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Randomness?

What does it mean to say a number is random?

(From Randall Munroe, xkcd.com)



Real numbers

−2 −1 0 1 2 3
. . . . . .

We’ll look at real numbers.

We’ll focus on the unit interval.
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Motivation

Many theorems hold “almost surely”.

Theorem (Lebesgue)

Every nondecreasing function f : [0, 1]→ R is differentiable almost
everywhere.

So if we choose a point “at random”, it will satisfy the theorem.

How random does it need to be? Can we compare the amount of
randomness required?



Motivation

Many theorems hold “almost surely”.

Theorem (Poincaré)

Let (X , µ) be a probability space, E ⊆ X be measurable, and
T : X → X be measure preserving. Then for almost every y ∈ E,
there are infinitely many n with T n(y) ∈ E.

So if we choose a point “at random”, it will satisfy the theorem.

How random does it need to be? Can we compare the amount of
randomness required?



Motivation

Many theorems hold “almost surely”.

Theorem (Lebesgue)

If E ⊆ R is measurable, then for almost every y ∈ E,

lim
δ→0

µ(E ∩ [y − ε, y + ε])

2ε
= 1.

So if we choose a point “at random”, it will satisfy the theorem.

How random does it need to be? Can we compare the amount of
randomness required?
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Cantor space

Cantor space: {0, 1}N, i.e. the space of infinite binary sequences

Cantor space can be identified with the unit interval via binary
expansion: X ∈ {0, 1}N corresponds to 0.X ∈ R.

Finite binary strings: {0, 1}<N. 〈〉 is the empty string.

If σ is a finite binary string, [σ] is the set of all infinite binary
sequences beginning with σ. Give [σ] the fair coin measure:

µ([σ]) = 2−|σ|



Typicality

First attempt: a random sequence should not have any rare
(measure 0) properties.

Problem: every sequence has such a property: being itself.

Second attempt: a random sequence should not have any rare
(measure 0) properties that can be described via
computability theory.



A key fact

If E ⊆ [0, 1] is null, then there is a sequence of open sets
A0,A1, . . . with:

|An| ≤ 2−n;

E ⊆
⋂

n An.

We will describe a measure 0 set by describing a sequence of open
sets of this sort.



Computability theory

A partial computable function is a partial function given by an
algorithm, i.e. a human could follow the instructions and calculate
it with enough pencils, paper and time.

Important: there are only countably many computable functions!

A computably enumerable (c.e.) set is the range of a partial
computable function.

A c.e. set is a black box that every so often claims elements.



Martin-Löf randomness

A Martin-Löf test is a c.e. set D ⊆ {0, 1}<N × N such that for

Vn =
⋃

(σ,n)∈D

[σ],

µ(Vn) ≤ 2−n.

X ∈ {0, 1}N passes the Martin-Löf test if X 6∈
⋂

n Vn.

X is Martin-Löf random if it passes every Martin-Löf test.



An example

〈〉
0︷ ︸︸ ︷

000 010︷ ︸︸ ︷
00000 00010

︷ ︸︸ ︷
01000 01010

V0 :

V1 :

V2 :

V3 :
...

Having a 0 in every other position is atypical.



Normality

Similarly, every Martin-Löf random obeys the law of large numbers:

lim
n→∞

#{i < n : X (i) = 1}
n

=
1

2
.

More generally, every Martin-Löf random is normal in every base.



Schnorr randomness

A Schnorr test is a Martin-Löf test where µ(Vn) = 2−n.

X is Schnorr random if it passes every Schnorr test.



Unpredictability

Idea: a random sequence should be impossible to predict.

There should be no (computable) betting system by which a
gambler can make money betting on the next value.



Martingales

A martingale is a function m : {0, 1}<N → [0,∞) such that

m(σ) =
m(σ ∗ 0) + m(σ ∗ 1)

2
.

Example:

1
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2.5 .5

0 1

0 1 0 1

If it was 1, they bet 1 that the next bit is 0.
m(00) = 2.5;m(01) = .5
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Martingale success

Exercise

For any martingale m and c > 0,

µ{X ∈ {0, 1}N : ∃nm(X �n) ≥ cm(〈〉)} ≤ 1

c
.

A martingale succeeds on X if lim infn m(X �n) =∞.

By the exercise, a martingale only succeeds on a null set.



Randomness from martingales

X is computably random if no computable martingale succeeds on
it.

A martingale is left c.e. if {(q, σ) ∈ Q× {0, 1}<N : q < m(σ)} is a
c.e. set.

Theorem (Schnorr)

X is Martin-Löf random iff no left c.e. martingale succeeds on it.

Proof of ⇒.

If m is a left c.e. martingale, define

Vn =
⋃

m(σ)>2nm(〈〉)

[σ].

If lim infn m(X �n) =∞ (or lim sup), then X ∈ Vn for all n.



Comparing and using

Martin-Löf randoms ⊂ computable randoms ⊂ Schnorr randoms

Theorem Randomness

Nondecr. fns differentiable Computable randomness1

Poincaré Rec. Martin-Löf randomness2

Birkhoff’s Theorem Schnorr randomness3

Lebesgue Density Complicated
(with lim sup) (Martin-Löf suffices)

Lebesgue Density Complicated
(with lim) (Martin-Löf does not suffice)

1Brattka, J. Miller, Nies
2Hoyrup
3Gács, Hoyrup, Rojas



Incompressibility

Lossless compression algorithms work by recognizing patterns
in the data.

Randoms should have no patterns.

Thus randoms should be incompressible.



Kolmogorov complexity

A partial function f : {0, 1}N → {0, 1}N is prefix-free if no element
of its domain extends another.

Think of f as a decompression function.

The f -Kolmogorov complexity of a string σ is

Kf (σ) = min{|ρ| : f (ρ) = σ}.



Randomness from Kolmogorov complexity

Theorem (Schnorr)

X is Martin-Löf random iff for every partial computable,
prefix-free f , supn[n − Kf (X �n)] <∞.

Proof of ⇒.

For σ ∈ {0, 1}<N, define

mσ(τ) =

{
0 if σ⊥τ ,

2min{|σ|,|τ |} otherwise.

Define
M =

∑
f (ρ)=σ

2−|ρ|mσ.

If n − Kf (X �n) > b, then for all ` > n,

M(X �`) ≥ 2−|Kf (X�n)|MX�n(X �`) > 2b.



An example

There are algorithms to calculate π to any precision.

So define f (0i1) = π �2i . This is computable and prefix free.

For n = 2i ,
n − Kf (X �n) = 2i − i = i .

This tends to infinity as n does.

So π is not Martin-Löf random. Nor is e,
√

2, ϕ, or any other
computable real.



What kind of functions are Kf ?

Given σ, we can search for a τ such that f (τ) = σ. If we find one,
we know Kf (σ) ≤ |τ |. But there might be a shorter ρ with
f (ρ) = σ.

In general, Kf is not computable but computable from above: from
σ, we can compute a decreasing sequence of (extended) integers
which stops at Kf (σ), but we’ll never know when we reach the end
of the sequence.

Equivalently, {(σ, n) : Kf (σ) ≤ n} is c.e.

Also,∑
σ∈{0,1}<N

2−Kf (σ) ≤
∑

τ∈dom(f )

2−|τ | =
∑

τ∈dom(f )

µ([τ ]) ≤ µ({0, 1}N) = 1.



An optimal K

Fact (Kleene?)

There is a partial computable, prefix-free function U such that for
every g which is computable from above and has

∑
σ 2−g(σ) <∞,

sup
σ∈{0,1}<N

[KU(σ)− g(σ)] <∞.

We denote KU by simply K.

So X is Martin-Löf random iff supn[n − K (X �n)].

By the earlier proofs, there is a best left c.e. martingale and a best
Martin-Löf test (a universal Martin-Löf test).



Halting probability

Definition

Ω =
∑

τ∈domU

2−|τ |.

Intuitively: pick an OS. Generate a file 1 bit at a time by flipping a
fair coin. What is the probability that you eventually generate a
well-formed program that runs and halts?

Ω is computable from below: we can build a computable increasing
sequence of rationals which converges to Ω.



Ω is a fixed real... but we can influence it?

Fix q0, q1, . . . computable, increasing, converging to Ω.

We build a g based on this sequence which is computable from
above and summable. So there is b with KU(σ) ≤ g(σ) + b.

At some stage s, we pick σ not yet in the range of U and define
g(σ) = n. U must eventually reveal a new string of length at most
n + b in its domain.

So there is t ≥ s with qt+1 − qt ≥ 2−n−b.



Finally, a random

Theorem (Chaitin)

Ω is Martin-Löf random.

Proof.

Fix q0, q1, . . . computable, increasing, converging to Ω. Fix
V0,V1, . . . the universal Martin-Löf test.

Let b be as in the previous discussion.

When we see some [τ ] ⊆ Vb containing the current qs , we trigger
an increasing of at least 2−|τ |−b−1. This moves some qt beyond
[τ ].

By topological considerations, Ω 6∈ Vb.



It’s powerful

Theorem (Calude and Nies)

Ω computes every c.e. set.

Proof.

Fix a c.e. set A.

If we see n enter A at stage s, trigger an increase of at least ε2−n.

With oracle Ω, to decide if n ∈ A, wait until Ω− qs < ε2−n. If n
hasn’t entered A by stage s, it never will.


