Algorithmic Randomness

Daniel Turetsky

Victoria University of Wellington

January 2021

What does it mean to say a number is random?

(From Randall Munroe, xkcd.com)

We'll look at real numbers.

We'll look at real numbers.

We'll focus on the unit interval.

Theorem (Lebesgue)

Every nondecreasing function $f:[0,1]\to \mathbb{R}$ is differentiable almost everywhere.

Theorem (Poincaré)

Let (\mathcal{X}, μ) be a probability space, $E \subseteq \mathcal{X}$ be measurable, and $T : \mathcal{X} \to \mathcal{X}$ be measure preserving. Then for almost every $y \in E$, there are infinitely many n with $T^n(y) \in E$.

Theorem (Lebesgue)

If $E \subseteq \mathbb{R}$ is measurable, then for almost every $y \in E$,

$$\lim_{\delta\to 0}\frac{\mu(E\cap [y-\epsilon,y+\epsilon])}{2\epsilon}=1.$$

Theorem (Birkhoff)

Let (\mathcal{X}, μ) be a probability space, $E \subseteq \mathcal{X}$ be measurable, and $T : \mathcal{X} \to \mathcal{X}$ be ergodic. Then for almost every $y \in \mathcal{X}$,

$$\lim_{n \to \infty} \frac{\#\{i : i < n \text{ and } T^i(y) \in E\}}{n} = \mu(E).$$

Theorem (Birkhoff)

Let (\mathcal{X}, μ) be a probability space, $E \subseteq \mathcal{X}$ be measurable, and $T : \mathcal{X} \to \mathcal{X}$ be ergodic. Then for almost every $y \in \mathcal{X}$,

$$\lim_{n \to \infty} \frac{\#\{i : i < n \text{ and } T^i(y) \in E\}}{n} = \mu(E).$$

So if we choose a point "at random", it will satisfy the theorem.

How random does it need to be? Can we compare the amount of randomness required?

Cantor space: $\{0,1\}^{\mathbb{N}}$, i.e. the space of infinite binary sequences

Cantor space can be identified with the unit interval via binary expansion: $X \in \{0,1\}^{\mathbb{N}}$ corresponds to $0.X \in \mathbb{R}$.

Finite binary strings: $\{0,1\}^{<\mathbb{N}}$. $\langle \rangle$ is the empty string.

If σ is a finite binary string, $[\sigma]$ is the set of all infinite binary sequences beginning with σ . Give $[\sigma]$ the fair coin measure:

$$\mu([\sigma]) = 2^{-|\sigma|}$$

- First attempt: a random sequence should not have any rare (measure 0) properties.
 - Problem: every sequence has such a property: being itself.
- Second attempt: a random sequence should not have any rare (measure 0) properties *that can be described via computability theory*.

If $E \subseteq [0,1]$ is null, then there is a sequence of open sets A_0, A_1, \ldots with:

- $|A_n| \le 2^{-n};$
- $E \subseteq \bigcap_n A_n$.

We will describe a measure 0 set by describing a sequence of open sets of this sort.

A *partial computable function* is a partial function given by an algorithm, i.e. a human could follow the instructions and calculate it with enough pencils, paper and time.

Important: there are only countably many computable functions!

A *computably enumerable* (*c.e.*) *set* is the range of a partial computable function.

A c.e. set is a black box that every so often claims elements.

A Martin-Löf test is a c.e. set $D \subseteq \{0,1\}^{<\mathbb{N}} \times \mathbb{N}$ such that for $V_n = \bigcup_{(\sigma,n)\in D} [\sigma],$

 $\mu(V_n) \leq 2^{-n}.$

 $X \in \{0,1\}^{\mathbb{N}}$ passes the Martin-Löf test if $X \notin \bigcap_n V_n$.

X is Martin-Löf random if it passes every Martin-Löf test.

Having a 0 in every other position is atypical.

Similarly, every Martin-Löf random obeys the law of large numbers:

$$\lim_{n \to \infty} \frac{\#\{i < n : X(i) = 1\}}{n} = \frac{1}{2}$$

More generally, every Martin-Löf random is normal in every base.

A Schnorr test is a Martin-Löf test where $\mu(V_n) = 2^{-n}$.

X is Schnorr random if it passes every Schnorr test.

- Idea: a random sequence should be impossible to predict.
- There should be no (computable) betting system by which a gambler can make money betting on the next value.

A martingale is a function $m:\{0,1\}^{<\mathbb{N}}\rightarrow [0,\infty)$ such that

$$m(\sigma)=\frac{m(\sigma*0)+m(\sigma*1)}{2}.$$

Example:

A martingale is a function $m: \{0,1\}^{<\mathbb{N}} \to [0,\infty)$ such that

$$m(\sigma)=\frac{m(\sigma*0)+m(\sigma*1)}{2}.$$

Example:

A gambler starts with 1 dollar. $m(\langle \rangle) = 1$

A martingale is a function $m: \{0,1\}^{<\mathbb{N}} \to [0,\infty)$ such that

$$m(\sigma)=\frac{m(\sigma*0)+m(\sigma*1)}{2}.$$

Example:

They bet .5 that the first bit is 1. m(0) = .5; m(1) = 1.5

A martingale is a function $m: \{0,1\}^{<\mathbb{N}} \to [0,\infty)$ such that

$$m(\sigma)=\frac{m(\sigma*0)+m(\sigma*1)}{2}.$$

Example:

If it was 1, they bet 1 that the next bit is 0. m(00) = 2.5; m(01) = .5

Exercise

For any martingale m and c > 0,

$$\mu\{X \in \{0,1\}^{\mathbb{N}} : \exists n \, m(X \restriction_n) \ge cm(\langle\rangle)\} \le \frac{1}{c}.$$

A martingale succeeds on X if $\liminf_n m(X \upharpoonright_n) = \infty$.

By the exercise, a martingale only succeeds on a null set.

Randomness from martingales

X is *computably random* if no computable martingale succeeds on it.

A martingale is *left c.e.* if $\{(q, \sigma) \in \mathbb{Q} \times \{0, 1\}^{<\mathbb{N}} : q < m(\sigma)\}$ is a c.e. set.

Theorem (Schnorr)

X is Martin-Löf random iff no left c.e. martingale succeeds on it.

Proof of \Rightarrow .

If m is a left c.e. martingale, define

$$V_n = \bigcup_{m(\sigma) > 2^n m(\langle \rangle)} [\sigma].$$

If $\liminf_n m(X \upharpoonright_n) = \infty$ (or \limsup), then $X \in V_n$ for all n.

 $\mathsf{Martin-L\"of}\ \mathsf{randoms} \subset \mathsf{computable}\ \mathsf{randoms} \subset \mathsf{Schnorr}\ \mathsf{randoms}$

Theorem	Randomness
Nondecr. fns differentiable	Computable randomness ¹
Poincaré Rec.	Martin-Löf randomness ²
Birkhoff's Theorem	Schnorr randomness ³
Lebesgue Density	Complicated
(with lim sup)	(Martin-Löf suffices)
Lebesgue Density	Complicated
(with lim)	(Martin-Löf does not suffice)

¹Brattka, J. Miller, Nies
²Hoyrup
³Gács, Hoyrup, Rojas

- Lossless compression algorithms work by recognizing patterns in the data.
- Randoms should have no patterns.
- Thus randoms should be incompressible.

A partial function $f : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ is *prefix-free* if no element of its domain extends another.

Think of f as a decompression function.

The *f*-Kolmogorov complexity of a string σ is

$$K_f(\sigma) = \min\{|\rho| : f(\rho) = \sigma\}.$$

Randomness from Kolmogorov complexity

Theorem (Schnorr)

X is Martin-Löf random iff for every partial computable, prefix-free f, $\sup_n [n - K_f(X \upharpoonright_n)] < \infty$.

Proof of \Rightarrow .

For $\sigma \in \{0,1\}^{<\mathbb{N}}$, define

$$m_{\sigma}(\tau) = \begin{cases} 0 & \text{if } \sigma \perp \tau, \\ 2^{\min\{|\sigma|, |\tau|\}} & \text{otherwise.} \end{cases}$$

Define

$$M = \sum_{f(\rho)=\sigma} 2^{-|\rho|} m_{\sigma}.$$

If $n - K_f(X \upharpoonright_n) > b$, then for all $\ell > n$,

$$M(X\restriction_\ell)\geq 2^{-|\mathcal{K}_f(X\restriction_n)|}M_{X\restriction_n}(X\restriction_\ell)>2^b.$$

There are algorithms to calculate π to any precision.

So define $f(0^{i}1) = \pi \upharpoonright_{2i}$. This is computable and prefix free.

For
$$n = 2i$$
,
 $n - K_f(X \upharpoonright_n) = 2i - i = i$

This tends to infinity as *n* does.

So π is not Martin-Löf random. Nor is $e, \sqrt{2}, \varphi$, or any other computable real.

Given σ , we can search for a τ such that $f(\tau) = \sigma$. If we find one, we know $\mathcal{K}_f(\sigma) \leq |\tau|$. But there might be a shorter ρ with $f(\rho) = \sigma$.

In general, K_f is not computable but *computable from above*: from σ , we can compute a decreasing sequence of (extended) integers which stops at $K_f(\sigma)$, but we'll never know when we reach the end of the sequence.

Equivalently, $\{(\sigma, n) : K_f(\sigma) \le n\}$ is c.e.

Also,

$$\sum_{\sigma \in \{0,1\}^{<\mathbb{N}}} 2^{-\mathcal{K}_f(\sigma)} \leq \sum_{\tau \in \mathsf{dom}(f)} 2^{-|\tau|} = \sum_{\tau \in \mathsf{dom}(f)} \mu([\tau]) \leq \mu(\{0,1\}^{\mathbb{N}}) = 1.$$

Fact (Kleene?)

There is a partial computable, prefix-free function U such that for every g which is computable from above and has $\sum_{\sigma} 2^{-g(\sigma)} < \infty$,

$$\sup_{\sigma\in\{0,1\}^{<\mathbb{N}}}[K_U(\sigma)-g(\sigma)]<\infty.$$

We denote K_U by simply K.

So X is Martin-Löf random iff $\sup_n [n - K(X \upharpoonright_n)]$.

By the earlier proofs, there is a best left c.e. martingale and a best Martin-Löf test (a *universal* Martin-Löf test).

Definition

$$\Omega = \sum_{\tau \in \operatorname{dom} U} 2^{-|\tau|}.$$

Intuitively: pick an OS. Generate a file 1 bit at a time by flipping a fair coin. What is the probability that you eventually generate a well-formed program that runs and halts?

 Ω is computable from below: we can build a computable increasing sequence of rationals which converges to $\Omega.$

Fix q_0, q_1, \ldots computable, increasing, converging to Ω .

We build a g based on this sequence which is computable from above and summable. So there is b with $K_U(\sigma) \le g(\sigma) + b$.

At some stage s, we pick σ not yet in the range of U and define $g(\sigma) = n$. U must eventually reveal a new string of length at most n + b in its domain.

So there is $t \ge s$ with $q_{t+1} - q_t \ge 2^{-n-b}$.

Theorem (Chaitin)

Ω is Martin-Löf random.

Proof.

Fix q_0, q_1, \ldots computable, increasing, converging to Ω . Fix V_0, V_1, \ldots the universal Martin-Löf test.

Let b be as in the previous discussion.

When we see some $[\tau] \subseteq V_b$ containing the current q_s , we trigger an increasing of at least $2^{-|\tau|-b-1}$. This moves some q_t beyond $[\tau]$.

By topological considerations, $\Omega \notin V_b$.

Theorem (Calude and Nies)

 Ω computes every c.e. set.

Proof.

Fix a c.e. set A.

If we see *n* enter *A* at stage *s*, trigger an increase of at least $\epsilon 2^{-n}$.

With oracle Ω , to decide if $n \in A$, wait until $\Omega - q_s < \epsilon 2^{-n}$. If n hasn't entered A by stage s, it never will.