Arithmetic of elliptic curves lecture 2

Brendan Creutz University of Canterbury NZMRI Summer Meeting 2021

Rational Points on genus one curves, a summary

Suppose E/\mathbb{Q} is a genus one curve.

Problem 1:

Decide if $E(\mathbb{Q})$ is nonempty.

- Difficult because local obstructions do not suffice.
- One must define new obstructions and study these (Descent, Brauer-Manin)

Problem 2:

If $E(\mathbb{Q})$ is nonempty, the points form a finitely generated abelian group. Determine the structure and find generators.

Can be reduced to Problem 1 for a finite collection of auxiliary curves: E(Q) = ∐_δ π_δ(C_δ(Q)).

The proof of Mordell's theorem used a homomorphism

$$\frac{E(\mathbb{Q})}{2E(\mathbb{Q})} \longrightarrow \frac{\mathbb{Q}^{\times}}{\mathbb{Q}^{\times 2}} \times \frac{\mathbb{Q}^{\times}}{\mathbb{Q}^{\times 2}} \,.$$

More generally for any *n* we have an exact sequence

$$\xrightarrow{E(\mathbb{Q})}{\stackrel{h}{\longrightarrow}} H^1(\mathbb{Q}, E[n]) \longrightarrow H^1(\mathbb{Q}, E)$$

- H¹(Q, E) paramterizes isomorphism classes of genus one curves together with an algebraic group action of E.
 Elements are called principal homogeneous spaces PHS.
- ► The identity element is *E* acting on itself by translation.
- The nontrivial elements are represented by PHS's that have no rational points.

We now take into account local information:

- III(E/Q) := ker(β) is the Tate-Shafarevich group. It consists of those PHS's with no local obstruction to existence of rational points.
- Selⁿ(E/ℚ) := ker(α) is called the Selmer group. It is finite and computable.

These fit into a famous short exact sequence

$$0 \to E(\mathbb{Q})/nE(\mathbb{Q}) \to \operatorname{Sel}^n(E/\mathbb{Q}) \to \operatorname{III}(E/\mathbb{Q})[n] \to 0$$

A conjectural algorithm

Conjecture (Tate, Shafarevich, Cassels? 1950/60's)

For any elliptic curve the group $\operatorname{III}(E/\mathbb{Q})$ is finite.

Theorem

If *C* is a PHS for *E* and $III(E/\mathbb{Q})$ is finite, then there is an algorithm to decide if $C(\mathbb{Q}) = \emptyset$.

Sketch of the proof

Search for rational points by day and try to prove there are none by night.

- If *C* has a local obstruction, then $C(\mathbb{Q}) = \emptyset$.
- ▶ If not, then $[C] \in III(E)$. We try to prove $[C] \neq 0$
- For any *n* one can check if [C] is divisible by *n* in III(E).
- If III(*E*/ℚ) finite and [*C*] ≠ 0 we eventually find *n* such that [*C*] is not divisible by *n*.

An element of order 9 in $III(E/\mathbb{Q})$

• $D \subset \mathbb{P}^8$ is the genus one curve given by

$$\begin{split} 0 &= z_2 z_5 - z_5 z_6 + 3 z_7^2 + z_7 z_9 + 2 z_8^2 \,, \\ 0 &= z_1 z_2 + z_2 z_6 + z_2 z_7 + z_4 z_9 + z_5 z_7 + 2 z_5 z_8 \,, \\ 0 &= z_1 z_7 - z_2 z_8 - z_4 z_5 - z_5^2 - 2 z_6 z_7 - z_6 z_8 + z_7^2 \,, \\ \vdots \end{split}$$

and 24 other similar looking quadratic equations.

•
$$C \subset \mathbb{P}^3$$
 given by $x^3 + 6y^3 + 919 = 53xy$.

$$E : y^2 + xy = x^3 - 1479474x - 692765778$$

Cassels' Question

Dividing by n in III(E) is a two step process:

- **1.** Divide by *n* in the larger group $H^1(\mathbb{Q}, E)$.
- **2.** Look for "twists" that get you back into $III(E/\mathbb{Q})$.

Question (Cassels 1961)

Are the elements of III(E) always divisible by *n* in the larger group $H^1(\mathbb{Q}, E)$?

Some Answers

E/\mathbb{Q}	n = p (prime)	YES	Tate 1963
E/\mathbb{Q}	$n = p^r, p >> 0$	YES	Bashmakov 1972
E/\mathbb{Q}	$n = p^r, p > 163$	YES	Dvornicich-Zannier 2007
E/\mathbb{Q}	$n = p^r, p > 7$	YES	Çiperiani-Stix 2012
E/\mathbb{Q}	$n = p^r, p > 3$	YES	Paladino-Ranieri-Viada 2014
E/\mathbb{Q}	4 <i>n</i> or 9 <i>n</i>	NO	C. 2013, 2016
A/\mathbb{Q}	any integer	NO	C. 2013
$E/\mathbb{F}_{\rho}(t)$		YES ⇔ 8 ∤ <i>n</i>	C. & Voloch 2017

Example

•
$$E: y^2 = x(x+80)(x+205)$$

• The curve $C \in III(E)$ defined by

$$z_1^2 - 5z_2^2 + 80z_4^2 = 0$$

$$z_1^2 - 5z_3^2 + 205z_4 = 0$$

is not divisible by 4 in $H^1(E)$.

Example

- $C: 2x^3 + 3y^3 + 23z^3 = 0$ is not divisible by 9 in H¹
- Selmer showed $C \neq 0$ in III.

Answer to Cassels' Question

- Selmer conjectured that whenever III(E) is finite, its order must be a square.
- Cassels proved this conjecture by establishing the first of many "arithmetic duality theorems": for any integer *n* there is a nondegenerate alternating bilinear pairing

$$\operatorname{III}(E)[n] \times \frac{\operatorname{III}(E)}{n \operatorname{III}(E)} \to \mathbb{Q}/\mathbb{Z}$$

 My result (when specialized to elliptic curves) gives a compatible nondegenerate pairing

$$\frac{\mathrm{III}(E[n])}{E(\mathbb{Q})/n \cap \mathrm{III}(E[n])} \times \frac{\mathrm{III}(E)}{n \operatorname{H}^{1}(E) \cap \mathrm{III}(E)} \to \mathbb{Q}/\mathbb{Z}$$

allowing us to control divisibility in $H^1(\mathbb{Q}, E)$.

The pairing can only be nontrivial if there is a prime *p* such that *p*² | *n* and the Galois representation on *E*[*p*] is contained in *S*₃ (over ℚ only possible when *p* = 2 or 3.)

A conjecture of Lang and Tate

Recall $\operatorname{III}(E/\mathbb{Q})$ is defined as the kernel of α in

$$0 \to \operatorname{III}(E/\mathbb{Q}) \to \operatorname{H}^{1}(\mathbb{Q}, E) \xrightarrow{\alpha} \bigoplus_{\operatorname{all} \rho} \operatorname{H}^{1}(\mathbb{Q}_{\rho}, E)$$

What about the image of α ?

Theorem (C. 2012)

For any finite set of primes S the map

$$H^1(\mathbb{Q}, E) \to \prod_{p \in S} H^1(\mathbb{Q}_p, E)$$

is surjective.

"In analogy with Grunwald's theorem in class field theory, one may conjecture that if *k* is an algebraic number field and \mathfrak{p} a given prime, then given $\alpha_{\mathfrak{p}} \in H^1(k_{\mathfrak{p}}, A)$, there exists $\alpha \in H^1(k, A)$ restricting to $\alpha_{\mathfrak{p}}$."

- Lang & Tate (1958)

The Brauer-Manin obstruction

- Suppose C is a variety over Q with no local obstruction. This means there is a compatible system of solutions modulo n for every integer n (called an adelic point).
- An adelic point coming from a rational point must satisfy certain reciprocity laws imposed by the Brauer group of C.
- If no adelic point satisfies these laws then there is no rational point; we say there is a Brauer-Manin obstruction.

Conjecture

Suppose C/\mathbb{Q} is a PHS for an abelian variety such that $C(\mathbb{Q}) = \emptyset$. Then there is a Brauer-Manin obstruction.

- This would give an algorithm to decide on existence of rational points.
- ▶ This is implied by finiteness of III, but is a priori weaker.

Hilbert Reciprocity

Theorem

A conic with rational coefficients has a local obstruction at a **finite even number** of primes.

Example

The conic $x^2 + y^2 = 3$ has local obstructions at the primes p = 2 and p = 3, but nowhere else.

E.g., we have a 5-adic solution:

$$2^2 + 2^2 \equiv 3 \mod 5$$

 $2^2 + 7^2 \equiv 3 \mod 25$
 $2^2 + 57^2 \equiv 3 \mod 125$

Example of a Brauer-Manin obstruction (Reichard/Lind 1940s, C. & Viray 2015)

Consider the curve C and the family \mathcal{B} of conics over C defined by

$$C: y^2 = 2x^4 - 34$$
, $B: yu^2 + 17v^2 = 1$

▶ $\forall p \neq 17$ and $P \in C(\mathbb{Q}_p)$, the fiber \mathcal{B}_P has no local obstruction at p.

Hilbert reciprocity implies there are no rational fibers.

• Hence
$$C(\mathbb{Q}) = \emptyset$$
.

Brauer-Manin Obstructions

There is a BM obstruction to rational points on C if:

For every adelic point $P \in V(\mathbb{A})$,

there exists a Brauer class \mathcal{B} such that $\mathcal{B}(\mathbf{P}) \neq 0$.

(Distinct Brauer classes might be needed to obstruct distinct adelic points.)

Theorem (C. 2020)

Suppose C is a PHS for an abelian variety with a BM obstruction to existence of rational points. Then there exists a single Brauer class responsible for the obstruction.

(Actually, one well chosen Brauer class will always suffice)

Corollary

Sufficiency of the Brauer-Manin obstruction is equivalent to finiteness of III.