MATHEMATICAL MINIATURE 8

The Quadratic Residue Theorem

This MINIATURE will overlap slightly with MINIATURE number 7 but, to make it as self-contained as possible, no reference will be made to the individual results which were stated there and mainly left as exercises. Let p and q be odd primes. Then the "Quadratic residue theorem" states that if either or both of these primes is congruent to $1(\bmod 4)$, then q is a quadratic residue of p iff p is a quadratic residue of q. On the other hand, if each of p and q is congruent to $3(\bmod 4)$ then one and one only of p and q is a quadratic residue of the other. This is often stated using the "Legendre symbol" $\left(\frac{x}{p}\right)$ which has the value 1 if x is congruent to a perfect square $(\bmod p)($ that is, if x is a "quadratic residue" of $p)$, and to -1 if no such perfect square exists (that is, x is a "non-residue"). Using this notation we have

$$
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}},
$$

where we note that the exponent of -1 is even iff at least one of p and q is congruent to $1(\bmod 4)$.
This result once existed only as an experimentally supported conjecture until Gauss stepped in and produced a number of different proofs. The proof that will be presented here will make use of a result known as "Gauss's Lemma" which states that, if x is not a multiple of p,

$$
\left(\frac{x}{p}\right)=(-1)^{\mu}
$$

where μ is the number of members of the set $\left\{x, 2 x, 3 x, \ldots,\left(\frac{p-1}{2}\right) x\right\}$ which are congruent $(\bmod p)$ to members of the set $\left\{\frac{p+1}{2}, \ldots, p-2, p-1\right\}$ (rather than to members of the set $P=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$). Stepping back a little further, we can use as a criterion for x being a quadratic residue of p the fact that $\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}}$ (mod p). This result, known as "Euler's crirerion", follows by considering the polynomial equation $t^{p-1}-1 \equiv 0(\bmod p)$ and its factorisation $\left(t^{\frac{p-1}{2}}-1\right)\left(t^{\frac{p-1}{2}}+1\right) \equiv 0(\bmod p)$. All the remainders $(\bmod p)$, that is the members of the set $S=\{1,2, \ldots, p-1\}$, satisfy the unfactorised equation (by the Fermat theorem) and hence exactly half of them satisfy each of (i) $t^{\frac{p-1}{2}}-1 \equiv 0(\bmod p)$ an (ii) $t^{\frac{p-1}{2}}+1 \equiv 0(\bmod p)$. Because exactly half of the members of S are quadratic residues and because these necessarily satisfy (i), the preliminary lemma follows.

Let n be any positive integer relatively prime to p and let x be a member of the set P. We will look at what happens when $n x$ is divided by p to give a quotient m and a remainder r. The quotient is given by $m=\left[\frac{n x}{p}\right]$, where the brackets [.] denote "integer part of" and the remainder is either $x^{\prime} \in P$ or $p-x^{\prime}$ where $x^{\prime} \in P$. It is easy to verify that the set of x^{\prime} values for all members $x \in P$ is exactly P. From the identity $n x=p m+r$, we have

$$
n x= \begin{cases}p\left[\frac{n x}{p}\right]+x^{\prime}, & \text { for } p-\mu \text { values of } x \tag{1}\\ p\left[\frac{n x}{p}\right]+p-x^{\prime}, & \text { for } \mu \text { values of } x\end{cases}
$$

Gauss's lemma follows by interpreting (1) modulo p and forming the product for all $x \in P$. It follows that

$$
n^{\frac{p-1}{2}} \prod_{x \in P} x \equiv(-1)^{\mu} \prod_{x \in P} x \quad(\bmod p)
$$

and because the product is not zero $(\bmod p)$, the result follows.
As a step towards proving the quadratic reciprocity theorem, replace n by the odd prime q in (1) and now interpret the formula $(\bmod 2)$. This time we sum over all $x \in P$ and we find

$$
\sum_{x \in P} x \equiv \sum_{x \in P}\left[\frac{q x}{p}\right]-\mu+\sum_{x \in P} x \quad(\bmod 2)
$$

where we have exchanged addition and subtraction where it has suited us because we are working modulo 2 . It follows that μ is congruent $(\bmod 2)$ to the number of lattice points in the set $\left(0, \frac{p}{2}\right) \times\left(0, \frac{q}{2}\right)$ in the plane lying beneath the line $p y=q x$. Reverse the roles of p and q and let ν denote the number of members y of $Q=\left\{1,2, \ldots, \frac{q-1}{2}\right\}$ such that $y q$ is congruent $(\bmod q)$ to a member of the set $\left\{\frac{q+1}{2}, \ldots, q-2, q-1\right\}$; thus $\left(\frac{p}{q}\right)=(-1)^{\nu}$. With the roles of p and q interchanged we see that ν is congruent $(\bmod 2)$ to the number of lattice points in $\left(0, \frac{p}{2}\right) \times\left(0, \frac{q}{2}\right)$ above $p y=q x$. Because p and q are primes, no lattice point actually lies on the line and hence $\mu+\nu$ differs by an integer multiple of 2 from the total number of lattice points. However, the total number of lattice points in this rectangle is simply $\frac{p-1}{2} \frac{q-1}{2}$.

We now fill in the details as follows:

$$
\begin{aligned}
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right) & =(-1)^{\mu}(-1)^{\nu} \\
& =(-1)^{\mu+\nu} \\
& =(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
\end{aligned}
$$

John Butcher, butcher@math.auckland.ac.nz

