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Delay differential equations (DDEs) have been used
successfully in the past to model climate systems
at a conceptual level. An important aspect of these
models is the existence of feedback loops that feature a
delay time, usually associated with the time required
to transport energy through the atmosphere and/or
oceans across the globe. So far, such delays are
generally assumed to be constant. Recent studies
have demonstrated that even simple DDEs with
nonconstant delay times, which change depending on
the state of the system, can produce surprisingly rich
dynamical behaviour. Here, we present arguments for
the state dependence of the delay in a DDE model for
the El Niño Southern Oscillation phenomenon in the
climate system. We then conduct a bifurcation analysis
by means of continuation software to investigate
the effect of state dependence in the delay on the
observed dynamics of the system. More specifically,
we show that the underlying delay-induced structure
of resonance regions may change considerably in the
presence of state dependence.
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1. Introduction
Feedback loops are an important component of climate systems (see [1] and references therein),
whereby changes or inputs are either amplified or dampened by nonlinear processes. Such
feedback loops are crucial ingredients in climate models [2–7] and they are associated with
delay times due to transportation times of mass or energy over large distances. These time
delays are generally large compared to the characteristic forcing time scales of the system under
consideration. As such, time delays tend to play a vital role in the behaviour of the system.

This is certainly true for delayed feedback loops that arise in the equatorial coupled ocean-
atmosphere system governing the El Niño Southern Oscillation (ENSO) phenomenon. This
system consists of an atmospheric component, known as the Southern Oscillation, and an oceanic
component, El Niño. The El Niño events are characterised by large increases in sea surface
temperature (SST) in the equatorial Pacific Ocean, and they occur sporadically approximately
every 4–7 years. Large drops in eastern-Pacific SST represent the cool phase and are known as La
Niña events. It is well known that El Niño events generally tend to occur near Christmas time.
The seasonal cycle (with a period of 1 year) represents the characteristic forcing time scale of the
ENSO system. Feedbacks due to ocean-atmosphere coupling processes in the eastern and central
equatorial Pacific Ocean have delay times of many months due to the time needed for equatorially
trapped waves to propagate across the Pacific Ocean.

El Niño and La Niña events have major consequences all over the globe, yet they are
notoriously difficult to predict accurately, even with highly sophisticated global climate models
[8,9]. Over many decades, conceptual climate models have proven extremely useful in providing
fundamental insights into the inner workings of climate systems; for example, see [10–14].
Conceptual ENSO models have played an important role in building a theory of how El Niño
events are created and how they eventually die away, although there are many aspects still open
to debate and investigation [12].

A prominent paradigm for how El Niño events form and abate is the so-called delayed
action oscillator (DAO), first introduced by Suarez and Schopf [15]. According to this paradigm,
feedback loops due to the ocean-atmosphere coupling are crucial in shaping ENSO dynamics. A
central ingredient of these feedback loops is the depth of the thermocline, which is a thin layer in
the ocean separating deeper cold waters from shallower warm surface water. Another ingredient
is the equatorial upwelling which is caused by the surface winds (trade winds) through a mass
divergence away from the equator caused by the Earth’s rotation (Ekman upwelling). Let the
variable h(t) denote the deviation from a long-term thermocline mean in the eastern equatorial
Pacific. A positive value of h leads to less water from below the thermocline reaching the sea
surface through upwelling, thus an increased SST in the eastern Pacific. This provides a positive
feedback because the warm SST anomaly slows down the easterly trade winds since warm air
rises and has to be compensated, leading to westerly wind anomalies, deepening the thermocline.
The positive anomalous thermocline depth signal at the equator is carried to the eastern boundary
of the ocean via so-called Kelvin waves. Off the equator, the negative anomalous thermocline
depth signal is carried to the western boundary of the ocean via so-called Rossby waves. These
waves are reflected as Kelvin waves, which carry the shallow thermocline perturbation back to
the eastern boundary of the ocean, completing a negative feedback loop.

There exist a number of models based on the DAO paradigm; for example, see [15–18]. The
DDE model introduced by Ghil, Zaliapin and Thompson [19] is one of the simplest in that it
focusses on the interaction between the negative delayed feedback and additive seasonal forcing.
Neglecting the above-mentioned positive feedback is not necessarily justified in [19], rather it
is done in order to demonstrate that the other two terms are sufficient to produce very rich
dynamical behaviour relevant to ENSO. The effect of re-introducing the positive delay feedback
to this model is studied in detail in [20]. The model from [19] takes the form

d

dt
h(t) =−b tanh[κh(t− τn)] + c cos(2πt). (1.1)
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The parameters b and c are amplification factors of the negative feedback and seasonal forcing
terms, respectively. The ocean-atmosphere coupling is of a particularly simple form, tanh(·), with
the coupling strength κ as the only parameter; see the study [21] for a justification and for a
variation with different asymptotes. Originally, a different coupling function, a cubic, was chosen
in [15,16,22]. The additive form of the forcing is chosen for simplicity and is open to debate;
for example, parametric seasonal forcing was considered in a simple DDE ENSO model in [18].
Here the effect of the seasonal forcing is assumed to be instantaneous, as has been the case in
all previous literature. The delay time τn arises from the Rossby and Kelvin waves closing the
negative feedback loop, and it is assumed to be constant in all previous work. In some literature,
model (1.1) is also referred to as the GZT model.

Modelling with DDEs is built on the idea that only the delayed effect of a chain of complex
processes needs be modelled, and not the processes themselves — resulting in a convenient
model reduction. The resulting DDE model is capable of complicated behaviour, yet is still
amenable to sophisticated mathematical analysis. In the case of model (1.1), only the delayed
effect of the negative feedback is included, while a full description (for example, by partial
differential equations) would involve many more variables and parameters relating to zonal
wind anomaly, surface pressure anomaly, thermal damping coefficients, etc. The GZT model is
deceivingly simple in that it features only delayed feedback and periodic forcing. Yet, it was
shown in [19,23] to be capable of dynamics that could replicate certain ENSO features, such as
variability on appropriate time scales and phase locking with the seasons. These are features that
have been observed earlier in more complex ENSO models [24–26]. The balance between the
complicated dynamics produced by DDE models and their (relative) simplicity, allowing them
to still be mathematically tractable, explains their success in areas as diverse as, for example,
laser dynamics [27], neural networks [28], traffic flow [29], cell population dynamics [30] and
epidemics [31].

DDEs are infinite-dimensional dynamical systems and their analysis generally poses analytical
and numerical challenges. Nonetheless, the theory of DDEs with a finite number of constant
delays is well developed [32,33]. In fact, the bifurcation theory of constant-delay DDEs is analogue
to that of ordinary differential equations: their solutions depend smoothly on parameters,
and initial conditions and their linearisations around equilibria and periodic solutions have at
most finitely many unstable eigendirections. Furthermore, advanced numerical tools for their
simulation and bifurcation analysis are available and have been successfully applied to analyse
models arising in various applications; for example, see [34] and references therein.

In [20,35] we conducted a bifurcation analysis of the GZT model (1.1) in order to understand
how it is able to produce such rich dynamics. This was done by means of the MATLAB
based continuation software DDE-Biftool [36,37], which allows the user to track (or continue)
steady-state and periodic solutions of DDEs while varying a chosen model parameter. It can
calculate the stability of such solutions, allowing one to detect bifurcations. It is then possible
to continue detected bifurcations of steady-state and periodic solutions in two-parameter planes.
The bifurcation analysis in [35] revealed that in the (c, τn)-plane the dynamics of the GZT model
can be divided roughly into three parameter regions where the dynamics is: (i) periodic due to
the negative delayed feedback alone, (ii) periodic and dominated by the seasonal forcing, and
(iii) an interplay of both mechanisms. In the latter case, one finds dynamics on an invariant torus,
which may be locked (periodic) or unlocked (quasiperiodic). The periodic solutions on the torus
are organised in the parameter plane into p:q resonance tongues; where they wind around the
torus to form p:q torus knots. It was shown in [35] that there exist small regions in the (c, τn)-
plane where multiple resonance tongues overlap. In these regions period-doubling cascades and
chaotic solutions exist.

Of course, the use of a constant value for any delay in a DDE model, such as the GZT model,
is a modelling assumption. A recent review on the use of DDEs in conceptual climate models [38]
confirms that the delays in DDE climate models have generally been assumed to be constant.
While this assumption is well justified in certain applications, such as machining [39] and laser
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dynamics [40], delays in many applications are definitely not constant. Often the delay times will
depend on the state of the system itself, which leads to DDE models with state-dependent delays.
The theory of and numerical methods for state-dependent DDEs is more difficult and still under
development [37,41–43].

Recently, Calleja et al. [44] studied the dynamics of a simple scalar DDE where two delay
times depend linearly on the state of the system. The associated constant-delay DDE is linear
and capable of only trivial dynamics. However, with state dependence of the delays the
system generates surprisingly complicated dynamics, as was demonstrated by a combination of
numerical continuation and normal form calculations. In light of this study, we must ask whether,
after nearly 40 years of DDE climate models, is it still a safe modelling assumption to take their
delay times as constant?

This paper contributes by studying the effect of state dependence on the dynamics of
model (1.1). We introduce these effects in a heuristic fashion in the hope that our results will
provide motivation for a more thorough and quantitative derivation of state dependence in
ENSO. This would involve either the analysis of more complex model equations or data from such
models or observations. More generally, this paper can be considered as a first step in addressing
two fundamental questions:

(1) When do state-dependent delay arise in climate variability phenomena and what
mathematical forms do they take?

(2) Does the state dependence in the delay have a significant effect on the behaviour of the
solutions of delay-equation models of these phenomena?

One reason to choose model (1.1) as a test-case example is that its bifurcation analysis in the
(c, τn)-plane, presented in [35], provides a good starting point for observing the influence of state
dependence on model behaviour. In spite of its simplicity among DAO models, the constant-
delay GZT model already features complicated resonance phenomena. Moreover, model (1.1) can
be viewed as prototypical in that it describes the interplay between delayed negative feedback
and periodic forcing. Therefore, the results presented here may provide insight into whether or
not state dependence of delays is important also in the context of other climate models, as well as
applications from other fields. For example, DDE models of similar form can be found in human
motion control [45], network dynamics [46] and laser dynamics [47]. Recently, the importance
of incorporating state dependence in modelling has been recognised in turning processes [48],
physiology [49] and lasers with frequency-dependent feedback [50,51].

We begin with considering in some detail how non-constant delay times in the negative
feedback loop arise from the physics of the ocean-atmosphere coupling. Here we focus on how
the surface of the ocean couples with the thermocline below. This leads to two different delay
terms with state dependence. The first, denoted τc, is due to the coupling process in the central
equatorial Pacific Ocean, and it depends linearly on the current thermocline depth h(t). The
second, denoted τe, is due to coupling processes in the East and depends linearly on the state h in
the past. Overall, we obtain a state-dependent version of model (1.1) with two extra parameters
that allow us to ‘switch on’ these two types of state dependence; as part of our modelling we
also discuss realistic ranges for the respective state dependence. We present bifurcation sets in the
(c, τ̄n)-plane that demonstrate the effect of the two types of state dependence, first individually
and then in combination; here τ̄n is the constant part of the now state-dependent delay. As
the starting point for our study, we first briefly review the bifurcation set in the (c, τ̄n)-plane
for the constant delay case from [35]. It turns out that, over the range we consider, the state-
dependent term τe alone has a negligible effect on the bifurcation set. The term τc, on the other
hand, has a significant impact on the resonance regions in the (c, τ̄n)-plane: we find reconnecting
torus bifurcation curves, considerable increases of certain resonance regions and much more
overlapping between resonance regions and associated period-doubling cascades. Interestingly,
in the presence of state dependence in τc, the state-dependent term τe does have a considerable
influence on the bifurcation set, increasing the observed complexity even further. This includes
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Figure 1. Schematic diagram of ocean-atmosphere interaction in the central and eastern equatorial Pacific Ocean

following perturbations to the thermocline depth in the eastern equatorial Pacific. The dashed line represents the mean

thermocline depth.

the breaking of a reflection symmetry, which in the past was only achieved by introducing an
asymmetric coupling function [18,20,21]. Overall, we find for realistic levels of state dependence
a bifurcation set that is much more complex than its constant-delay counterpart. In particular,
a computation of Lyapunov exponents shows that there are considerably larger parameter
regions with chaotic behaviour associated with overlapping resonance regions. Since this type
of complicated and irregular behaviour has been identified as showing important characteristics
of ENSO, we argue that state dependence in model (1.1) emerges as an important ingredient for
a more realistic description of its underlying feedback mechanisms.

The paper is organised as follows. In Section 2 we discuss how the delay time in model (1.1)
can be modified to include two state-dependence terms that arise from surface-thermocline
interaction. The resulting dynamics is studied in Section 3, where we review the constant-delay
case in Section 3(a), consider each state-dependence term individually in Section 3(b), and then
in combination in Section 3(c). Finally, in Section 4 we make some concluding remarks and point
out future research directions.

2. State dependence of the delay in model (1.1)
We now motivate the inclusion of state-dependent terms into the delay time of model (1.1).
There are various potential sources of state dependence in the ENSO system. The type of state
dependence we present here arises from the interaction times between the thermocline and the
sea surface, which are not described by and go beyond the original DAO mechanism.

The idea that both wave dynamics and thermocline-SST interactions are important for
accurately describing ENSO behaviour is supported by [52–55]. More specifically, the state-
dependent DDE model (1.1) presented in this section, with the state-dependent delay given by
(2.6), is related to previous conceptual-level models for ENSO with underlying physics that can
be traced back to the Zebiak-Cane model [56]. As summarized by Dijkstra [4, Section 7.5.4],
applying slightly different assumptions to equations derived from the intermediate-complexity
Zebiak-Cane model will lead to the DAO, as well as the coupled wave oscillator [22] and the
recharge oscillator [57,58]. Each of these ENSO paradigms describes the negative feedback and
the propagation of oceanic waves, albeit in different mathematical forms. The coupled wave
oscillator model [22] assumes that the effect of the thermocline depth on the SST in the East is
instantaneous. The DAO and recharge oscillator do not make this assumption. However, neither
attempt to resolve thermocline-SST interactions to include the effect of an evolving thermocline.
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Figure 2. Flow diagram of the negative delayed feedback due to ocean-atmosphere coupling; all quantities involved

represent deviations.

As we will see in the following section, this is an effect that can have important consequences for
the behaviour of the system.

(a) Components of the negative feedback
Figure 1 is a schematic diagram of ocean-atmosphere coupling processes in the central and eastern
equatorial Pacific Ocean that are involved in the negative feedback loop of ENSO. The horizontal
direction represents longitude and the vertical direction represents depth. The dark blue curve
represents the ocean surface and the light blue curve the thermocline layer, the yellow curves
indicate the basin boundaries of the Pacific Ocean, and the grey ellipse represents a coupling
interaction zone. In its mean state the thermocline depth, which is indicated by the dashed
line, is shallower in the East (about 50 metres) compared to the depth in the central equatorial
Pacific Ocean (about 150 metres). The black arrows represent the four components of the negative
feedback: upwelling in the East, easterly winds, ocean adjustment in the central Pacific, and wave
propagation. Each component is associated with a delay time that appears in square brackets in
Figure 1.

The overall negative feedback loop is represented in Figure 2 as a flow diagram. Its first
component consists of a positive perturbation in the thermocline depth in the eastern equatorial
Pacific that increases the SST in the eastern equatorial Pacific. This happens via an upwelling
process with associated delay time τe. Next, the increase in SST slows down the easterly trade
winds, creating a westerly wind anomaly over the central equatorial Pacific. This is a fast process
and it is assumed here not to be subject to a delay (as is the case in all DAO models). The wind
anomaly induces an ocean mass adjustment that decreases the thermocline depth in the central
equatorial Pacific. This occurs in a reasonably localised interaction zone, and in mathematical
derivations of DAO models [22,58] this zone is simplified to a point. The associated surface-
thermocline interaction comes with a delay time τc. Rossby waves then carry the signal to the
western basin boundary and are reflected as Kelvin waves, which carry the signal back to the
East with an associated delay time τw . The total delay time associated with the negative feedback
loop is therefore

τn = τe + τc + τw. (2.1)

In past studies of DAO models, the delay time τn associated with the negative feedback has
been assumed to consist only of τw , which is taken to be constant. We now take into account also
the processes of upwelling and ocean adjustment and the associated delay times τe and τc, as
sketched in Figures 1 and 2. Importantly, while they are on average smaller than τw , we argue
now that τe and τc are relevant and, in particular, that they depend on the state. The underlying
principle is that the distance the signal must travel to or from the surface depends on the depth
of the thermocline as represented by its deviation h from it long-term average.



7

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

(b) State dependence due to upwelling
There is a delay, indicated by τe in Figure 2, between the thermocline anomaly at depth and the
SST anomaly at the surface; this is due to upwelling of colder water. We model this effect by

τe = τ̄e + ηeh(t− τn), (2.2)

where τ̄e is the constant delay time it takes the signal to travel from the mean thermocline depth
to the surface and ηe is the inverse of the upwelling speed. The delay time τe deviates from
its mean value by h(t− τn) because the thermocline depth signal that ultimately returns to the
eastern equatorial Pacific at time t began its journey at the thermocline at time t− τn. Notice
that this means that the state-dependent delay in (2.2) is, hence, defined only implicitly. To avoid
this issue we consider the first-order approximation of replacing the state-dependent τn with its
constant part τ̄n = τ̄e + τ̄c + τw , where τ̄c is the constant delay time of the ocean adjustment at
the central Pacific associated with the mean thermocline depth (see the next section). This yields
the upwelling delay in the delayed form

τe = τ̄e + ηeh(t− τ̄n). (2.3)

(c) State dependence due to ocean adjustment
We now address the delay between the SST and thermocline depth anomalies in the central
equatorial Pacific Ocean, represented by the third component of the feedback loop in Figure 2.
This can be attributed to a basin adjustment involving a collection of waves, which can be viewed
as an adjustment to Sverdrup balance at off-equatorial latitudes. This adjustment is a crucial
element in the so-called recharge-oscillator view of El Niño [57,58]. Due to the westerly wind-
stress anomaly, which is arising through a positive SST anomaly, mass is diverging out of the
equatorial zone because of this Sverdrup adjustment. Note that, although the associated arrow
in Figure 1 points downward to show the direction of the feedback loop, there is actually mass
adjustment both in and out of the equatorial zone. Only after an adjustment time τc will this have
an effect on the thermocline depth. Because the mass transport is dependent on the thermocline
depth, so is τc. We model this effect here by

τc = τ̄c + ηchc(t− τw), (2.4)

where hc(t− τw) is the thermocline anomaly in the central Pacific Ocean and τ̄c is the constant
component associated with the mean thermocline depth. By neglecting damping effects on the
oceanic waves that carry the feedback signal back to the eastern Pacific Ocean, we can use the
approximation hc(t)≈ h(t+ τw) in (2.4). This results in the ocean adjustment delay having the
non-delayed form

τc = τ̄c + ηch(t), (2.5)

(d) Total delay time
From (2.1) the total state-dependent delay then takes the form

τn(h) = τ̄n + ηeh(t− τ̄n) + ηch(t). (2.6)

The resulting state-dependent ENSO DDE model we consider in what follows is model (1.1) with
the delay as given by (2.6). Clearly, this overall model reduces to the constant-delay GZT model
for ηe = ηc = 0. However, for ηe 6= 0 or ηc 6= 0 state dependence is present and must be taken into
consideration. In particular, we remark that, as with any state-dependent DDE, the delay τn must
remain positive for the evolution to be well defined. We will see later that in some parameter
regions τn becomes negative along solutions; when this is identified during numerical integration
(we employ an improved Euler method with fixed time steps) the computation is stopped.
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(e) Suitable parameter ranges
Based on the correlation analysis of observational SST and thermocline depth data by Zelle et
al. [59], we estimate the constant delay times τ̄e and τ̄c to be 2 weeks and 4 months, respectively.

The maximum deviations in the thermocline depth in the eastern equatorial Pacific Ocean
correspond to about 50 metres [60], which is also the mean thermocline depth, suggesting that
max[ηeh(t− τn)]≈ 2 weeks. Since in the GZT model, the maximum values of h(t) are of order 1
and time is in years, we obtain the nominal value of ηe ≈ 2/52≈ 0.04. Similarly, the maximum
deviations in thermocline depth in the central equatorial Pacific Ocean corresponds to about
one third of its mean depth, suggesting that max[ηch(t)]≈ 4/3 months. Therefore, we obtain the
nominal value ηc ≈ (4/3)/12≈ 0.11.

We use these nominal values for ηe and ηc in the bifurcation analysis in the next section. In
light of various approximations and uncertainties, and to present a more comprehensive picture
of the possible dynamics, we also consider the bifurcation set for twice these values, namely for
ηe = 0.08 and ηc = 0.22.

Finally, based on oceanic wave speeds calculated using TOPEX/POSEIDON satellite data
in [61,62], realistic values of τw lie between 5.2 and 7.2 months, that is, in the range [0.43, 0.6]

when scaled to years. This places the estimated range for τ̄n at [0.80, 0.97]. Nonetheless, in the
following section we choose to consider the parameter range [0, 2] for two reasons: (i) to allow
a comparison with previous literature [19,20,23,35]; and (ii) to understand the global origins of
observed complex dynamics.

3. Bifurcation analysis
To demonstrate how the two types of state dependence affect the behaviour of model (1.1), we
now present bifurcation sets in the (c, τ̄n)-plane of (1.1) with (2.6) for different values of ηe and ηc.
These consist of curves of torus bifurcations, saddle-node of limit cycle bifurcations and period-
doubling bifurcations, all computed with the continuation package DDE-BIFTOOL [36,37]. These
curves are overlaid onto so-called maximum maps, where the maxima of long time series (after
transients have died down) are computed and represented in colour for fixed τ̄n and increasing
c (where the previous solution serves as initial history); we typically compute a trajectory of
1000 years and disregard the first 500 years, where the integration step is 10−4 years. Maximum
maps allow for a ready comparison with previous studies of the GZT model [19,23,35], and we
fix throughout b= 1 and κ= 11 as in these previous works. Moreover, the bifurcation set in the
(c, τ̄n)-plane provides a clear overview of how the dynamics is organised more globally.

In Section 3(a) we give a brief review of the findings in [35] for the constant-delay case ηe =

ηc = 0. We then “switch on” and increase the state dependence by presenting the bifurcation set
for nonzero ηe and ηc. We first consider their effects individually in Section 3(b), and then in
combination in Section 3(c). Finally, we briefly discuss in Section 3(d) how the results could be
interpreted in the context of the ENSO phenomenon.

(a) The constant-delay case
Figure 3 shows the bifurcation set in the (c, τ̄n)-plane for the constant-delay case ηe = ηc = 0,
overlaid onto the maximum map. The maximum map provides a convenient indication of the
respective behaviour. Notice that sudden changes in colour, that is, in the maximum value of
h on an attractor, align well with shown bifurcations. Periodic solutions born along the line
c= 0 are stable and have non-zero amplitude for τ̄n >π/(2κ) [63–65]; these are dominated by
the effect of negative feedback and have a period of 4τ̄n. On the other hand, for sufficiently
large values of c there are stable periodic solutions that are dominated by the seasonal forcing.
These solutions appear to be close to sinusoidal and have a period of one; for decreasing c, they
lose their stability at the torus bifurcation curve. Between the line c= 0 and the torus bifurcation
curve solutions are characterised by an interplay between negative feedback and periodic forcing,
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Figure 3. Bifurcation set with maximum map (a) and positive maximal Lyapunov exponent (b) in the (c, τ̄n)-plane of

Eq. (1.1) with (2.6) for the constant-delay case ηe = ηc = 0 in Eq. (2.6). Shown is a black curve of torus bifurcations,

white curves of saddle-node bifurcations of periodic orbits that bound p:q resonance tongues, and grey curves of period-

doubling bifurcations. The simulation scans here and throughout the paper are performed for fixed τ̄n and increasing

c.

resulting in dynamics on invariant tori. As was mentioned in Section 1, the dynamics on the torus
may be locked (periodic) or unlocked (quasiperiodic). The locked solutions are organised into
p:q resonance tongues, where p/q is the winding number of the periodic solutions, of which there
is generally a stable and an unstable one on the torus. Theory predicts an infinite number of
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resonance tongues, one for every rational winding number [66], and Figure 3 shows a set of the
largest resonance tongues. As could be expected from the mathematical form of model (1.1), the
dependence of the solutions on the parameters appears to be highly nonlinear.

Inside some of the shown resonance tongues, period-doublings are found. This is a common
feature when resonance tongues overlap sufficiently; for a detailed study of accumulating
resonance tongues and associated complex behaviour see [67]. The resulting chaotic behaviour
is of interest in the context of ENSO, since such behaviour shows a mixture of irregularity with
locking to the seasons, which is seen as characteristic for El Niño and La Niña events in the
real world. Note that period-doubling cascades and associated chaotic dynamics are found only
in small regions of the parameter plane; see panel (b) showing where the respective maximal
Lyapunov exponent is positive, as calculated by following the algorithm for DDEs in [68]. Regions
of positive maximal Lyapunov exponents are also observed for parameters where we show no
curves of period-doublings. This is simply because there exist higher-order resonance tongues in
between those we have shown and they are expected to overlap. Furthermore, as demonstrated
for a related DDE model in [20], chaotic regions are often bound not only by period-doubling
cascades, but also feature intermittent transitions that are characterised by the sudden appearance
of chaos at a saddle-node bifurcation [69]. A more comprehensive discussion of the bifurcation set
in Figure 3 and associated other types of dynamics, including multistability, changing criticality
of the torus bifurcation and folding tori, can be found in [35,70].

(b) Individual effects of the two types of state dependence
Considering only the state dependence of the upwelling delay τe, we find the anticlimactic result
that it does not appear to have an influence on the observed dynamics. More specifically, for ηe =

0.04 and ηe = 0.08 and with ηc = 0 in (2.6), bifurcation set and maximum map in the (c, τ̄n)-plane
do not show any observable change on the scale presented in Figure 3.

State dependence of the ocean mass adjustment alone, on the other hand, does have a dramatic
effect. Figure 4 shows the bifurcation sets and maximum maps for fixed ηe = 0 and for ηc = 0.11

in panel (a) and for ηc = 0.22 in panel (b). Already for ηc = 0.11 the difference with the case of
ηc = 0 in Figure 3 is striking: resonance tongues have become wider and overlap more, with
larger regions where one finds period-doublings. The torus bifurcation curve now extends to
c= 10 near the top of Figure 4(a), and there is a noticeable change in the size of the observed
maxima. Moreover, there is a region with complex dynamics and additional saddle-node and
torus bifurcation curves that entered the frame at large value of c above τ̄n = 1. These are caused
by the state dependence — large c values mean large amplitude, which leads to larger fluctuations
of the delay time τn. In fact, due to the scaling relationship between c and ηc as a result of
Equation (2.6), it is clear that these curves will diverge off to c→∞ as ηc→ 0; similarly, they
move closer to the other bifurcation curves as ηc increases. The existence of nontrivial dynamics
for large values of c is in stark contrast to the dynamics in the constant-delay case, where solutions
for sufficiently large c are trivially dominated by the periodic forcing.

Figure 4(b), now for ηc = 0.22, shows a considerably more complicated bifurcation set
compared to panel (a). The bifurcation curves that emerge from the right-hand side of panel (a)
have shifted towards lower values of c in panel (b), such that they now interact with the pre-
existing structure of resonance tongues. This gives rise to many more and overlapping resonance
tongues that extend all the way to large values of c near τ̄n = 1. In this region we find many
and overlapping curves of subsequent period-doublings, which we refer to here as a period-
doubling cluster. In this part of the (c, τ̄n)-plane there are not only period-doubling cascades inside
resonance tongues, but also a period-doubling cascades of the 0:1 periodic solutions, that is,
those dominated by the seasonal forcing. Also near τ̄n = 1, as well as near τ̄n = 2, we observe
curves of saddle-node bifurcations of 0:1 periodic solutions, which meet at a cusp bifurcation at
(c, τ̄n)≈ (5.3, 1) (which is not so easy to see due to the many surrounding bifurcation curves) and
at (c, τ̄n)≈ (5.3, 2), respectively.
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Figure 4. Bifurcation set and maximum map in the (c, τ̄n)-plane of Eq. (1.1) with (2.6) for ηc = 0.11 (a) and ηc = 0.22

(b) and for fixed ηe = 0. Shown are black curves of torus bifurcations, white curves of saddle-node bifurcations of periodic

orbits and grey curves of period-doubling bifurcations.

Although the resonance tongues are not individually labelled, a careful comparison between
Figures 3 and 4 reveals that, with increasing state dependence, the roots of resonance tongues
along the line c= 0 have moved to lower values of τ̄n. Beyond our numerical approach and the
scope of our analysis, the resonance tongues can be studied in the limit of small c. For example,
the positions and boundaries of the resonance tongues could be estimated by means of a response
or sensitivity function approach [71,72].
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

0 0.25 0.5

Figure 5. Curves of torus bifurcations in the (c, τ̄n)-plane in the region [2, 10] × [0.6, 1.8], where colour indicates the

winding number. Here ηe = 0 and ηc takes the values (a) 0.080, (b) 0.095, (c) 0.110, (d) 0.115, (e) 0.120, (f) 0.130, (g)

0.135, (h) 0.140, (i) 0.155, (j) 0.185, (k) 0.190 and (l) 0.200.

We remark that in a parameter region near τ̄n = 0 in Figure 4(a) and (b) the delay becomes
negative during simulations; this is indicated by grey shading. To resume calculations for the next
increment in c, we start the integration from a constant initial history of h(t)≡ 10−3. Similarly,
the continuation of the lower period-doubling curve in panel (b) stops when the state-dependent
component of the delay becomes so large that the delay becomes negative. The intricate boundary
of the grey region of the (c, τ̄n)-plane already indicates that it depends very sensitively on the
initial history whether the delay becomes negative along a trajectory.

The overall resonance structure of the bifurcation sets in Figures 3 and 4 is in some sense
organised by the curves of torus bifurcations. In order to provide insight on how the bifurcation
set changes qualitatively with ηc for fixed ηe = 0, Figure 5 presents with twelve panels how the
curves of torus bifurcations evolve in the (c, τ̄n)-plane when ηc is increased gradually from zero.
Here the colour scheme indicates the winding number α along the curve, which is given by the
complex conjugate pair of Floquet multipliers e±2πiα that lie on the unit circle at the moment of
torus bifurcation (also known as a Neimark-Sacker bifurcation). As ηc is increased, new curves
of torus bifurcations enter the frame from the right [panels (a)–(c)]. They then interact with the
torus bifurcation curve that exists already for ηc = 0 in several codimension-one singularities (of
the surface of torus bifurcations in (c, τ̄n, ηc)-space); see, for example, [73] more information on
singularity theory. The first such interaction is a saddle-transition at ηc ≈ 0.115, where two curves
meet at a single point and then reconnect differently [panels (d)–(e)]. As a result, both curves
of torus bifurcations extend to large c near τ̄n = 1. Two further saddle-transitions just past ηc ≈
0.130 create two isolas, that is, closed curves of torus bifurcations [panels (f)–(h)]. Note that all
these transitions through singularities of the surface are consistent with the colouring by winding
number. Subsequently, these isolas shrink down to points and disappear in what we refer to as
minimax transitions. Increasing ηc further, we find that a curve of period-doubling bifurcations
(dark red) enters the frame, to which the lower branch of torus bifurcations connects at a 1:2

resonance point [panels (i)–(l)].
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Figure 6. Maximum maps and the 1:2 resonance tongue for ηc = 0 (a), ηc = 0.01 (b), ηc = 0.04 (c) and ηc = 0.11

(d) and for fixed ηe = 0. Shown are the white bounding curves of saddle-node bifurcations of periodic orbits, dark grey

curves of torus bifurcations and light grey curves of period-doubling bifurcations. For the background colour scheme see

Figure 4.

Overall, Figure 5 gives a good indication of how the bifurcation set becomes more complex
with increasing ηc. Indeed, the torus bifurcation curves shown come with infinitely many
resonance tongues, leading to the overall complexity that was shown in Figure 4. Focusing on
only the torus bifurcation curves avoids the considerable computational cost associated with
computing many more bifurcation curves and maximum maps. We remark that computing all of
the bifurcation curves shown in Figure 4 is not fully automatic but requires an interactive process
with DDE-BIFTOOL that takes about 2–4 days per panel; computing the associated maximum
map, on the other hand, can be fully parallelised, yet still takes about 4–5 hours on the New
Zealand eScience Infrastructure Pan cluster high-performance computing facility.

As was stated above, one of the effects of state dependence is that some of the resonance
tongues become larger. To illustrate this effect in more detail, Figure 6 shows how the 1:2

resonance tongue in the (c, τ̄n)-plane changes for fixed ηe = 0 and increasing ηc. It demonstrates
that the widening of some resonance tongues coincides with a breaking of symmetry. As
discussed in [35], the constant-delay GZT DDE model features a Z2-symmetry: in p:q resonance
tongues with p or q even, there exist two distinct, symmetrically related periodic locked solutions.
The 1:2 resonance tongue in panel (a) is such an example and there are actually two sets of curves
of saddle-node bifurcations that lie on top of each other. As ηc is increased, however, they separate
more and more, as panels (b)–(d) show. For the 1:2 resonance tongue, this symmetry breaking
also results in a closed curve of period-doubling bifurcations being created at the right tip where
the resonance tongue connects with the torus bifurcation curve; this curve of period-doubling
bifurcations has two 1:2 resonance points where the respective branches of torus bifurcations
connect. This phenomenon is actually part of the complicated bifurcation structure near 1:2

resonances predicted by theory; for example, see [66, section 9.5.3]. We remark that this bifurcation
structure is also relevant for the period-doubling bifurcations of the seasonal-forcing dominated
solutions that emerge near τ̄n = 1; compare with Figure 5(l) and Figure 4(b).
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Figure 7. Bifurcation set and maximum map in the (c, τ̄n)-plane of Eq. (1.1) with (2.6) for ηc = 0.11 and ηe = 0.08 (a)

and ηc = 0.22 and ηe = 0.04 (b). Shown are black curves of torus bifurcations, white curves of saddle-node bifurcations

of periodic orbits and grey curves of period-doubling bifurcations.

(c) Combined effects of the two types of state dependence
We now study the combined effects of both types of state dependence, that is, we consider ηe > 0

and ηc > 0. Figure 7 demonstrates that state dependence due to upwelling has a large effect on
the overall bifurcation set when the ocean adjustment state dependence is also present. This is
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surprising since state dependence due to upwelling on its own does not change the bifurcation
set.

Panel (a) of Figure 7 considers the effect of the maximal nominal value ηe = 0.08 of upwelling
on the case of a smaller ocean adjustment of ηc = 0.11 shown in Figure 4(a). The comparison
shows that Figure 7(a) features a dramatic change in the way the different types of solutions
are distributed across the (c, τ̄n)-plane. In particular, the torus bifurcation curve appears to have
split into two segments around τ̄n = 1.2. In fact, as we checked but do not show here, even for
c > 40 the two curves remain disconnected. This change of the bifurcation set is the result of a
transition similar to the interacting torus bifurcation curves in Figure 5. Notice in Figure 7(a)
how some resonance tongues have become significantly wider and overlap to a greater extent,
resulting in larger regions of chaotic behaviour. We observe again the emergence of the period-
doubling cluster near τ̄n = 1, as well as the cusp bifurcations of the forcing dominated solutions
near (c, τ̄n) = (6, 1) and near (c, τ̄n) = (6, 2).

Panel (b) of Figure 7 considers the effect of the nominal value ηe = 0.04 of upwelling on the
case of a maximal ocean adjustment of ηc = 0.22 shown in Figure 4(b). The changes are not quite
so pronounced, because the bifurcation diagram for ηc = 0.22 and ηe = 0 is already quite complex
with torus bifurcation curves extending to large c. However, notice that in Figure 7(b) the period-
doubling cluster near τ̄n = 1 is now found for smaller values of c.

Finally, Figure 8 shows the bifurcation set for the maximal nominal ocean adjustment of ηc =

0.22 and the maximal nominal upwelling of ηe = 0.08. Here panel (a) shows the bifurcation set
with the maximum map and panel (b) shows it with a map of where the maximal Lyapunov
exponents of the respective solution is positive, that is, where the dynamics is chaotic. Comparing
Figure 8 with Figure 3 clearly drives home the point that state dependence has a large effect
on the bifurcation set of model (1.1) and, hence, on the observable dynamics. When comparing
Figure 8(a) with Figure 7(b), we observe that increasing the upwelling to ηe = 0.08 result in the
two large period-doubling bifurcations of the 0:1 solutions to undergo a saddle transition near
τn = 0.5 and connect differently. Moreover, the period-doubling cluster now appears for even
lower values of c. As Figure 8(b) shows, chaotic dynamics is associated with this period-doubling
cluster. Indeed, comparison with Figure 3(b) clearly demonstrates that state dependence results in
considerably more and larger regions where chaotic dynamics can be found. Interestingly, there
is also a large region of chaotic dynamics for very low values of τ̄n, near the boundary where the
delay becomes negative.

(d) Interpretation for the ENSO system
By introducing a physically motivated non-constant delay time, we have made the DAO model
more detailed. This model modification has led to dynamics that is expected to represent realistic
aspects of the ENSO system. In the constant delay case, irregular (chaotic) behaviour could only
be found for small pockets of the (c, τ̄n)-plane and, as such, could not be considered a prominent
feature of the model behaviour. In the state-dependent delay case, on the other hand, this type of
behaviour is more prominent. Of particular interest here is the period-doubling cluster, which
is the relatively large region with chaotic dynamics near τ̄n = 1. Note that our discussion of
suggested nominal values of the parameters τ̄e, τ̄c and τw in Section 2 places the period-doubling
cluster within the range of physically relevant values of τ̄n = τ̄e + τ̄c + τw . Since the emergence
of chaotic behaviour in ENSO models has often been attributed to specific routes to chaos (i.e. the
period-doubling [21,22,74], quasi-periodic [17,24,75] and intermittent [76] routes), we mention
here that all these routes may be observed within the period-doubling cluster, depending on the
chosen path through parameter space.

To show that the associated dynamics is indeed relevant for ENSO, Figure 9 displays time
series and power spectra for an observational data set and an example attractor from model (1.1).
Panel (a1) shows a time series for the Nino3 index, which is the averaged SST over 5◦N–5◦S
and 150◦W–90◦W. It is calculated from the observational data set NOAA Optimum Interpolation
SST V2 (Jan. 1982 – Dec. 2017) based on the analysis of in situ and satellite data [77]. Typically,
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Figure 8. Bifurcation set and maximum map (a) and positive maximal Lyapunov exponent of solutions (b) in the (c, τ̄n)-

plane of Eq. (1.1) with (2.6) for ηc = 0.22 and ηe = 0.08. The magenta circle in panel (a) indicates the parameter choice

for the time series in Figure 9.

for Nino3 the data is detrended by using a 5-month running mean. Here, we simply detrend
linearly in order to preserve the seasonal cycle. The power spectrum in panel (a2) is calculated by
using the Welch method with windows of length 15 years and overlapping across 12 years. The
time series in panel (a1) demonstrates characteristic features of the ENSO system, including the
irregularity of very distinct large peaks, representing El Niño events, both in terms of amplitude
and occurrence. There is clearly a high degree of variability and, as we checked, the large peaks
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Figure 9. Panel (a1) shows a time series of the Nino3 index calculated from the observational data set NOAA Optimum

Interpolation SST V2 (Jan. 1982 – Dec. 2017); the data is detrended linearly. Panel (a2) shows the corresponding power

spectrum in arbitrary units [a.u.] calculated with the Welch method. Panels (b1) and (b2) show the same for an example

attractor of Eq. (1.1) with (2.6) for ηc = 0.22 and ηe = 0.08 at the parameter point (c, τ̄n) = (7.2, 0.95), as indicated

in Figure 8, and starting from the constant initial history h≡ 1. Data for row (a) is provided by the Physical Sciences

Division, Earth System Research Laboratory, NOAA, Boulder, Colorado.

tend to be seasonally locked. The influence of the seasons is evident in the power spectrum in
panel (a2) with a distinct peak centred at 1 year. There are also two distinct peaks centred near
0.66 and 3.5 years, representing the time scales of ENSO variability. Note that the peak centred
near 3.5 years is particularly broad.

The time series of the thermocline deviation h of model (1.1) in panel (b1) lies on a chaotic
attractor that resides in the period-doubling cluster at (c, τ̄n) = (7.2, 0.95). It features irregularity
in the form of relatively large peaks that occur every 4–8 years, as well as seasonal locking with
a corresponding dominant frequency in panel (b2) centred at 1 year. The power spectrum also
displays a broad peak centred near 2.5 years. Comparison between rows (a) and (b) of Figure 9
demonstrates that these two characteristic features of El Niño events from observational data
(and many other models [18,24,56,78,79]) are captured by model (1.1). We find that the seasonal
locking is very robust with respect to the choice of parameters. The number and distribution
of El Niño peaks, on the other hand, depends on the choice of the parameters point in regions
of overlapping p:q resonance tongues. Furthermore, the relative strengths between the peaks in
the power spectrum, representing both seasonal and El Niño time scales can be influenced by
the choice of the seasonal forcing strength c. We remark with regard to the amplitude of the
oscillations in panel (b1), that one could calibrate the remaining model parameters b and κ in
order to scale the variable h. Importantly, by using Figure 8 as a guide, solutions demonstrating
fundamental ENSO characteristics can be found readily in the appropriate regions of parameter
space. Therefore, we conclude that state-dependent delay associated with upwelling and ocean
adjustment must be considered as a contributing mechanism for the observed irregular but
seasonally-locked behaviour of the ENSO phenomenon.

In spite of the good agreement of the power spectra in Figure 9, row (b) does not feature
the same degree of variability found in the observational data in row (a). Of course, the
example solution represented in row (b) is calculated for the thermocline depth anomaly with
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the conceptual model (1.1) with only a negative delayed feedback and forcing term. Exactly
how the variable h translates to an observable such as Nino3 is not obvious, especially since
Nino3 is a spatially averaged quantity and model (1.1) has no spatial component. Making a closer
comparison between the dynamics of model (1.1) and climate observables is left for future work.

4. Summary and Discussion
The processes controlling the irregularity of the temporal variability of ENSO are still not
satisfactorily determined and this hampers skilful prediction [8,9]. Certainly atmospheric noise, in
particular westerly wind bursts, contribute to the irregularity of the ENSO variability and some
literature is in support of the theory that ENSO is a stable, linear system subject to stochastic
forcing [80–83]. However, there are also quite a few deterministic mechanisms that can give
rise to chaotic behaviour, such as bursting phenomena [84,85], period-doubling [21,22,74] and
nonlinear resonances with the seasonal cycle [17,24,75]. This motivates the study of conceptual
ENSO models, which have been very useful in the past for investigating the interactions of known
mechanisms and for discovering new physical mechanisms of variability.

The work presented here makes a contribution in this spirit by considering a quite simple
conceptual ENSO model in the form of a DDE. Models of this type are known to efficiently
represent physical processes, such as wave propagation and feedbacks [15]. Moreover, DDE
models lend themselves to an investigation with advanced tools. As our study demonstrates,
this is also the case when the delays that arise are no longer considered to be constant, which is
an assumption in much of the previous literature in climate science and other fields. In particular,
it is possible to ascertain whether and how state dependence of delays contributes to the overall
dynamics of the feedback-driven system.

More specifically, we performed a study of the influence of additional and state-dependent
delays arising from the interaction between the thermocline and the ocean surface. To this end, we
incorporated state dependence of delays into a well-studied ENSO DDE model with only negative
feedback and periodic forcing [19,35,70]. We derived state dependent delay terms for upwelling
in the eastern Pacific and for ocean adjustment in the central Pacific, and then investigated
their effect individually and also in combination. To capture important features of the overall
dynamics, we considered the respective bifurcation sets in the (c, τ̄n)-plane of the forcing strength
c and the constant portion τ̄n of the overall delay. We demonstrated how an increasing complexity
of the bifurcation set arises with increasing state dependence. Relevant levels of state dependence
of the delays were shown to severely enhance resonance phenomena, leading to considerably
larger regions with overlapping resonance tongues and associated peridod doublings and chaotic
dynamics. The latter generate times series with characteristic features of the ENSO phenomenon,
specifically, its irregular occurrence every few years in combination with seasonal locking. We
remark that chaotic behaviour arising from nonlinear resonances has always been considered to
be a less important mechanism of ENSO variability because the observed windows of its existence
in parameter space were relatively small [25]. The widening of chaotic regions in the parameter
space, as found here due to state-dependent delays, is hence highly relevant for attributing
irregular ENSO variability more to deterministic processes rather than noise.

It is worth noting that other mechanisms may play a role in the complexity of the model
dynamics. For example, the authors of [21] showed that the inclusion of additional Rossby wave
modes and an asymmetric coupling function each increase the complexity of the dynamics of their
ENSO delay-difference model. Furthermore, including positive delayed feedback due to Kelvin
waves and asymmetry of the coupling each increase the complexity of the bifurcation diagram of
the GZT DDE model studied here [20]. It is an interesting observation that in the state-dependent
DDE model the breaking of symmetry, discussed in section 3(b), is achieved without the need of
introducing an asymmetric coupling function, as was the case in [18,20,21].

The bifurcation sets presented here highlight the role of invariant tori in producing dynamical
mechanisms resulting in complicated behaviour. The schematic bifurcation diagram in [86], based
on simulation runs of a hybrid coupled general circulation model, also indicates the role of
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torus dynamics in ENSO. The origins of dynamics on a torus in an intermediate coupled ocean-
atmosphere model for the ENSO system was identified more thoroughly with continuation
methods in [87]. A bifurcation set for the DDE ENSO model introduced in [18] is presented in
Figure 6 of [88]. Like the bifurcation sets presented here, the authors of [88] found resonance
tongues emanating from a curve of torus bifurcations; however, these resonance tongues appear
not to interact with each other (at least over the parameter ranges considered). The bifurcation
sets for a conceptual ENSO model presented in [84,85] do not feature resonance tongues, but still
demonstrate the emergence of chaotic behaviour due to period-doubling. We remark that most
of the dynamics we reported on involve 2-tori and their further bifurcations and could, hence,
potentially be observed in models with dimension as low as 3. On the other hand, some more
complicated dynamics might well be of higher dimension; a closer analysis of this is left for future
work.

From a more general point of view, we demonstrated that state dependence of delays can
have a serious impact on the dynamics, even when the constant-delay DDE already features
complicated nonlinear behaviour. Our results follow on from the study by Calleja et al. [44], which
showed that state dependence of delays alone can create surprisingly complicated nonlinear
dynamics when the constant-delay DDE has only trivial, linear dynamics. Together, these results
must be seen as a ‘health warning’ that delays should not simply be assumed to be constant
as a matter of course. Given the simple form of the model we considered, with only delayed
negative feedback and periodic forcing, we expect that our case study will be of interest to
researchers from various other areas of application. The results presented here should provide
motivation to investigate state-dependent delays more rigorously. A concrete example that is also
discussed in this special issue concerns the dynamics driven by state-dependent delays in lasers
with frequency-dependent feedback [50,51].

In the specific context of climate modelling, there are also several avenues for future work.
The work presented here is an initial step in the analysis of the effects of state dependence
on ENSO. For simplicity we have taken the state dependence of the delay to be linear. An
interesting question from the modelling perspective is whether state-dependent delays can be
derived explicitly from more complicated ENSO models of an intermediate complexity and, in
particular, what mathematical form would they have. This paper might provide motivation for
such a more quantitative analysis. One of the tools that can be used in this context is the Mori-
Zwanzig formalism [89–91], which is a formal model reduction technique. Another focus for
future work will be to study other physical mechanisms that may lead to state-dependent delays
in the ENSO system. For example, a contributing factor to the delay times of the DAO paradigm
is the position of the zone of ocean-atmosphere coupling in the central Pacific Ocean, which is
closely associated with the western Pacific warm-pool. In fact, a state-dependent DDE for the
position of the western Pacific warm-pool has already been suggested in [92], but has not yet
been analysed. Finally, it will be of practical relevance to study the effect of atmospheric noise on
the ENSO behaviour in DDE models with state-dependent delay.
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