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Computability can be used to measure the complexity of a
classification problem.

Computability can be used to prove that there is no
classification at all.

We need a formal notion of computability.
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Which functions f : N→ N are computable?

An early idea (number theory): Study functions which are obtained
from simpler functions using some sort of simple rules.

For instance, if we believe that f is computable and g is
computable, then f ◦ g and f + g (etc.) should also be
computable.

Also, we all believe that f (x) = x + 1 and g(x) = 17 are
computable.
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Definition (Herbrand, Gödel 1933)

A function f : Nk → N is recursive if it can be obtained from the
basic functions:

constant functions Ck
n (x1, . . . , xk ) = n,

the successor function S(x) = x + 1,

projection functions Pk
i (x1, . . . , xk ) = xi ,

using finitely many applications of the following operators:
composition
f (x1, . . . , xk ) = h(g1(x1, . . . , xk ), . . . ,gm(x1, . . . , xk ))

primitive recursion f (0, x1, . . . , xk ) = g(x1, . . . , xk )
f (S(y), x1, . . . , xk ) = h(y , f (y , x1, . . . , xk ), x1, . . . , xk )

minimization
µ(f )(x1, . . . , xk ) = z ⇐⇒ z is least s.t. f (z, x1, . . . , xk ) = 0.

If we omit minimisation we get primitive recursive functions.
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Playing with this definition is similar to writing a basic computer
program in some very simple language.

Example
Informally, addition can be recursively defined as follows:

add(0, x) = x ,
add(n + 1, x) = add(n, x) + 1.
Formally,

add(0, x) = P1
1 (x),

add(S(n), x) = S(add(n, x)).

People (goes back to Kronecker, formally Skolem) in the late
19th -early 20th century checked that all standard
number-theoretic functions have recursive definitions.
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Note that when we formally define

µ(f )(x1, . . . , xk ) = z ⇐⇒ z is least s.t. f (z, x1, . . . , xk ) = 0,

for some arguments x1, . . . , xk there could be no such z.

This allows to consider partial recursive functions.

Why is this important?

Theorem
There is no list of all recursive functions f0, f1, . . . such that

U(i , x) = “the i-th recursive function applied to x”

is itself recursive.

Proof.
Consider V (i) = U(i , i) + 1 = S(U(i , i)). If V = fj , then

fj(j) = V (j) = U(j , j) + 1 = fj(j) + 1.
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However, if we allow partial recursive functions then there is a
universal enumeration of all such functions:

Theorem (Kleene normal form)
There exist primitive recursive T and U such that a partial function f
is recursive if and only if there is a number e such that for all n

f (n) = U(µx T (e,n, x)).

You have the right to ask:

How is this even related to computability?

The answer basically is:

In a way, this universal enumeration is your laptop.

Melnikov A.
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Definition (Turing 1936)
A Turing machine is a mathematical model of computation that
defines an abstract machine composed of:

a potentially infinite tape, and

a working device with finitely many states

The tape has cells, each cell is either blank or has 0 or 1 in it.
The device can read the symbol in the cell it is currently observing,
and based on its current state it can:

1 change the symbol in the cell,
2 move right or left,
3 change the state of the device.
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Definition
A function N→ N is Turing computable if there is a Turing machine
T which, on input the binary representation of x on its tape, finishes
its work with the binary representation of f (x) written on its tape.

Theorem (Church, Turing)
A (partial) function f : N→ N is recursive if, and only if, it is Turing
computable.

Proof idea.
→: By induction. Design a Turing machine for each elementary
basic function and explain how to implement composition,
primitive recursion, and minimisation.
←: Design a primitive recursive predicate that says that number
py0

0 . . . pyn
n codes a valid computation y0, . . . , yn of a Turing

machine. Then use the minimisation operator to search for a
halting computation, and then recover the output.
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Here are several interesting consequences of this result and
Kleene’s normal form:

1. All Turing machines can be computably listed:

M0,M1,M2, . . . .

2. There exists the Universal Turing Machine U:

Me(x) ≡ U(2e3x ).

The number e is called the index of Me.
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By the 1950-s Kleene, Markov, and many others have come up
with many other models of computation.

All of these notions eventually were shown to be equivalent to
(or even weaker than) Turing computability.

Church-Turing thesis: A function f : N→ N can be
algorithmically calculated if and only if it is Turing computable.

Now people could prove that some problems in mathematics
are not computable.
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For example, let’s look at the Halting Problem:

Given a description of a Turing machine, decide whether it halts on its
own index.

We need to make it formal.

Definition
A set X ⊆ N is computable iff its characteristic function

χ(n) =

{
1 if n ∈ X
0 otherwise.

is computable.

One possible formalisation is:

Question
Is the set H = {e : Me(e) halts} computable?
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Question
Is the set H = {e : Me(e) halts} computable?

Suppose the characteristic function h of H was
computable.
Define

g(e) =

{
0 if h(e) = 1 and Me(e) = U(2e3e) = 1
1 otherwise.

The function is clearly computable (design a pseudo-code).
Suppose j is such that g ≡ Mj .
If g(j) = Mj(j) = 0 then this means that we are in the case
when h(e) = 1 and Mj(j) = U(2j3j) = 1, which is
impossible.
If g(j) = Mj(j) = 1 then we are again in the same case so
g(j) = 0.
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We have proven:

Theorem
The Halting problem is undecidable.

As long as you can naturally represent your problem as a set of
natural numbers, it makes sense to ask if the problem is decidable.

A few sample results:

Theorem (Novikov 1955, Boone 1958)
There is a finitely presented group in which the word problem is not
computable.

Theorem (Markov 1958)
There is no algorithm which can decide for any pair of simplicial
complexes whether they are homeomorphic.
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Part 2: Computability, provability, and definability
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§2.1 Hilbert’s Tenth Problem. In logic we use formulas.
There is a recursive formal definition of an arbitrary first-order
formula which we omit.

Example
Let’s restrict ourselves to the ordered semi-ring of natural numbers

(N,+,×,0,1).

The signature is {+,×,0,1}. A typical quantifier-free formula
φ(x , y) looks like:

((1+1)×(x×(x×y)))+(1+1) = x & (x+(1+1+1))×(y×x) = y .

Assuming the usual axioms it can be re-written as:

2x2y − x + 2 = 0 & (x + 3)xy − y = 0

Evaluating such a formula essentially boils down to evaluating a
bunch of polynomial equations.
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Evaluating the corresponding existential projection of φ(x , y)

∃x∃yφ(x , y)

in (N,+,×,0,1) is equivalent to evaluating

(∃x)(∃y) [(2x2y − x + 2)2 + ((x + 3)xy − y)2 = 0].

Thus, it is equivalent to deciding whether a polynomial with
coefficients in N (a Diophantine equation) has a solution in N.

Problem (Hilbert’s Tenth Problem, 1900)
Is there an algorithm which, given a Diophantine equation, decides
whether it has a solution (in N)?

We have just argued that if the answer was ”yes” then the existential
first-order theory of (N,+,×,0,1) would be computable.
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Some preliminary analysis:

Definition
A set is computably enumerable if it is equal to the domain of some
(partial) computable function.

Example

Every Diophantine set {n : ∃x1 . . . ∃xnp(n, x0, . . . , xn) = 0} is
computably enumerable.

Proof.
Define a partial computable function f as follows. List all
n-tuples of natural numbers and test whether
p(n, x0, . . . , xn) = 0 for a given tuple x̄ . If yes then output 1.

Example

The Halting problem {e : Me(e) halts} is computably enumerable.
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Theorem (Matiyasevich–Robinson–Davis–Putnam, finished in
1970)
Every computably enumerable set is Diophantine.

Proof.
Hard.

It follows that the computably enumerable sets are exactly the
existentially definable subsets of N!
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Recall that there exists the Universal Turing Machine:

Corollary

There exists a polynomial u(x ,n, y0, . . . , yk ) with positive integer
coefficients such that a set X is computably enumerable
(Diophantine) if, and only if, for some e ∈ N:

X = {x : ∃ȳ u(x ,e, ȳ) = 0}.

Now we prove the unsolvability of Hilbert’s Tenth Problem.
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Now we prove the unsolvability of Hilbert’s Tenth Problem.

Melnikov A.



Theorem (Strong unsolvability of Hilbert’s Xth Problem)
There is no algorithm which, given e and x , decides whether

∃ȳ [u(x ,e, ȳ) = 0].

Proof.
For a fixed e, define

We = {x : ∃ȳu(x ,e, ȳ) = 0} = dom Me.

We need to show: Z = {2x3e : x ∈We} is not computable.
The Halting Problem H is computably enumerable but not
computable.
Fix j such that

H = Wj .

If Z was computable then so would be its projection on Wj .
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§2.2 Gödel’s incompleteness. Let H = Wj , as before.

Theorem (Gödel’s incompleteness theorem)
There is a natural number n such that

∀ȳu(n, j , ȳ) 6= 0

holds but it is not provable in ZFC (the standard set of mathematical
axioms).

Proof:
1 ZFC has a computable set of axioms.
2 Every proof is a finite sequence of formulae

φ0, . . . , φk ,

where each φi is either an axiom or is obtained from the
previous φj , j < i , using an application of a logical rule
(such as modus ponens).
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§2.2 Gödel’s incompleteness. Let H = Wj , as before.
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Proof (continued):
3 This makes the set of provable first-order statements in the

arithmetic computably enumerable.
4 In particular, we can computably enumerate provable

statements of the form ∀ȳu(n, j , ȳ) 6= 0.
5 If for all n such that ∀ȳu(n, j , ȳ) 6= 0 this fact was provable,

then it would imply that

W̄j = H̄ = N \ H

is computably enumerable.
6 To finish the theorem, it is sufficient to recall that H is not

computable and also prove:

Lemma (Complementation Theorem)

If both X and X̄ are computably enumerable, then X is computable.
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Proof of the lemma.

Initiate the enumeration of both X and X̄ and see which one
contains a given number x .

This proves Gödel’s incompleteness theorem.

So there is a first-order fact about some fixed polynomial which
is true but is not provable!
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§2.3 The Arithmetical Hierarchy.

Identify sets with their characteristic functions.

Definition
We say that a set Y is computable relative to a set Z , written Y ≤T Z ,
if there is an oracle Turing machine Me such that

Y ≡ MZ
e .

Think of a hard drive containing Z . Also, think of the keyboard
(you are the oracle!).
Here is a stronger version of this:

Definition
Y ≤1 Z if there is a (total) 1-1 computable f such that

x ∈ Y ⇐⇒ f (x) ∈ Z .
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Definition
The Turing jump of X ⊆ N is the set

X ′ = {e : MX
e (e) halts}.

In particular, ∅′ = H = {e : Me(e) halts}, and

0(n+1) = (0(n))′.

Definition

Define the arithmetical classes Σ0
n and Π0

n:
1 X ∈ Σ0

n ⇐⇒ X ≤1 0(n),
2 X ∈ Π0

n ⇐⇒ X ≤1 0(n) = N \ 0(n),
3 X ∈ ∆0

n ⇐⇒ X ∈ (Σ0
n ∩ Π0

n).
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Theorem
For a set X ⊆ N and n > 0, the following are equivalent:

1 X ∈ Σ0
n;

2 X is computably enumerable relative to 0(n−1):

∃e X = dom M0(n−1)

e .

3 There is a computable function f of n + 1 arguments such that

X = {z : ∃x1∀x2 . . .Qxn(f (z, x1, . . . , xn) = 0)}

In fact, f can be replaced with a polynomial over N.
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Theorem
For a set X ⊆ N and n > 0, the following are equivalent:

1 X ∈ ∆0
n;

2 X is computable relative to 0(n−1):

∃e X = M0(n−1)

e .

3 There exist computable functions f and g of n + 1 arguments
such that

X = {z : ∃x1∀x2 . . .Qxn(f (z, x1, . . . , xn) = 0)}

and

X = {z : ∀x1∃x2 . . .Rxn(g(z, x1, . . . , xn) = 0)}.
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The famous diagram (in the Soare’s book)
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