
Computability and classification problems, 2.

Melnikov A.

Melnikov A.

Set-quantifiers

Σ0
1 (

Σ0
2 (

Σ0
3 (

Σ1
1 (

Σ1
2 (

∆0
1

(
(

∆0
2

(
(

∆0
3

(
(

∆0
4

(

(
· · · ∆1

1

(
(

∆1
2

(
(

· · ·

Π0
1

(
Π0

2

(
Π0

3

(
Π1

1

(
Π1

2

(

Σ1
1-sets are those that can be expressed using one

existential functional quantifier:

x ∈ X ⇐⇒ (∃f : N→ N) (∀n) R(f , x ,n),

where R is a computable relation that uses f as an oracle.
Π1

1-sets are the complements of the Σ1
1-sets:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) S(f , x ,n).

Melnikov A.

Set-quantifiers

Σ0
1 (

Σ0
2 (

Σ0
3 (

Σ1
1 (

Σ1
2 (

∆0
1

(
(

∆0
2

(
(

∆0
3

(
(

∆0
4

(

(
· · · ∆1

1

(
(

∆1
2

(
(

· · ·

Π0
1

(
Π0

2

(
Π0

3

(
Π1

1

(
Π1

2

(

Σ1
1-sets are those that can be expressed using one

existential functional quantifier:

x ∈ X ⇐⇒ (∃f : N→ N) (∀n) R(f , x ,n),

where R is a computable relation that uses f as an oracle.
Π1

1-sets are the complements of the Σ1
1-sets:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) S(f , x ,n).

Melnikov A.

Set-quantifiers

Σ0
1 (

Σ0
2 (

Σ0
3 (

Σ1
1 (

Σ1
2 (

∆0
1

(
(

∆0
2

(
(

∆0
3

(
(

∆0
4

(

(
· · · ∆1

1

(
(

∆1
2

(
(

· · ·

Π0
1

(
Π0

2

(
Π0

3

(
Π1

1

(
Π1

2

(

Σ1
1-sets are those that can be expressed using one

existential functional quantifier:

x ∈ X ⇐⇒ (∃f : N→ N) (∀n) R(f , x ,n),

where R is a computable relation that uses f as an oracle.
Π1

1-sets are the complements of the Σ1
1-sets:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) S(f , x ,n).

Melnikov A.

Definition
A set S ∈ Σn

m is complete in its class Σn
m if for every X ∈ Σn

m,

X ≤1 S,

that is, there is a 1-1 total computable function f such that

x ∈ X ⇐⇒ f (x) ∈ S.

(1-1 can be omitted).

This is similar to NP-completeness in complexity theory.

The crucial difference is that we know that the hierarchy does
not collapse.

Melnikov A.

Definition
A set S ∈ Σn

m is complete in its class Σn
m if for every X ∈ Σn

m,

X ≤1 S,

that is, there is a 1-1 total computable function f such that

x ∈ X ⇐⇒ f (x) ∈ S.

(1-1 can be omitted).

This is similar to NP-completeness in complexity theory.

The crucial difference is that we know that the hierarchy does
not collapse.

Melnikov A.

We know that 0(n) is Σ0
n-complete. What are the most natural

Σ1
1-complete and Π1

1-complete sets?

To define these sets we need to define the notion of a
computable algebraic structure.

Definition
A computable presentation of a countably infinite algebraic structure
A is an algebraic structure B such that:

the set of elements of B is a computable subset of N,

the relations and operations of B are computable.

Melnikov A.

We know that 0(n) is Σ0
n-complete. What are the most natural

Σ1
1-complete and Π1

1-complete sets?

To define these sets we need to define the notion of a
computable algebraic structure.

Definition
A computable presentation of a countably infinite algebraic structure
A is an algebraic structure B such that:

the set of elements of B is a computable subset of N,

the relations and operations of B are computable.

Melnikov A.

We know that 0(n) is Σ0
n-complete. What are the most natural

Σ1
1-complete and Π1

1-complete sets?

To define these sets we need to define the notion of a
computable algebraic structure.

Definition
A computable presentation of a countably infinite algebraic structure
A is an algebraic structure B such that:

the set of elements of B is a computable subset of N,

the relations and operations of B are computable.

Melnikov A.

Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.

Melnikov A.

Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.

Melnikov A.

Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.

Melnikov A.

Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.

Melnikov A.

Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.

Melnikov A.

Example
Examples of computably poresentable algebraic structures:

(N,+,×,0,1) – the semiring of natural numbers.

The field of algebraic numbers Q.

Any polynomial ring over a countable field you can find in a
textbook.

Any countable linear order you can think of.

Every finitely presented group in which the word problem is
decidable.

Melnikov A.

Recall that a (strict) linear order is a binary structure (X , <) that
satisfies:

1 ∀x , y , z x < y and y < z =⇒ x < z;
2 for all x 6= y , either x < y or y < x ;
3 x 6< x .

A linear order (X , <) is well-ordered or well-founded if it does
not contain infinite ascending chains:

. . . < xn < . . . < x3 < x2 < x1 < x0.

Melnikov A.

Recall that a (strict) linear order is a binary structure (X , <) that
satisfies:

1 ∀x , y , z x < y and y < z =⇒ x < z;
2 for all x 6= y , either x < y or y < x ;
3 x 6< x .

A linear order (X , <) is well-ordered or well-founded if it does
not contain infinite ascending chains:

. . . < xn < . . . < x3 < x2 < x1 < x0.

Melnikov A.

Using the Universal Turing Machine, we can produce a list of all
partially computable structures:

R0,R1,R2,

Theorem (Kleene, Spector)
The index set of well-orders

{e : Re is well-ordered}

is Π1
1 complete.

It also follows that

{e : Re is linearly ordered but not well-ordered}

is Σ1
1-complete.

Melnikov A.

Using the Universal Turing Machine, we can produce a list of all
partially computable structures:

R0,R1,R2,

Theorem (Kleene, Spector)
The index set of well-orders

{e : Re is well-ordered}

is Π1
1 complete.

It also follows that

{e : Re is linearly ordered but not well-ordered}

is Σ1
1-complete.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

Proof.
1 Re is well-ordered iff Re does not have an ascending chain

– this is a Π1
1 condition (why?).

2 Fix X ∈ Π1
1, so x ∈ X ⇐⇒ (∀f : N→ N) (∃n) R(f , x ,n).

3 For a given x , (computably) enumerate the tree Tx of all
finite strings σ of natural numbers such that
(∃n < length(σ)) R(σ, x ,n).

4 Tx has no infinite branches if, and only if, x ∈ X .
5 Define the Kleene–Brouwer order KB(Tx) on strings in Tx :

t <KB s when there is an n such that either:
1 t is a prefix of s; or otherwise
2 t(n) < s(n), where n is the largest such that the n-prefixes

of s and t are equal.

6 KB(Tx) is a computably presented linear order.
7 Tx has no infinite branches if, and only if, KB(Tx) is a

well-ordering.

Melnikov A.

One cool property of the Kleene-Spector theorem is that it can
be relativized to any oracle.

Fix an arbitrary oracle Y .

Definition

A set X is Π1
1(Y) if:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) SY (f , x ,n)

where S is a predicate that is computable relative to Y .

Melnikov A.

One cool property of the Kleene-Spector theorem is that it can
be relativized to any oracle.

Fix an arbitrary oracle Y .

Definition

A set X is Π1
1(Y) if:

x ∈ X ⇐⇒ (∀f : N→ N) (∃n) SY (f , x ,n)

where S is a predicate that is computable relative to Y .

Melnikov A.

Produce a list of all structures partially computable relative to Y :

RY
0 ,R

Y
1 ,R

Y
2 ,

Theorem (Kleene-Spector relativised)
The index set of well-orders

{e : RY
e is well-ordered}

is Π1
1(Y)-complete.

Proof:

1 All steps relativise to Y (just substitute ‘computable’ with
‘computable relative to Y ’ throughout).

2 Furthermore, T Y
x → KB(T Y

x) is a computable
transformation (even though T Y and KB(T Y

x) are not
necessarily computable).

Melnikov A.

Produce a list of all structures partially computable relative to Y :

RY
0 ,R

Y
1 ,R

Y
2 ,

Theorem (Kleene-Spector relativised)
The index set of well-orders

{e : RY
e is well-ordered}

is Π1
1(Y)-complete.

Proof:

1 All steps relativise to Y (just substitute ‘computable’ with
‘computable relative to Y ’ throughout).

2 Furthermore, T Y
x → KB(T Y

x) is a computable
transformation (even though T Y and KB(T Y

x) are not
necessarily computable).

Melnikov A.

Produce a list of all structures partially computable relative to Y :

RY
0 ,R

Y
1 ,R

Y
2 ,

Theorem (Kleene-Spector relativised)
The index set of well-orders

{e : RY
e is well-ordered}

is Π1
1(Y)-complete.

Proof:

1 All steps relativise to Y (just substitute ‘computable’ with
‘computable relative to Y ’ throughout).

2 Furthermore, T Y
x → KB(T Y

x) is a computable
transformation (even though T Y and KB(T Y

x) are not
necessarily computable).

Melnikov A.

Produce a list of all structures partially computable relative to Y :

RY
0 ,R

Y
1 ,R

Y
2 ,

Theorem (Kleene-Spector relativised)
The index set of well-orders

{e : RY
e is well-ordered}

is Π1
1(Y)-complete.

Proof:

1 All steps relativise to Y (just substitute ‘computable’ with
‘computable relative to Y ’ throughout).

2 Furthermore, T Y
x → KB(T Y

x) is a computable
transformation (even though T Y and KB(T Y

x) are not
necessarily computable).

Melnikov A.

3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 ,

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.

Melnikov A.

3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 ,

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.

Melnikov A.

3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 ,

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.

Melnikov A.

3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 ,

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.

Melnikov A.

3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 ,

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.

Melnikov A.

3 It follows from the partially relativized s-m-n Theorem
(something that we skipped) that the index of KB(T Y

x) in
the enumeration

RY
0 ,R

Y
1 ,R

Y
2 ,

is computable from x , and not merely computable relative
to Y .

4 This is because we transform the programs that use the
oracles rather than actually use any information about the
oracle.

5 This gives a computable reduction h for any S ∈ Π1
1(Y):

x ∈ S ⇐⇒ h(e) ∈ {e : RY
e is a well-order}.

Melnikov A.

1 Any Π1
1 relation ∀f∃nS(f ,Y ; n,e) with a set parameter Y is

computably equivalent to the statement of the form

RY
e is well ordered.

2 It follows that the property of being well-founded is an
intrinsically second-order property.

3 There is no “local” way to test whether an arbitrary
countable linear order is well-founded.

4 This works for arbitrary countable linear orders, not for just
computable linear orders. (Every linear order is
computable relative to some oracle.)

There is no property characterising well-orders among all linear
orders which would be simpler than the definition.

Melnikov A.

1 Any Π1
1 relation ∀f∃nS(f ,Y ; n,e) with a set parameter Y is

computably equivalent to the statement of the form

RY
e is well ordered.

2 It follows that the property of being well-founded is an
intrinsically second-order property.

3 There is no “local” way to test whether an arbitrary
countable linear order is well-founded.

4 This works for arbitrary countable linear orders, not for just
computable linear orders. (Every linear order is
computable relative to some oracle.)

There is no property characterising well-orders among all linear
orders which would be simpler than the definition.

Melnikov A.

1 Any Π1
1 relation ∀f∃nS(f ,Y ; n,e) with a set parameter Y is

computably equivalent to the statement of the form

RY
e is well ordered.

2 It follows that the property of being well-founded is an
intrinsically second-order property.

3 There is no “local” way to test whether an arbitrary
countable linear order is well-founded.

4 This works for arbitrary countable linear orders, not for just
computable linear orders. (Every linear order is
computable relative to some oracle.)

There is no property characterising well-orders among all linear
orders which would be simpler than the definition.

Melnikov A.

1 Any Π1
1 relation ∀f∃nS(f ,Y ; n,e) with a set parameter Y is

computably equivalent to the statement of the form

RY
e is well ordered.

2 It follows that the property of being well-founded is an
intrinsically second-order property.

3 There is no “local” way to test whether an arbitrary
countable linear order is well-founded.

4 This works for arbitrary countable linear orders, not for just
computable linear orders. (Every linear order is
computable relative to some oracle.)

There is no property characterising well-orders among all linear
orders which would be simpler than the definition.

Melnikov A.

1 Any Π1
1 relation ∀f∃nS(f ,Y ; n,e) with a set parameter Y is

computably equivalent to the statement of the form

RY
e is well ordered.

2 It follows that the property of being well-founded is an
intrinsically second-order property.

3 There is no “local” way to test whether an arbitrary
countable linear order is well-founded.

4 This works for arbitrary countable linear orders, not for just
computable linear orders. (Every linear order is
computable relative to some oracle.)

There is no property characterising well-orders among all linear
orders which would be simpler than the definition.

Melnikov A.

There are however plenty of examples when a property is
actually simpler than its definition suggests.

Example

Recall that the free abelian group Aα of rank α ∈ N ∪ {ω} is⊕
i≤α

Z.

A countable group G is free iff, for some α, G ∼= Aα:

(∃α)(∃f)(f is an isomorphism G→ Aα).

The definition is Σ1
1.

Melnikov A.

There are however plenty of examples when a property is
actually simpler than its definition suggests.

Example

Recall that the free abelian group Aα of rank α ∈ N ∪ {ω} is⊕
i≤α

Z.

A countable group G is free iff, for some α, G ∼= Aα:

(∃α)(∃f)(f is an isomorphism G→ Aα).

The definition is Σ1
1.

Melnikov A.

There are however plenty of examples when a property is
actually simpler than its definition suggests.

Example

Recall that the free abelian group Aα of rank α ∈ N ∪ {ω} is⊕
i≤α

Z.

A countable group G is free iff, for some α, G ∼= Aα:

(∃α)(∃f)(f is an isomorphism G→ Aα).

The definition is Σ1
1.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

But we understand these groups really quite well, so there
should be a better “local” way to test whether G is free abelian.

Fact

The index set of free abelian groups is arithmetical (Π0
2).

Proof idea.

To get the upper bound of Π0
2, try to build a free basis of G.

Use Pontryagin’s criterion:

a1, . . . ,an are freely independent ⇐⇒

(∀m,mi ∈ Z) [(∃x ∈ G)(mx =
∑

i

miai) =⇒ &im|mi].

Attempt to build a free basis.
If we never get stuck, then G has to be free.
Note this is relativizable to any oracle.

Melnikov A.

Part 2: Applications to classification problems

Melnikov A.

One of the central problems of abelian group theory:

Problem
Determine whether a given abelian group G splits into the direct sum
of its proper subgroups:

G ∼= A⊕ B.

When you read Fuchs you realise that a local property would
be most desirable.

Example

An additive abelian group (D,+) is divisible if, for every k ∈ N and
each a ∈ A,

(∃b ∈ A) kb = b + b + . . . (n times) . . .+ b = a.

For example, the group of the rationals (Q,+) is like that. Note that
this is a “local” property. So, if G is not divisible and D is a divisible
subgroup of G, then G = D ⊕ X (both non-trivial).

Melnikov A.

One of the central problems of abelian group theory:

Problem
Determine whether a given abelian group G splits into the direct sum
of its proper subgroups:

G ∼= A⊕ B.

When you read Fuchs you realise that a local property would
be most desirable.

Example

An additive abelian group (D,+) is divisible if, for every k ∈ N and
each a ∈ A,

(∃b ∈ A) kb = b + b + . . . (n times) . . .+ b = a.

For example, the group of the rationals (Q,+) is like that. Note that
this is a “local” property. So, if G is not divisible and D is a divisible
subgroup of G, then G = D ⊕ X (both non-trivial).

Melnikov A.

One of the central problems of abelian group theory:

Problem
Determine whether a given abelian group G splits into the direct sum
of its proper subgroups:

G ∼= A⊕ B.

When you read Fuchs you realise that a local property would
be most desirable.

Example

An additive abelian group (D,+) is divisible if, for every k ∈ N and
each a ∈ A,

(∃b ∈ A) kb = b + b + . . . (n times) . . .+ b = a.

For example, the group of the rationals (Q,+) is like that. Note that
this is a “local” property. So, if G is not divisible and D is a divisible
subgroup of G, then G = D ⊕ X (both non-trivial).

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

In 2012 Kudinov and I asked whether the property of being
directly indecomposable could be Π1

1-complete.

Theorem (Riggs 2017)

The index set of directly indecomposable groups Π1
1-complete.

Proof.
Design a computable transformation which, given a computable
tree T , produces a torsion-free abelian group with the property:

T has an infinite branch ⇐⇒ G(T) non-trivially directly splits.
This was inspired by an earlier result of Downey and Montalban,
- who were using an earlier work of Hjorth,
- who was building on indecomposability techniques developed by Fuchs,
- who was based on Pontryagin’s well-known work,
- Pontryagin was a blind genius mathematician!

Melnikov A.

1 As before, the result of Riggs is fully relativizable.
2 It follows that the property of (in)decomposability is

intrinsically global/second-order.
3 So it follows that there is no local characterisation of being

decomposable.
4 If you are an abelian group theorist trying to find such a

characterisation STOP NOW.
5 In their defence (after 50+ years of trying) abelian group

theorists did realise that one should not hope for any
reasonable characterisation of decomposability.

Melnikov A.

1 As before, the result of Riggs is fully relativizable.
2 It follows that the property of (in)decomposability is

intrinsically global/second-order.
3 So it follows that there is no local characterisation of being

decomposable.
4 If you are an abelian group theorist trying to find such a

characterisation STOP NOW.
5 In their defence (after 50+ years of trying) abelian group

theorists did realise that one should not hope for any
reasonable characterisation of decomposability.

Melnikov A.

1 As before, the result of Riggs is fully relativizable.
2 It follows that the property of (in)decomposability is

intrinsically global/second-order.
3 So it follows that there is no local characterisation of being

decomposable.
4 If you are an abelian group theorist trying to find such a

characterisation STOP NOW.
5 In their defence (after 50+ years of trying) abelian group

theorists did realise that one should not hope for any
reasonable characterisation of decomposability.

Melnikov A.

1 As before, the result of Riggs is fully relativizable.
2 It follows that the property of (in)decomposability is

intrinsically global/second-order.
3 So it follows that there is no local characterisation of being

decomposable.
4 If you are an abelian group theorist trying to find such a

characterisation STOP NOW.
5 In their defence (after 50+ years of trying) abelian group

theorists did realise that one should not hope for any
reasonable characterisation of decomposability.

Melnikov A.

1 As before, the result of Riggs is fully relativizable.
2 It follows that the property of (in)decomposability is

intrinsically global/second-order.
3 So it follows that there is no local characterisation of being

decomposable.
4 If you are an abelian group theorist trying to find such a

characterisation STOP NOW.
5 In their defence (after 50+ years of trying) abelian group

theorists did realise that one should not hope for any
reasonable characterisation of decomposability.

Melnikov A.

Here is another property which is also naturally global (not
first-order):

Definition (Baer)
A group G is completely decomposable if it splits into the direct sum

G ∼=
⊕

i

Hi ,

where each of the Hi is a subgroup of the additive group of the
rationals (Q,+).

This does not look like a local property at all.

We need to ask if there exist subsets Hi of G s.t. G ∼=
⊕

i Hi .

In a way, this looks even worse that just direct decomposability.

Melnikov A.

Here is another property which is also naturally global (not
first-order):

Definition (Baer)
A group G is completely decomposable if it splits into the direct sum

G ∼=
⊕

i

Hi ,

where each of the Hi is a subgroup of the additive group of the
rationals (Q,+).

This does not look like a local property at all.

We need to ask if there exist subsets Hi of G s.t. G ∼=
⊕

i Hi .

In a way, this looks even worse that just direct decomposability.

Melnikov A.

Here is another property which is also naturally global (not
first-order):

Definition (Baer)
A group G is completely decomposable if it splits into the direct sum

G ∼=
⊕

i

Hi ,

where each of the Hi is a subgroup of the additive group of the
rationals (Q,+).

This does not look like a local property at all.

We need to ask if there exist subsets Hi of G s.t. G ∼=
⊕

i Hi .

In a way, this looks even worse that just direct decomposability.

Melnikov A.

Here is another property which is also naturally global (not
first-order):

Definition (Baer)
A group G is completely decomposable if it splits into the direct sum

G ∼=
⊕

i

Hi ,

where each of the Hi is a subgroup of the additive group of the
rationals (Q,+).

This does not look like a local property at all.

We need to ask if there exist subsets Hi of G s.t. G ∼=
⊕

i Hi .

In a way, this looks even worse that just direct decomposability.

Melnikov A.

Theorem (Downey and Melnikov, 2014)

The index set of completely indecomposable groups Σ0
7.

Proof idea.
1 Design a new independence property inspired by Nielsen

transformations and Pontryagin’s (abelian) freeness
criterion.

2 Attempt to build a “decomposition basis” of a given G.
3 Simultaneously, use some specific combinatorics to

arithmetically list all isomorphism types of computable
completely decomposable groups:

C0,C1,

4 Use the basis to show that the property (∃i)G ∼= Ci is
indeed arithmetical (Σ0

7) and not merely Σ1
1.

Melnikov A.

Theorem (Downey and Melnikov, 2014)

The index set of completely indecomposable groups Σ0
7.

Proof idea.
1 Design a new independence property inspired by Nielsen

transformations and Pontryagin’s (abelian) freeness
criterion.

2 Attempt to build a “decomposition basis” of a given G.
3 Simultaneously, use some specific combinatorics to

arithmetically list all isomorphism types of computable
completely decomposable groups:

C0,C1,

4 Use the basis to show that the property (∃i)G ∼= Ci is
indeed arithmetical (Σ0

7) and not merely Σ1
1.

Melnikov A.

Theorem (Downey and Melnikov, 2014)

The index set of completely indecomposable groups Σ0
7.

Proof idea.
1 Design a new independence property inspired by Nielsen

transformations and Pontryagin’s (abelian) freeness
criterion.

2 Attempt to build a “decomposition basis” of a given G.
3 Simultaneously, use some specific combinatorics to

arithmetically list all isomorphism types of computable
completely decomposable groups:

C0,C1,

4 Use the basis to show that the property (∃i)G ∼= Ci is
indeed arithmetical (Σ0

7) and not merely Σ1
1.

Melnikov A.

Theorem (Downey and Melnikov, 2014)

The index set of completely indecomposable groups Σ0
7.

Proof idea.
1 Design a new independence property inspired by Nielsen

transformations and Pontryagin’s (abelian) freeness
criterion.

2 Attempt to build a “decomposition basis” of a given G.
3 Simultaneously, use some specific combinatorics to

arithmetically list all isomorphism types of computable
completely decomposable groups:

C0,C1,

4 Use the basis to show that the property (∃i)G ∼= Ci is
indeed arithmetical (Σ0

7) and not merely Σ1
1.

Melnikov A.

Theorem (Downey and Melnikov, 2014)

The index set of completely indecomposable groups Σ0
7.

Proof idea.
1 Design a new independence property inspired by Nielsen

transformations and Pontryagin’s (abelian) freeness
criterion.

2 Attempt to build a “decomposition basis” of a given G.
3 Simultaneously, use some specific combinatorics to

arithmetically list all isomorphism types of computable
completely decomposable groups:

C0,C1,

4 Use the basis to show that the property (∃i)G ∼= Ci is
indeed arithmetical (Σ0

7) and not merely Σ1
1.

Melnikov A.

1 As before, the proof can be relativised to any oracle.
2 So complete decomposability is a local property.
3 There is a local independence property describing such

groups similar to how Nielsen transformations (in a way)
describe free groups.

4 For example, if G ∼=
⊕

i Hi where all the Hi are isomorphic,
then there is a set of primes S so that independence looks
as follows:

g1, . . . ,gk are S-independent ⇐⇒

(∀p ∈ S)(∀m1, . . . ,mk ∈ Z) [p|
∑

i

migi =⇒ &i≤kmi |k].

5 In the general case it is more complex but still tractable.

Melnikov A.

1 As before, the proof can be relativised to any oracle.
2 So complete decomposability is a local property.
3 There is a local independence property describing such

groups similar to how Nielsen transformations (in a way)
describe free groups.

4 For example, if G ∼=
⊕

i Hi where all the Hi are isomorphic,
then there is a set of primes S so that independence looks
as follows:

g1, . . . ,gk are S-independent ⇐⇒

(∀p ∈ S)(∀m1, . . . ,mk ∈ Z) [p|
∑

i

migi =⇒ &i≤kmi |k].

5 In the general case it is more complex but still tractable.

Melnikov A.

1 As before, the proof can be relativised to any oracle.
2 So complete decomposability is a local property.
3 There is a local independence property describing such

groups similar to how Nielsen transformations (in a way)
describe free groups.

4 For example, if G ∼=
⊕

i Hi where all the Hi are isomorphic,
then there is a set of primes S so that independence looks
as follows:

g1, . . . ,gk are S-independent ⇐⇒

(∀p ∈ S)(∀m1, . . . ,mk ∈ Z) [p|
∑

i

migi =⇒ &i≤kmi |k].

5 In the general case it is more complex but still tractable.

Melnikov A.

1 As before, the proof can be relativised to any oracle.
2 So complete decomposability is a local property.
3 There is a local independence property describing such

groups similar to how Nielsen transformations (in a way)
describe free groups.

4 For example, if G ∼=
⊕

i Hi where all the Hi are isomorphic,
then there is a set of primes S so that independence looks
as follows:

g1, . . . ,gk are S-independent ⇐⇒

(∀p ∈ S)(∀m1, . . . ,mk ∈ Z) [p|
∑

i

migi =⇒ &i≤kmi |k].

5 In the general case it is more complex but still tractable.

Melnikov A.

1 As before, the proof can be relativised to any oracle.
2 So complete decomposability is a local property.
3 There is a local independence property describing such

groups similar to how Nielsen transformations (in a way)
describe free groups.

4 For example, if G ∼=
⊕

i Hi where all the Hi are isomorphic,
then there is a set of primes S so that independence looks
as follows:

g1, . . . ,gk are S-independent ⇐⇒

(∀p ∈ S)(∀m1, . . . ,mk ∈ Z) [p|
∑

i

migi =⇒ &i≤kmi |k].

5 In the general case it is more complex but still tractable.

Melnikov A.

This approach works for separable structures as well – we omit the
details.

Some results by various authors, including Spector, Knight,
Goncharov, Downey, McNicholl, M., Turetsky, Nies, Solecki, McCoy,
and many others:

Characterisation Problem Complexity
Well-foundedness of a linear order Π1

1-comp
Atomicity of a Boolean algebra Π1

1-comp.
Direct decomposability of a group Σ1

1-comp.
Complete decomposability of a group Σ0

7
Freeness of a group Π0

4-comp.
Being a separable Lebesgue space Π0

3
Being a representation of C[0,1] Π0

5
Being a connected compact Polish space Π0

3(-comp.)
Being a locally compact Polish space Π1

1-comp
Being a compact Polish group Π0

3(-comp.)

Melnikov A.

§2.1 The isomorphism problem.
Let K be a class of countable structures.

Definition
The isomorphism problem for K is the set

{2x3y : Mx ,My ∈ K and Mx ∼= My}.

The index set {e : Me ∈ K} of K reflexes the complexity of the
characterisation problem.

The isomorphism problem measures how hard it is to classify
structures up to isomorphism.

Melnikov A.

More results by various authors:

Isomorphism problem Complexity
countable torsion-free abelian groups Σ1

1-comp.
countable completely decomposable groups Σ0

7
countable Boolean algebras Σ1

1-comp.
countable linear orders Σ1

1-comp.
Separable Lp-spaces, p 6= 0 co-3-Σ0

3-comp.
Connected Polish abelian groups Σ1

1-comp.

Melnikov A.

The general framework agrees with the thesis:

Mathematical structures that admit tractable classifications have both
the characterisation problem and the isomorphism problem Σ0

n for
some n.

In this case we say that the class admits a local classification.

Unclassifiable structures have one of the two Π1
1− or Σ1

1−complete.

There are not many “natural” examples in-between (at the
transfinite hyperarithmetical levels).

Melnikov A.

The general framework agrees with the thesis:

Mathematical structures that admit tractable classifications have both
the characterisation problem and the isomorphism problem Σ0

n for
some n.

In this case we say that the class admits a local classification.

Unclassifiable structures have one of the two Π1
1− or Σ1

1−complete.

There are not many “natural” examples in-between (at the
transfinite hyperarithmetical levels).

Melnikov A.

The general framework agrees with the thesis:

Mathematical structures that admit tractable classifications have both
the characterisation problem and the isomorphism problem Σ0

n for
some n.

In this case we say that the class admits a local classification.

Unclassifiable structures have one of the two Π1
1− or Σ1

1−complete.

There are not many “natural” examples in-between (at the
transfinite hyperarithmetical levels).

Melnikov A.

§2.2 An application.

Definition
A computable structure is automatic if the operations and relations are
computed by a finite state automaton.

A finite automaton is a memoryless computational device (your
laptop without the hard drive).

Approximately 20 years ago Khoussainov and Nerode asked
for a characterisation of structures that admit an automatic
presentation.

Sample results:
1 A finitely generated group is automatic iff it is virtually abelian (Oliver

and Thomas 2005).
2 The automatic ordinals are exactly those below ω<ω (Delhomme 2004).
3 Similar characterisations exist for Boolean algebras and some other

classes.

Melnikov A.

§2.2 An application.

Definition
A computable structure is automatic if the operations and relations are
computed by a finite state automaton.

A finite automaton is a memoryless computational device (your
laptop without the hard drive).

Approximately 20 years ago Khoussainov and Nerode asked
for a characterisation of structures that admit an automatic
presentation.

Sample results:
1 A finitely generated group is automatic iff it is virtually abelian (Oliver

and Thomas 2005).
2 The automatic ordinals are exactly those below ω<ω (Delhomme 2004).
3 Similar characterisations exist for Boolean algebras and some other

classes.

Melnikov A.

§2.2 An application.

Definition
A computable structure is automatic if the operations and relations are
computed by a finite state automaton.

A finite automaton is a memoryless computational device (your
laptop without the hard drive).

Approximately 20 years ago Khoussainov and Nerode asked
for a characterisation of structures that admit an automatic
presentation.

Sample results:
1 A finitely generated group is automatic iff it is virtually abelian (Oliver

and Thomas 2005).
2 The automatic ordinals are exactly those below ω<ω (Delhomme 2004).
3 Similar characterisations exist for Boolean algebras and some other

classes.

Melnikov A.

Some years later they asked the more specific question:

Question (Khoussainov and Nerode 2008)
What is the complexity of the index set

{e : Me is isomorphic to an automatic structure }

of automatically presentable structures?

Melnikov A.

Theorem (B.H.-T.K.M.N.)

The index set of automatic structures is Σ1
1-complete.

Proof.
Hard.

According to our framework, there is no characterization of
automatic presentability.

Melnikov A.

Theorem (B.H.-T.K.M.N.)

The index set of automatic structures is Σ1
1-complete.

Proof.
Hard.

According to our framework, there is no characterization of
automatic presentability.

Melnikov A.

Theorem (B.H.-T.K.M.N.)

The index set of automatic structures is Σ1
1-complete.

Proof.
Hard.

According to our framework, there is no characterization of
automatic presentability.

Melnikov A.

References

For a detailed exposition of the background, see the books:

Ash and Knight. Computable Structures and the
Hyperarithmetical Hierarchy.

Soare. Recursively Enumerable Sets and Degrees.

For lots of open questions and bib references, see our recent
survey:
https://www.massey.ac.nz/˜amelniko/SmallSurvey1.pdf

Melnikov A.

https://www.massey.ac.nz/~amelniko/SmallSurvey1.pdf

