
Computability and classification problems, 2.
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Σ1
1-sets are those that can be expressed using one

existential functional quantifier:

x ∈ X ⇐⇒ (∃f : N→ N) (∀n) R(f , x ,n),

where R is a computable relation that uses f as an oracle.
Π1

1-sets are the complements of the Σ1
1-sets:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) S(f , x ,n).
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Definition
A set S ∈ Σn

m is complete in its class Σn
m if for every X ∈ Σn

m,

X ≤1 S,

that is, there is a 1-1 total computable function f such that

x ∈ X ⇐⇒ f (x) ∈ S.

(1-1 can be omitted).

This is similar to NP-completeness in complexity theory.

The crucial difference is that we know that the hierarchy does
not collapse.
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We know that 0(n) is Σ0
n-complete. What are the most natural

Σ1
1-complete and Π1

1-complete sets?

To define these sets we need to define the notion of a
computable algebraic structure.

Definition
A computable presentation of a countably infinite algebraic structure
A is an algebraic structure B such that:

the set of elements of B is a computable subset of N,

the relations and operations of B are computable.
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Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.
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Recall that a (strict) linear order is a binary structure (X , <) that
satisfies:

1 ∀x , y , z x < y and y < z =⇒ x < z;
2 for all x 6= y , either x < y or y < x ;
3 x 6< x .

A linear order (X , <) is well-ordered or well-founded if it does
not contain infinite ascending chains:

. . . < xn < . . . < x3 < x2 < x1 < x0.
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Using the Universal Turing Machine, we can produce a list of all
partially computable structures:

R0,R1,R2, . . . .

Theorem (Kleene, Spector)
The index set of well-orders

{e : Re is well-ordered}

is Π1
1 complete.

It also follows that

{e : Re is linearly ordered but not well-ordered}

is Σ1
1-complete.
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Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx ) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx ) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx ) is a

well-ordering.
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One cool property of the Kleene-Spector theorem is that it can
be relativized to any oracle.

Fix an arbitrary oracle Y .

Definition

A set X is Π1
1(Y ) if:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) SY (f , x ,n)

where S is a predicate that is computable relative to Y .
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One cool property of the Kleene-Spector theorem is that it can
be relativized to any oracle.

Fix an arbitrary oracle Y .

Definition

A set X is Π1
1(Y ) if:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) SY (f , x ,n)

where S is a predicate that is computable relative to Y .

Melnikov A.



Produce a list of all structures partially computable relative to Y :

RY
0 ,R

Y
1 ,R

Y
2 , . . . .

Theorem (Kleene-Spector relativised)
The index set of well-orders

{e : RY
e is well-ordered}

is Π1
1(Y )-complete.

Proof:

1 All steps relativise to Y (just substitute ‘computable’ with
‘computable relative to Y ’ throughout).

2 Furthermore, T Y
x → KB(T Y

x ) is a computable
transformation (even though T Y and KB(T Y

x ) are not
necessarily computable).
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3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x ) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 , . . . .

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y ):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.
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1 Any Π1
1 relation ∀f∃nS(f ,Y ; n,e) with a set parameter Y is

computably equivalent to the statement of the form

RY
e is well ordered.

2 It follows that the property of being well-founded is an
intrinsically second-order property.

3 There is no “local” way to test whether an arbitrary
countable linear order is well-founded.

4 This works for arbitrary countable linear orders, not for just
computable linear orders. (Every linear order is
computable relative to some oracle.)

There is no property characterising well-orders among all linear
orders which would be simpler than the definition.
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There are however plenty of examples when a property is
actually simpler than its definition suggests.

Example

Recall that the free abelian group Aα of rank α ∈ N ∪ {ω} is⊕
i≤α

Z.

A countable group G is free iff, for some α, G ∼= Aα:

(∃α)(∃f )(f is an isomorphism G→ Aα).

The definition is Σ1
1.

Melnikov A.
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But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi ].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.
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Part 2: Applications to classification problems
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One of the central problems of abelian group theory:

Problem
Determine whether a given abelian group G splits into the direct sum
of its proper subgroups:

G ∼= A⊕ B.

When you read Fuchs you realise that a local property would
be most desirable.

Example

An additive abelian group (D,+) is divisible if, for every k ∈ N and
each a ∈ A,

(∃b ∈ A) kb = b + b + . . . (n times) . . .+ b = a.

For example, the group of the rationals (Q,+) is like that. Note that
this is a “local” property. So, if G is not divisible and D is a divisible
subgroup of G, then G = D ⊕ X (both non-trivial).
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In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T ) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!
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1 As before, the result of Riggs is fully relativizable.
2 It follows that the property of (in)decomposability is

intrinsically global/second-order.
3 So it follows that there is no local characterisation of being

decomposable.
4 If you are an abelian group theorist trying to find such a

characterisation STOP NOW.
5 In their defence (after 50+ years of trying) abelian group

theorists did realise that one should not hope for any
reasonable characterisation of decomposability.
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Here is another property which is also naturally global (not
first-order):

Definition (Baer)
A group G is completely decomposable if it splits into the direct sum

G ∼=
⊕

i

Hi ,

where each of the Hi is a subgroup of the additive group of the
rationals (Q,+).

This does not look like a local property at all.

We need to ask if there exist subsets Hi of G s.t. G ∼=
⊕

i Hi .

In a way, this looks even worse that just direct decomposability.
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Theorem (Downey and Melnikov, 2014)

The index set of completely indecomposable groups Σ0
7.

Proof idea.
1 Design a new independence property inspired by Nielsen

transformations and Pontryagin’s (abelian) freeness
criterion.

2 Attempt to build a “decomposition basis” of a given G.
3 Simultaneously, use some specific combinatorics to

arithmetically list all isomorphism types of computable
completely decomposable groups:

C0,C1, . . . .

4 Use the basis to show that the property (∃i)G ∼= Ci is
indeed arithmetical (Σ0

7) and not merely Σ1
1.
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1 As before, the proof can be relativised to any oracle.
2 So complete decomposability is a local property.
3 There is a local independence property describing such

groups similar to how Nielsen transformations (in a way)
describe free groups.

4 For example, if G ∼=
⊕

i Hi where all the Hi are isomorphic,
then there is a set of primes S so that independence looks
as follows:

g1, . . . ,gk are S-independent ⇐⇒

(∀p ∈ S)(∀m1, . . . ,mk ∈ Z) [p|
∑

i

migi =⇒ &i≤kmi |k ].

5 In the general case it is more complex but still tractable.
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This approach works for separable structures as well – we omit the
details.

Some results by various authors, including Spector, Knight,
Goncharov, Downey, McNicholl, M., Turetsky, Nies, Solecki, McCoy,
and many others:

Characterisation Problem Complexity
Well-foundedness of a linear order Π1

1-comp
Atomicity of a Boolean algebra Π1

1-comp.
Direct decomposability of a group Σ1

1-comp.
Complete decomposability of a group Σ0

7
Freeness of a group Π0

4-comp.
Being a separable Lebesgue space Π0

3
Being a representation of C[0,1] Π0

5
Being a connected compact Polish space Π0

3(-comp.)
Being a locally compact Polish space Π1

1-comp
Being a compact Polish group Π0

3(-comp.)
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§2.1 The isomorphism problem.
Let K be a class of countable structures.

Definition
The isomorphism problem for K is the set

{2x3y : Mx ,My ∈ K and Mx ∼= My}.

The index set {e : Me ∈ K} of K reflexes the complexity of the
characterisation problem.

The isomorphism problem measures how hard it is to classify
structures up to isomorphism.
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More results by various authors:

Isomorphism problem Complexity
countable torsion-free abelian groups Σ1

1-comp.
countable completely decomposable groups Σ0

7
countable Boolean algebras Σ1

1-comp.
countable linear orders Σ1

1-comp.
Separable Lp-spaces, p 6= 0 co-3-Σ0

3-comp.
Connected Polish abelian groups Σ1

1-comp.
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The general framework agrees with the thesis:

Mathematical structures that admit tractable classifications have both
the characterisation problem and the isomorphism problem Σ0

n for
some n.

In this case we say that the class admits a local classification.

Unclassifiable structures have one of the two Π1
1− or Σ1

1−complete.

There are not many “natural” examples in-between (at the
transfinite hyperarithmetical levels).
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§2.2 An application.

Definition
A computable structure is automatic if the operations and relations are
computed by a finite state automaton.

A finite automaton is a memoryless computational device (your
laptop without the hard drive).

Approximately 20 years ago Khoussainov and Nerode asked
for a characterisation of structures that admit an automatic
presentation.

Sample results:
1 A finitely generated group is automatic iff it is virtually abelian (Oliver

and Thomas 2005).
2 The automatic ordinals are exactly those below ω<ω (Delhomme 2004).
3 Similar characterisations exist for Boolean algebras and some other

classes.
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Some years later they asked the more specific question:

Question (Khoussainov and Nerode 2008)
What is the complexity of the index set

{e : Me is isomorphic to an automatic structure }

of automatically presentable structures?
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Theorem (B.H.-T.K.M.N.)

The index set of automatic structures is Σ1
1-complete.

Proof.
Hard.

According to our framework, there is no characterization of
automatic presentability.
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