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Rational Points on genus one curves, a summary

Suppose E/Q is a genus one curve.

Problem 1:

Decide if E(Q) is nonempty.

I Difficult because local obstructions do not suffice.
I One must define new obstructions and study these

(Descent, Brauer-Manin)

Problem 2:

If E(Q) is nonempty, the points form a finitely generated abelian
group. Determine the structure and find generators.

I Can be reduced to Problem 1 for a finite collection of
auxiliary curves: E(Q) =

∐
δ πδ(Cδ(Q)) .



The proof of Mordell’s theorem used a homomorphism

E(Q)

2E(Q)
−→ Q×

Q×2 ×
Q×

Q×2 .

More generally for any n we have an exact sequence

E(Q)
nE(Q)

� � // H1(Q,E [n]) // H1(Q,E)

I H1(Q,E) paramterizes isomorphism classes of genus one
curves together with an algebraic group action of E .
Elements are called principal homogeneous spaces PHS.

I The identity element is E acting on itself by translation.
I The nontrivial elements are represented by PHS’s that

have no rational points.



We now take into account local information:

E(Q)
nE(Q)

� � δ // H1(Q,E [n]) //

α

''

H1(Q,E)

β

��∏
p H

1(Qp,E)

I X(E/Q) := ker(β) is the Tate-Shafarevich group. It
consists of those PHS’s with no local obstruction to
existence of rational points.

I Seln(E/Q) := ker(α) is called the Selmer group. It is finite
and computable.

These fit into a famous short exact sequence

0→ E(Q)/nE(Q)→ Seln(E/Q)→X(E/Q)[n]→ 0



A conjectural algorithm

Conjecture (Tate, Shafarevich, Cassels? 1950/60’s)

For any elliptic curve the group X(E/Q) is finite.

Theorem

If C is a PHS for E and X(E/Q) is finite, then there is an
algorithm to decide if C(Q) = ∅.

Sketch of the proof

Search for rational points by day and try to prove there are
none by night.

I If C has a local obstruction, then C(Q) = ∅.
I If not, then [C] ∈X(E). We try to prove [C] 6= 0
I For any n one can check if [C] is divisible by n in X(E).
I If X(E/Q) finite and [C] 6= 0 we eventually find n such that

[C] is not divisible by n.



An element of order 9 in X(E/Q)

I D ⊂ P8 is the genus one curve given by

0 = z2z5 − z5z6 + 3z2
7 + z7z9 + 2z2

8 ,

0 = z1z2 + z2z6 + z2z7 + z4z9 + z5z7 + 2z5z8 ,

0 = z1z7 − z2z8 − z4z5 − z2
5 − 2z6z7 − z6z8 + z2

7 ,

...

and 24 other similar looking quadratic equations.

I C ⊂ P3 given by x3 + 6y3 + 919 = 53xy .

I E : y2 + xy = x3 − 1479474x − 692765778



Cassels’ Question
Dividing by n in X(E) is a two step process:

1. Divide by n in the larger group H1(Q,E).
2. Look for “twists" that get you back into X(E/Q).

Question (Cassels 1961)

Are the elements of X(E) always divisible by n in the larger
group H1(Q,E)?

Some Answers
E/Q n = p (prime) YES Tate 1963
E/Q n = pr , p >> 0 YES Bashmakov 1972
E/Q n = pr , p > 163 YES Dvornicich-Zannier 2007
E/Q n = pr , p > 7 YES Çiperiani-Stix 2012
E/Q n = pr , p > 3 YES Paladino-Ranieri-Viada 2014
E/Q 4 | n or 9 | n NO C. 2013, 2016

A/Q any integer NO C. 2013
E/Fp(t) YES⇔ 8 - n C. & Voloch 2017



Example

I E : y2 = x(x + 80)(x + 205)
I The curve C ∈X(E) defined by

z2
1 − 5z2

2 + 80z2
4 = 0

z2
1 − 5z2

3 + 205z4 = 0

is not divisible by 4 in H1(E).

Example

I C : 2x3 + 3y3 + 23z3 = 0 is not divisible by 9 in H1

I Selmer showed C 6= 0 in X.



Answer to Cassels’ Question
I Selmer conjectured that whenever X(E) is finite, its order

must be a square.
I Cassels proved this conjecture by establishing the first of

many “arithmetic duality theorems": for any integer n there
is a nondegenerate alternating bilinear pairing

X(E)[n]× X(E)

nX(E)
→ Q/Z

I My result (when specialized to elliptic curves) gives a
compatible nondegenerate pairing

X(E [n])
E(Q)/n ∩X(E [n])

× X(E)

nH1(E) ∩X(E)
→ Q/Z

allowing us to control divisibility in H1(Q,E).
I The pairing can only be nontrivial if there is a prime p such

that p2 | n and the Galois representation on E [p] is
contained in S3 (over Q only possible when p = 2 or 3.)



A conjecture of Lang and Tate
Recall X(E/Q) is defined as the kernel of α in

0→X(E/Q)→ H1(Q,E)
α→

⊕
all p

H1(Qp,E)

What about the image of α?

Theorem (C. 2012)

For any finite set of primes S the map

H1(Q,E)→
∏
p∈S

H1(Qp,E)

is surjective.

“In analogy with Grunwald’s theorem in class field theory, one
may conjecture that if k is an algebraic number field and p a
given prime, then given αp ∈ H1(kp,A), there exists
α ∈ H1(k ,A) restricting to αp."

– Lang & Tate (1958)



The Brauer-Manin obstruction

I Suppose C is a variety over Q with no local obstruction.
This means there is a compatible system of solutions
modulo n for every integer n (called an adelic point).

I An adelic point coming from a rational point must satisfy
certain reciprocity laws imposed by the Brauer group of C.

I If no adelic point satisfies these laws then there is no
rational point; we say there is a Brauer-Manin obstruction.

Conjecture

Suppose C/Q is a PHS for an abelian variety such that
C(Q) = ∅. Then there is a Brauer-Manin obstruction.

I This would give an algorithm to decide on existence of
rational points.

I This is implied by finiteness of X, but is a priori weaker.



Hilbert Reciprocity

Theorem

A conic with rational coefficients has a local obstruction at a
finite even number of primes.

Example

The conic x2 + y2 = 3 has local obstructions at the primes
p = 2 and p = 3, but nowhere else.

E.g., we have a 5-adic solution:

22 + 22 ≡ 3 mod 5

22 + 72 ≡ 3 mod 25

22 + 572 ≡ 3 mod 125
...



Example of a Brauer-Manin obstruction
(Reichard/Lind 1940s, C. & Viray 2015)

Consider the curve C and the family B of conics over C defined
by

C : y2 = 2x4 − 34 , B : yu2 + 17v2 = 1

I B(Q17) = ∅, i.e., B has a
local obstruction at p = 17.

I ∀p 6= 17 and P ∈ C(Qp),
the fiber BP has no local
obstruction at p.

I Hilbert reciprocity implies there are no rational fibers.
I Hence C(Q) = ∅.



Brauer-Manin Obstructions
There is a BM obstruction to rational points on C if:

For every adelic point P ∈ V (A),
there exists a Brauer class B such that B(P) 6= 0.

(Distinct Brauer classes might be needed to obstruct distinct
adelic points.)

Theorem (C. 2020)

Suppose C is a PHS for an abelian variety with a BM
obstruction to existence of rational points. Then there exists a
single Brauer class responsible for the obstruction.

(Actually, one well chosen Brauer class will always suffice)

Corollary

Sufficiency of the Brauer-Manin obstruction is equivalent to
finiteness of X.


