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Introduction

It will be convenient to consider only autonomous initial value
problems

y′(x) = f(y(x)), y(x0) = y0,

f : R
N

→ R
N .

The Euler method is the simplest way of obtaining numerical
approximations at

x1 = x0 + h, x2 = x1 + h, . . .

using the formula

yn = yn−1 + hf(yn−1), h = xn − xn−1, n = 1, 2, . . . .
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This method can be made more accurate by using either the
mid-point quadrature formula

yn = yn−1 + hf
(

yn−1 + 1
2hf(yn−1)

)

.

or the trapezoidal rule quadrature formula:

yn = yn−1 + 1
2hf(yn−1) + 1

2hf
(

yn−1 + hf(yn−1)
)

.

These methods from Runge’s 1895 paper are “second order”
because the error in a single step behaves like O(h3).

This is in contrast to the first order Euler method where the
order behaviour is O(h2).
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A few years later, Heun gave a full explanation of order 3
methods.

Shortly afterwards Kutta gave a detailed analysis of order 4
methods.

In the early days of Runge–Kutta methods the aim seemed to
be to find explicit methods of higher and higher order.

Later the aim shifted to finding methods that seemed to be
optimal in terms of local truncation error and to finding built-in
error estimators.

With the emergence of stiff problems as an important
application area, attention moved to implicit methods.
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Formulation of Runge–Kutta methods

In carrying out a step we evaluate s stage values

Y1, Y2, . . . , Ys

and s stage derivatives

F1, F2, . . . , Fs,

using the formula Fi = f(Yi).

Each Yi is defined as a linear combination of the Fj added on to
y0:

Yi = y0 + h

s
∑

j=1

aijFj , i = 1, 2, . . . , s,

and the approximation at x1 = x0 + h is found from

y1 = y0 + h

s
∑

i=1

biFi.
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We represent the method by a tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

or, if the method is explicit, by the simplified tableau

0
c2 a21
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

In each case, ci (i = 1, 2, . . . ) is defined as
∑s

j=1 aij . The value
of ci indicates the point Xi = x0 + hci for which Yi is a good
approximation to y(Xi).
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Examples:

y1 = y0 + 0hf(y0) + 1hf
(

y0 + 1

2
hf(y0)

)

0
1
2

1

2

0 1
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Taylor series of exact solution

We need formulae for the second, third, . . . , derivatives.

y′(x) = f(y(x))

y′′(x) = f ′(y(x))y′(x)

= f ′(y(x))f(y(x))

y′′′(x) = f ′′(y(x))(f(y(x)), y′(x))+f ′(y(x))f ′(y(x))y′(x)

= f ′′(y(x))(f(y(x)), f(y(x)))

+ f ′(y(x))f ′(y(x))f(y(x))

This will become increasingly complicated as we evaluate higher
derivatives.
Hence we look for a systematic pattern.
Write f = f(y(x)), f′ = f ′(y(x)), f′′ = f ′′(y(x)), . . . .
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y′(x) = f f

y′′(x) = f′f f′
f

y′′′(x) = f′′(f, f) f′′
f f

+ f′f′f f′
f′
f

The various terms have a structure related to rooted-trees.

Hence, we introduce the set of all rooted trees and some
functions on this set.
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Let T denote the set of rooted trees:

T =

{

, , , , , , , , . . .

}

We identify the following functions on T .
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α(t) = r(t)!
σ(t)γ(t) = 10

β(t) = r(t)!
σ(t) = 630

F (t) = f′′
(

f′′(f, f), f′′(f, f)
)

f
′′

f
′′

f
′′

f f ff
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These functions are easy to compute up to order-4 trees:

t

r(t) 1 2 3 3 4 4 4 4

σ(t) 1 1 2 1 6 1 2 1

γ(t) 1 2 3 6 4 8 12 24

α(t) 1 1 1 1 1 3 1 1

β(t) 1 2 3 6 4 24 12 24

F (t) f f′f f′′(f, f) f′f′f f(3)(f, f, f) f′′(f, f′f) f′f′′(f, f) f′f′f′f
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The formal Taylor expansion of the solution at x0 + h is

y(x0 + h) = y0 +
∑

t∈T

α(t)hr(t)

r(t)!
F (t)(y0)

Using the known formula for α(t), we can write this as

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0)

Our aim will now be to find a corresponding formula for the
result computed by one step of a Runge–Kutta method.

By comparing these formulae term by term, we will be able to
obtain conditions for a specific order of accuracy.
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F (t)(y0)

Using the known formula for α(t), we can write this as

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0)

Our aim will now be to find a corresponding formula for the
result computed by one step of a Runge–Kutta method.

By comparing these formulae term by term, we will be able to
obtain conditions for a specific order of accuracy.
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Taylor series of approximation

We need to evaluate various expressions which depend on the
tableau for a particular method.
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Taylor series of approximation

We need to evaluate various expressions which depend on the
tableau for a particular method.

These are known as “elementary weights”.
We use the example tree we have already considered to
illustrate the construction of the elementary weight Φ(t).

t =
i

kj

l m on
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Taylor series of approximation

We need to evaluate various expressions which depend on the
tableau for a particular method.

These are known as “elementary weights”.
We use the example tree we have already considered to
illustrate the construction of the elementary weight Φ(t).

t =
i

kj

l m on

Φ(t) =

s
∑

i,j,k,l,m,n,o=1

biaijaikajlajmaknako
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Taylor series of approximation

We need to evaluate various expressions which depend on the
tableau for a particular method.

These are known as “elementary weights”.
We use the example tree we have already considered to
illustrate the construction of the elementary weight Φ(t).

t =
i

kj

l m on

Φ(t) =

s
∑

i,j,k,l,m,n,o=1

biaijaikajlajmaknako

Simplify by summing over l,m, n, o:

Φ(t) =

s
∑

i,j,k=1

biaijc
2
jaikc

2
k
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Now add Φ(t) to the table of functions:

t

r(t) 1 2 3 3

α(t) 1 1 1 1

β(t) 1 2 3 6

Φ(t)
∑

bi

∑

bici

∑

bic
2
i

∑

biaijcj

t

r(t) 4 4 4 4

α(t) 1 3 1 1

β(t) 4 24 12 24

Φ(t)
∑

bic
3
i

∑

biciaijcj

∑

biaijc
2
j

∑

biaijajkck
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The formal Taylor expansion of the numerical approximation to
the solution at x0 + h is

y1 = y0 +
∑

t∈T

β(t)hr(t)

r(t)!
Φ(t)F (t)(y0)

Using the known formula for β(t), we can write this as

y1 = y0 +
∑

t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0)
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The formal Taylor expansion of the numerical approximation to
the solution at x0 + h is

y1 = y0 +
∑

t∈T

β(t)hr(t)

r(t)!
Φ(t)F (t)(y0)

Using the known formula for β(t), we can write this as

y1 = y0 +
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t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0)
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Order conditions

To match the Taylor series

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0)

y1 = y0 +
∑

t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0)

up to hp terms we need to ensure that

Φ(t) =
1

γ(t)
,

for all trees such that
r(t) ≤ p.

These are the “order conditions”.
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The order conditions will be illustrated in the case of explicit 4
stage methods with order 4.

t Φ(t) = 1
γ(t)

b1 + b2 + b3 + b4 = 1

b2c2 + b3c3 + b4c4 = 1
2

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1

3

b3a32c2 + b4a42c2 + b4a43c3 = 1
6

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1

4

b3c3a32c2 + b4c4a42c2 + b4c4a43c3 = 1
8

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 = 1

12

b4a43a32c2 = 1
24
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