of points of the graph of f . One of
the following holds:
(I) s = 1 and (q + 3)/2 ≤ N ≤ q + 1;

(II) Fs is a subfield of Fq and q/s + 1 ≤ N ≤ (q − 1)/(s − 1);
(III) s = q and N = 1.
Moreover, if s > 2, then f is an Fs-linear map.
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RÉDEI TYPE BLOCKING SETS

▶ A small minimal blocking set in PG(2,p), is a line, and
hence of Rédei type.

▶ A small minimal blocking set in PG(2,p2), is a line or a
Baer subplane, and hence of Rédei type.

▶ A small minimal blocking set in PG(2,p3) is of Rédei type.

A CONJECTURE (A. BLOKHUIS)
All small minimal blocking sets of Rédei-type and the smallest
minimal blocking set equivalent to
{(1, x ,Tr(x))∣x ∈ Fq} ∪ {(0, x ,Tr(x))∣x ∈ Fq}.
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BLOCKING SETS: RESULTS

THEOREM (P. POLITO, O. POLVERINO (1999))
There exists a small minimal blocking set in PG(2,ph), p prime,
h > 3, that is not of Rédei-type.

The constructed blocking sets are Fp-linear point sets.

An introduction to codes from finite projective planes



BLOCKING SETS: RESULTS

THEOREM (P. POLITO, O. POLVERINO (1999))
There exists a small minimal blocking set in PG(2,ph), p prime,
h > 3, that is not of Rédei-type.

The constructed blocking sets are Fp-linear point sets.

An introduction to codes from finite projective planes



VIA PROJECTION

(ALTERNATIVE) DEFINITION

Fq-linear set in PG(n,qt): a subgeometry over Fq (≅ PG(n,q))
or the projection of a subgeometry from a suitable subspace.
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VIA PROJECTION: RANK 4 IN PG(2,q3)

Scattered linear set of rank 4: blocking set of size
q3 + q2 + q + 1.
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VIA PROJECTION: RANK 4 IN PG(2,q3)

Linear set or rank 4: blocking set of size q3 + q2 + 1.
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THE LINEARITY CONJECTURE

CONJECTURE [P. SZIKLAI (‘2008’)]
All small minimal blocking sets in PG(2,q), q = ph, p prime, are
Fp-linear sets.

▶ All blocking sets of Rédei-type are linear sets.
▶ The linearity conjecture in PG(2,ph), p prime, is wide open

for h > 3.
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THE SMALLEST LINEAR (BLOCKING) SETS

THE SIZE OF A LINEAR SET OF RANK k + 1
A linear set L of rank k is the projection of a PG(k ,q), which

has qk+1−1
q−1 points.

So ∣L∣ ≤ qk+1−1
q−1 .

Is there a trivial lower bound?

THEOREM (J. DE BEULE AND G. VDV (2018))
For a linear set L in PG(1,qt) of rank k :

∣L∣ ≥ qk−1
+ 1

An Fq-linear set in PG(2,qt) of rank t + 1 contains at least
qt + qt−1 + 1 points.
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THE SMALLEST LINEAR (BLOCKING) SETS

OBSERVATION
The trace map gives us an example of an Fq-linear set in
PG(2,qt) of rank t + 1 of Rédei-type containing qt + qt−1 + 1
points.

THEOREM (D. JENA AND G. VDV (2020))

▶ There exist linear sets of rank t in PG(1,qt) of size qt−1 + 1
not arising from the Trace map,

▶ and there exist non-Rédei-type linear blocking sets of size
qt + qt−1 + 1 in PG(2,qt),

▶ where we can specify the weight of the heaviest point.
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A GAP IN THE WEIGHT ENUMERATOR

Incidence vector of a line in a projective plane of order q:
codeword of weight q + 1.

Difference of the incidence vectors of two lines:
codeword of weight 2q.

▶ Is there anything in between?
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THE LINK WITH BLOCKING SETS

THEOREM (M. LAVRAUW, L. STORME, G. VDV (2008))
A codeword c ∈ C1(2,q) with weight < 2q defines a small
minimal blocking set in PG(2,q).

i.e: the set of non-zero positions in the codeword c corresponds
to a set of points in PG(2,q) forming a blocking set.
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COROLLARIES OF THE LINK WITH BLOCKING SETS

RECALL (R.C. BOSE, R.H. BURTON (1966))
If B is a blocking set in PG(2,q), then ∣B∣ ≥ q + 1 and
∣B∣ = q + 1 iff B is a line.

COROLLARY
The minimum weight of C1(2,q) is q + 1 and the minimum
weight vectors correspond to the incidence vectors of lines.
(first obtained by E. Assmus and J.D. Key)
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COROLLARIES OF THE LINK WITH BLOCKING SETS

THEOREM (A. BLOKHUIS (1994))
A small minimal blocking set in PG(2,p), p prime, is a line.

COROLLARY
There are no codewords in C1(2,p), p prime, with weight in
]p + 1,2p[.
(first obtained by K. Chouinard and by G. McGuire and H. Ward
for ]p + 1,3(p + 1)/2[)
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THE LINK WITH BLOCKING SETS CONTINUED

Even stronger:

LEMMA (M. LAVRAUW, L. STORME, P. SZIKLAI, G. VDV
(2009))
A codeword c ∈ C1(2,q) with weight < 2q defines a small
minimal blocking set, intersecting every other small minimal
blocking set in 1 mod p points.
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RESULTS FOR C1(2,q), q A PRIME POWER

Looking at intersections with linear blocking sets:

THEOREM (M. LAVRAUW, L. STORME, P. SZIKLAI, G. VDV
(2009))
A small minimal blocking set, intersecting every other small
minimal blocking set in 1 mod p points, is a line.

COROLLARY
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RESULTS FOR C1(2,q), q A PRIME POWER

THEOREM (FACK, FANCSALI, STORME, VDV, WINNE
(2006)
For q prime: a codeword in C1(2,p) with weight ≤ 2p + p−1

2 is a
linear combination of at most 2 lines, so has weight p + 1, 2p,
or 2p + 1.

BAGCHI (2012)/DE BOECK–VANDENDRIESSCHE (2014)
There exists a codeword in C1(2,p) of weigth 3p − 3 which is
not a linear combination of 3 lines.
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RESULTS FOR C1(2,q), q A PRIME POWER

THEOREM (T. SZŐNYI AND ZS. WEINER (2018))
A codeword c in C1(2,q), q = ph, with weight smaller than
q
√

q + 1 is a linear combination of at most ⌈wt(c)
q+1 ⌉ lines, when q

is large and h ≥ 2.
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OPEN PROBLEMS

▶ Prove (or disprove) that every projective plane has prime
power order

▶ Prove (or disprove) that a projective plane of order p prime
is Desarguesian

▶ Find a new hyperoval/classify hyperovals
▶ Construct a KM-arc of type t for all t∣q.
▶ Prove (or disprove) the MDS conjecture
▶ Determine the minimum weight of C(2,q)⊥

▶ Find the smallest size of a set without tangents in PG(2,q),
q odd

▶ Prove (or disprove) that a small minimal blocking set in
PG(2,q) is a linear set
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Thank you for your attention!
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