MATHEMATICAL MINIATURE 7

Quadratic residues and sums of two squares

When can a positive square-free integer be written as a sum of just a few squares? The answer for four squares is "All" and for three squares "All that are not congruent to $7(\bmod 8)$ ". In this miniature we look at the positive square-free integers that can be written as the sum of two squares. We will also dally for a few lines with quadratic residues, partly to prepare us for one of the great gems of mathematics, the quadratic reciprocity theorem, to be discussed in a later miniature. In this single page there is room only for a brief outline and some details are left unjustified. The reader is invited to treat as exercises the remarks numbered as (1), (2) etc.

Given an odd prime p, and an integer x relatively prime to p, we consider the question of whether or not there exists an integer y such that $y^{2} \equiv x(\bmod p)$. If the answer is "Yes" then x is said to be a quadratic residue, otherwise it is a non-residue. (1) Amongst the set $\{1,2, \ldots, p-1\}$, exactly half are quadratic residues and half are non-residues. Furthermore, (2) the product of two residues or (3) two non-residues is a quadratic residue and (4) the product of a residue and a non-residue is a non-residue. Since $x^{p-1} \equiv 1(\bmod p)$, by the (little) Fermat theorem, (5) $x^{(p-1) / 2} \equiv \pm 1(\bmod p)$. (6) This can be used to distinguish quadratic residues from non-residues $(+1$: residues, -1 : non-residues). Another criterion is given by
Gauss's lemma: Let $P=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$. Multiply all members of P by x and let μ be the number of these that are not congruent to a member of P. Then μ is even for x a quadratic residue and odd for a non-residue. Proof: Let $Q=\left\{-1,-2, \ldots,-\frac{p-1}{2}\right\}$, then for every $y \in P, x y$ is either in P or Q. Furthermore, (7) $x y_{1} \equiv-x y_{2}$ is not possible for $y_{1}, y_{2} \in P$. Hence,

$$
(x) \cdot(2 x) \cdot(3 x) \cdot \cdots \cdot\left(\frac{p-1}{2} x\right) \equiv(\pm 1) \cdot(\pm 2) \cdot(\pm 3) \cdot \cdots \cdot\left(\pm \frac{p-1}{2}\right)
$$

where μ is the number of - signs in the last product. Cancel out the factors $2,3, \ldots, \frac{p-1}{2}$ from both sides and we see that $x^{(p-1) / 2} \equiv(-1)^{\mu}(\bmod p)$.
One consequence of this lemma is that -1 is a quadratic residue for an odd prime p if and only if $\frac{p-1}{2}$ is even; that is, if and only if $p \equiv 1(\bmod 4)$.

Return now to the question of which positive square-free integers n can be written as $n=x^{2}+y^{2}$. This is clearly impossible if n is a multiple of $p \equiv 3(\bmod 4)$, because this would mean that $(8) z^{2}=-1(\bmod p)$, where $x \equiv y z(\bmod p)$. Hence the only possibility is that either n or $n / 2$ is the product of primes of the form $p \equiv 1(\bmod 4)$. Consider first the case of n prime. The special case $n=2$ is dealt with by $2=1^{2}+1^{2}$. For the case where $p \equiv 1(\bmod 4)$, let m denote the smallest integer satisfying $\sqrt{p}<m$ and multiply each member of the set $S=\{1,2, \ldots, m-1\}$ by t satisfying $t^{2} \equiv-1(\bmod p)$. Let $\eta_{1}, \eta_{2}, \ldots, \eta_{m-1}$ denote the remainders when these products are divided by p. Assume these quantities are numbered in increasing order and denote the members of S by $\xi_{1}, \xi_{2}, \ldots, \xi_{m-1}$, numbered in such a way that $t \xi_{i} \equiv \eta_{i}(\bmod p)$, for $i=1,2, \ldots, m-1$. Also write $\xi_{0}=\xi_{m}=\eta_{0}=0$ and $\eta_{m}=p$. There exists $i \in\{1,2, \ldots, m\}$ such that $\eta_{i}-\eta_{i-1}<m$, since otherwise

$$
p=\eta_{m}-\eta_{0}=\left(\eta_{m}-\eta_{m-1}\right)+\left(\eta_{m-1}-\eta_{m-2}\right)+\cdots+\left(\eta_{1}-\eta_{0}\right) \geq m^{2}>p
$$

With this choice of i, write $x=\left|\xi_{i}-\xi_{i-1}\right|, y=\eta_{i}-\eta_{i-1}$ so that $y \equiv \pm t x(\bmod p)$, implying that $x^{2}+y^{2} \equiv$ $x^{2}\left(1+t^{2}\right) \equiv 0(\bmod p)$. But $0<x^{2}+y^{2}<2(m-1)^{2}<2 p$, so that $x^{2}+y^{2}=p$.

We next establish that a square-free integer n is the sum of two squares if and only if none of its prime divisors is $\equiv 3(\bmod 4)$, generalising the case when n is prime. The extension to the more general case is easily dealt with using the identity $\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)=(x u \mp y v)^{2}+(x v \pm y u)^{2}$, which shows how to write $m n$ as the sum of two squares if each of m and n can be written this way. It actually does more, because there are two solutions to this problem, if neither m nor n equals 2 , even though (9) there cannot be more than one solution to $p=x^{2}+y^{2}$.

Finally, we illustrate some of these results with examples. For the prime $p=89$, it can be checked that $34^{2} \equiv-1(\bmod p)$. The value of m is 10 and the products of $\{1,2,3,4,5,6,7,8,9\}$ by $t=34$ reduced $(\bmod 89)$ are $\{34,68,13,47,81,26,60,5,39\}$. Sort these into increasing order and we find the values

$$
\begin{aligned}
\left\{\xi_{0}, \xi_{1}, \xi_{2}, \ldots, \xi_{10}\right\} & =\{0,8,3,6,1,9,4,7,2,5,0\} \\
\left\{\eta_{0}, \eta_{1}, \eta_{2}, \ldots, \eta_{10}\right\} & =\{0,5,13,26,34,39,47,60,68,81,89\}
\end{aligned}
$$

Choose $i=1$, because $\eta_{1}-\eta_{0}<10$, and we arrive at the solution to the two-squares problem: $89=5^{2}+8^{2}$. (10) A similar calculation shows that $73=8^{2}+3^{2}$ and we arrive at (11) the two solutions to 73×89 as the sum of two squares:

$$
6497=16^{2}+79^{2}=64^{2}+49^{2}
$$

