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Abstract

The Atlantic Meridional Overturning Circulation (AMOC) is a climate-relevant ocean
current system responsible for the meridional heat transport in the Atlantic. The AMOC
strength is affected by a meridional density difference, where the density in the northern
North Atlantic is controlled by an advective and a convective feedback. Here, we introduce
and study a conceptual mathematical model of the variability of the AMOC strength by
representing these feedbacks as delayed terms in a scalar delay differential equation (DDE)
for the salinity in the northern North Atlantic. After scaling and without external input,
this DDE has the associated delay times 7 and ¢ as its only parameters. We perform a
numerical bifurcation analysis of this deceptively simple-looking DDE AMOC model with
the continuation software package DDE-Biftool. We find and characterize intricate dynam-
ical regimes, including those exhibiting complicated oscillations associated with homoclinic
connections. These results are presented as bifurcation diagrams in the (7, c)-plane, where
we identify a codimension-two Belyakov transition as an organising center for nearby compli-
cated dynamics. Moreover, we present a detailed analysis of different attractor regions in the
(7, 0)-plane, which we identify by computing the (strong) unstable manifold of a physically
relevant equilibrium. As a general picture, we find that attractor regions repeat as the values
of either o or 7 increase, including in physically relevant regions of these two (scaled) delay
times. In this way, we clarify where different types of dynamics — such as periodic orbits
of different periods, invariant tori, and chaotic dynamics — can be observed, and how they
emerge or disappear.

1 Introduction

The Atlantic Ocean Circulation is dominated by several large-scale currents, one prominent ex-
ample being the Gulf Stream. The depth-dependent northward and southward volume transport
of these currents is the Atlantic Meridional Overturning Circulation (AMOC). The AMOC is
responsible for the northward heat transport which affects climate around the Atlantic basin [6].
The strength of the AMOC plays an essential role for the overall global climate [36, 44], and
its variability has been directly linked with different climate phenomena, including the Sahel
drought [37], variability in Amazon rainfall [15], changes in the climate of the North American
continent [45], and the frequency of Atlantic hurricanes [47].



In the northern regions of the Atlantic, warm surface water from the upper branch of the
AMOC is cooled and transformed into water of the deep AMOC branch. One of the regions
where this water mass transformation occurs is the Subpolar Gyre (SPG) region. Key compo-
nents of the SPG region are currents in the Labrador and Irminger Seas, generating an overall
counterclockwise surface flow and the transformation of large volumes of lighter surface waters
to denser deep waters in the interior of these seas. Convective mixing due to negative surface
buoyancy input (e.g., heavy water over light water) is a key aspect of this water mass trans-
formation process [31]. A hierarchy of models is available for studying aspects of the AMOC,
from conceptual models with only a few degrees of freedom to Earth System Models (ESMs)
having billions of degrees of freedom [11]. From a mathematical perspective, ESMs and other
large-scale models are challenging to analyze due to their very large number of variables and
parameters. We are concerned here with conceptual climate models at the other end of the
scale. These much ‘simpler’ models attempt to capture certain key aspects of the system while
being amenable to mathematical analysis.

A typical category of such conceptual models are box models, where spatial averages of
relevant observables are considered, such as temperature and salinity, which are coupled through
transport processes. The most prominent example of such an AMOC model is the Stommel [42]
two-box model, where the boxes represent equatorial and polar volumes. This model showed
that multiple equilibria of the AMOC can exist, and it identified a positive feedback, the salt-
advection feedback, involved in the transition from a strong to a weak AMOC state. An increase
in the strength of the AMOC enhances the salinity transported northward, which increases the
density in the polar box and, hence, further strengthens the AMOC, creating a positive feedback
loop. Welander [48] later found that convective processes, arising from static instability, can also
lead to multiple equilibria of the AMOC. The underlying feedback is a convective one: when a
salinity perturbation is added to the upper layer of a non-convecting state, convection can occur.
This mixing with saltier water from below increases the density of the upper layer, sustaining
convection.

In Sec. 2, we introduce a conceptual model of the AMOC based on representing these feed-
backs as delayed terms, resulting in a delay differential equation (DDE) of the form

2(t) =zt —7)(1—2(t-0)), (1)

after scaling in the absence of external forcing. Here, the prime denotes derivation with respect
to time, and 7 and o represent time delays associated with the advective and convective feed-
backs, respectively. Equation (1) is our central object of study, and we also refer to it as the
(unforced) North Atlantic Salinity Two Feedback (NAS2F). It looks deceptively simple with the
two (rescaled) delay times 7 and o as the only parameters. Other systems with two feedback
loops can be found in many application areas, including climate dynamics [17, 26, 27], but typ-
ically the delayed feedback terms contribute additively. An important and novel feature of the
NAS2F model is that the two delay loops interact in a multiplicative way, rather than as a sum.
Because of this property, Eq. (1) has relevance beyond climate modeling as a special DDE: it is
a generalisation of the delayed logistic equation with two independent delays. In fact, the case
7 = o of equal delays has arisen in the modeling of cancer, for example, to describe the growth
of cancer in a female mouse’s body [38], and as a way to take the cell cycle into account in tumor
dynamics [34].

From a more mathematical point of view, Eq. (1) is of great relevance since it is a generaliza-
tion of a classic DDE, the so-called Hutchinson-Wright equation for which 7 = 0 so that o is the
only delay. This specific DDE has been studied in various contexts, motivated by two seminal
papers concerning areas as diverse as the distribution of primes [49] and population dynamics
[23]. The Hutchinson-Wright equation is strongly connected to the development of the theory of
DDEs; it is one of the first examples highlighting the nature of solutions of DDEs in comparison



to their ODE counterparts. A two-delay version of the Hutchinson-Wright equation has been
considered, where the second term of the logistic equation features the sum of two linear terms
with different delays [5, 30, 33]. The form of Eq. (1) with two independent delays in each of the
two terms of the logistic equation, however, has not been analysed to the best of our knowledge.
This fact provides further motivation for the bifurcation study of the NAS2F model presented
here, beyond its relevance for investigating the interplay between feedback mechanisms in the
AMOC.

We provide here an exploration and in-depth analysis of the dynamics exhibited by the
NAS2F model (1), effectively for any choices of the two independent parameters 7 and o. Sec-
tion 2 provides further information on the NAS2F model and its rescaling. Section 3 presents
a bifurcation study for smaller to intermediate values of the two delays. We begin in Sec. 3.1
with the stability analysis of the two equilibrium solutions 0 and 1; they represent (scaled)
constant-salinity solutions, and the boldface type setting distinguishes them from the numbers
0 and 1. The stability analysis reveals a ‘checkerboard’ grid pattern of Hopf bifurcations, and
we proceed in Sec. 3.2 by considering the emerging periodic solutions and their disappearance in
Shilnikov homoclinic bifurcations. A two-parameter bifurcation study in Sec. 3.3 then shows the
emergence of more complicated dynamics and associated further bifurcations due to a transition,
known as a Belyakov point, where the Shilnikov homoclinic orbit changes from ‘tame’ to ‘wild’.

Section 4 then focuses on where in the (7, 0)-plane one finds attractors of Eq. (1), including
in parameter ranges of small ¢ and large 7, which carry physical relevance. To this end, we
employ a suitable strategy for sampling physically relevant initial conditions; specifically, we
determine where the one-dimensional unstable manifold of the equilibrium 0 ends up. This
approach reveals a repeating structure of attractor regions of the NAS2F model, which we then
characterize further in terms of how they are bounded and which types of attractors can be
found. We first consider in Sec. 4.1 the main and largest attractor region found for lower values
of 7 and o. It is bounded by bifurcations we identified in Sec. 3.3, specifically by curves of Hopf
bifurcation below and of homoclinic bifurcation above, and we show that there is a sizable sub-
region with chaotic behaviour. For increasing o we find a repeating sequence of further attractor
regions for lower values of 7 that are bounded below and above by further curves of homoclinic
bifurcations. Notably, these curves and attractor regions accumulate on the o-axis, as we show
in Sec. 4.2. The associated complicated dynamics cannot be observed for the Hutchinson-Wright
equation with 7 = 0, but it ‘emerges’ as soon as the second delay 7 is ‘switched on’. Section 4.3
then shows that there is also a sequence of attractor regions for increasing 7. These regions turn
out to be bounded by curves of torus bifurcation, with associated resonance phenomena and a
considerable level of multistability between different types of attractors. Our estimates show
that these attractor regions exist within ranges of larger 7 and smaller o that are physically
plausible in the context of AMOC dynamcis.

The final Sec. 5 provides a brief discussion of our results and an outlook with the emphasis
on directions for future research within the context of AMOC dynamics.

2 Formulation of the NAS2F model

The advective and convective feedbacks, which are represented in a very elementary way in box
models [42, 48], in reality are due to a set of complex processes involving the three-dimensional
ocean circulation, deep water formation processes and sea-ice influences [46]. These processes
inherently feature a delay between cause and effect; here the cause is a change in the salinity (or
density) in the northern North Atlantic. This gives a delayed effect, either through the advective
feedback (with a delay 7,hys) or through the convective feedback (with a delay ophys), on the
salinity of the northern box.

This view motivates our model, shown schematically in Fig. 1. Panel (a) shows a latitudinal
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Figure 1: Schematic diagram of the NAS2F model. Panel (a) is a representation of the two
main feedback loops of the North Atlantic gyre, and panel (b) shows the box model diagram
corresponding to the (unscaled) Eq. (2). The salinity S in the polar surface box is subject to
two feedback loops with delays 7,hys and oppys, where Se is a typical salinity in the equatorial
region, Sy is a global mean salinity and F' represents an external freshwater flux forcing.

profile of the North Atlantic Ocean, from the Polar regions on the left to the Equatorial regions
on the right. The box located at the surface near the Pole is subject to the advective feedback
loop and the convective feedback loop. Panel (b) shows a simpler sketch of the box, which is
characterized by its salinity .S, with its two feedback loops with constant equatorial salinities S,
at the Equator and a global average salinity Sp, and the associated time delays Tyhys and oppys.
A surface freshwater flux is modeled by an external forcing F. Modeling the AMOC in this
conceptual way rests on the idea of reducing the the complicated processes that give rise to the
two main feedback loops by describing them by terms with explicit delay times as parameters
[4, 24].

This explicit modeling approach allows one to concentrate on the effect of key physical
feedback loops on the AMOC by formulating a model in the form of a DDE, which is amenable
to mathematical analysis with advanced tools from dynamical systems and bifurcation theory;
for other examples of DDE climate models, see [14, 24, 27]. In this approach, the advective
exchange function is represented as Q = WS(t — 7)/Sy, where VU is a transport coefficient and
the AMOC strength is given by QV where V is a typical volume of a sector in the northern North
Atlantic [8]. The advective salinity transport is then given by Q(Se — S(t — ophys)), where Se
is the equatorial salinity and the delay o is representing the effects of the convective feedback.
This then leads to the overall DDE, which we call the North Atlantic Salinity Two Feedback
(NAS2F) model, decribing the evolution of surface salinity S, i.e.

dfb(f)_ ;;S(t_TphyS)(Se_S(t_aphyS))+F- (2)

Note that the delay terms are multiplied due to the advective nonlinearity of the salinity trans-

port; here, the delays, T,nys of the advective and oppys of the convective feedback loop, are

‘physical’ parameters expressed in terms of years. The last term of (2) models an external
surface freshwater flux, represented as a virtual salinity flux of strength F'.

The NAS2F (2) is a scalar DDE for the salinity S with the two time delays Tphys and ophys-

As such, it is an effective conceptual model for studying the temporal evolution of the surface

water salinity in the Northern-most Atlantic Ocean, subject to the two main feedback loops

observed in the AMOC’s North Atlantic gyre: the advective Pole-Equator feedback loop with



Tphys Tepresenting the (average) return time of water masses transported by ocean currents, and
the convective loop with oppys representing the (average) mixing time between surface and deep
water near the Pole. The advantage of Eq. (2) is that the influence of the delay times on the
observed behaviour can be studied explicitely. The ‘price’ one pays over other box models in the
form of ordinary differential equations (ODEs) without delay terms is that a DDE is an infinite
dimensional system: namely, it requires as initial condition a history segment back to the longest
delay time [12, 21, 22, 41]. In the case of Eq. (1), this corresponds to prescribing S(¢) over the
length of the longer of the two feedback, either ,hys Or ophys; and, correspondingly, for z(t) in
Eq. (1). The other side of the coin is that, as an infinite-dimensional dynamical system, the
NAS2F has the capacity to exhibit complex dynamical behaviour, despite being a scalar model.

In this paper, we consider the NAS2F model (2) for the case that there is no forcing (F = 0),
which allows the study of the pure interaction between the two main AMOC feedback loops.
Realizing that Eq. (2) with F' = 0 has the two equilibrium solutions S = 0 and S = S., we apply

the rescaling
S(t) vS, US,

A =g T gy T 7 g e 1 g

to obtain the dimensionless form Eq. (1) presented in the introduction. Here, the prime denotes
derivation with respect to the rescaled time ¢; however, for notational convenience, we drop the
tilde and refer to the rescaled time in Eq. (1) again simply as ¢ from now on.

Ranges of values for the (rescaled) parameters 7 and o can be obtained as follows. First,
the range of equatorial salinities is S, € [34.5,36.5] psu and Sy = 35 psu (based on ORAS5 data
since 1985 and the World Ocean Atlas 1994 [29]). Second, using a typical northern box volume
V =5 x 1016 m3 (e.g., for a sector 40 — 60°N in the Atlantic with a depth of 4 x 103 m) and
an AMOC strength of 10 — 20 Sv, the value of the main scaling factor lies in the range ¥/S, €
[2,4] x 10719 s~1. Third, the physical delay times Tphys and oppys can be estimated by the time
it takes for the salinity to advance over the advective and convective feedback loop, respectively.
The advective time scale depends on the transport of salinity over the overturning loop and,
hence, on the latitude the deeper water upwells to the surface; a rough estimate gives the range
Tohys € [10 —100] years. While the convective mixing process is practically instantaneous (a few
days), the delay time scale is determined by adjustment through restratification and subsequent
response of the subpolar gyre. This entire process can take up to a decade, so a rough estimate
is ophys € [0.4 — 10] years. With the scaling (3), this then leads to the ranges 7 € [5,50] and
o € [0.2,5] for the parameters 7 and o of Eq. (1); note that the advective delay time 7 is much
larger than the convective delay time o.

t, (3)

3 Bifurcation analysis of the NAS2F model

The theory on DDEs with constant delays is well developed and can be found in standard
textbooks, such as [12, 22]. In particular, the bifurcation theory of constant-delay DDEs is
effectively analogous to that for ODEs — in the sense that qualitative changes are mediated by
finite-dimensional bifurcation equations in well defined finite dimensional center manifolds [21].
Moreover, just like for ODEs, advanced numerical tools from bifurcation theory are available for
DDEs; they allow one to find and follow or continue solutions in parameters while monitoring
their stability to identify bifurcations. We use here the package DDE-Biftool [13, 40] to detect
and continue equilibria and periodic orbits of Eq. (1), as well as their codimension-one bifurca-
tions and even certain connecting orbits. Additionally, DDE-Biftool is able to compute normal
form coefficients, which allows us to identify codimension-two bifurcations on bifurcation curves
in the (7, 0)-plane.
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Figure 2: The spectra of the equilibria of Eq. (1). Panels (a) and (c) show the eigenvalues with
the ten largest real parts of 0 and of 1, respectively; here, real eigenvalues are shown in red, and
the leading one of the complex pairs (blue) are bold. The spectrum at the respective first Hopf
bifurcation (vertical grey lines) is shown in panels (b) and (d).

3.1 Stability of equilibria and the grid of Hopf bifurcations

The steady states of Eq. (1) are the constant solutions 0 and 1, and their location and existence
do not depend on the parameters 7 and o. Hence, there are no saddle-node bifurcation (of
equilibria) but the stability of the equilibria 0 and 1 may change at Hopf bifurcations. The
stability of an equilibrium of a DDE is determined by its linearization, which involves taking
derivatives both of the instantaneous and of each delayed term, yielding an extended Jacobian
and associated characteristic equation. The latter is a transcendental equation with exponential
terms, which implies the existence of infinitely many eigenvalues. For constant-delay DDEs, all
eigenvalues are discrete and infinitely many of them are in the left half of the complex plane
[12, 21, 22, 41]. For the specific case of Eq. (1), the characteristic equation decouples, giving

—X+ e at equilibrium 0, and (4)
—\ — e~ at equilibrium 1. (5)

These are, in fact, the characteristic equations for the simplest case of a linear DDE with positive
and negative feedback, respectively, and the associated spectra are well known from the standard
theory [21, 41].

It follows from (4) that 0 has a unique real eigenvalue Ag = 2Wy(7) > 0 in the right half-
plane, where Wy is the fundamental branch of the Lambert W function; all other eigenvalues
are complex conjugate pairs that initially have negative real parts. For increasing 7, complex
pairs cross the imaginary axis one-by-one at

3

T—7+2(n—1)7r,n€N, (6)

which are Hopf bifurcations of 0 we refer to as H?. Similarly, it follows from (5) that 1 has two
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Figure 3: The grid in the (7, 0)-plane of Eq. (1) of the Hopf bifurcations H? of 0 and H] of 1.
The respective Hopf bifurcation is supercritical when dark blue and subcritical when light blue;
red dots represent changes of criticality at points of generalised Hopf bifurcation, and the first
such point on H. is labelled GH;.

distinct negative real solutions for small o, which become a complex pair at o = e~!; all other
eigenvalues are complex conjugate pairs with negative real parts for small . For increasing o,
complex pairs cross the imaginary axis one-by-one at

J:g+2(n—1)7r,n€N, (7)
which are Hopf bifurcations of 1 we refer to as H?. In particular, 1 is stable up to H., that is,
for 0 <o < 3.

Figure 2 illustrates these two spectra by showing the eigenvalues with the ten largest real
parts. Panels (a) and (c¢) shows how the eigenvalues of 0 and 1 depend on 7 and o, respectively,
and panels (b) and (d) show the spectrum at the corresponding first two Hopf bifurcations H!
and H; While the eigenvalues and associated changes of stability can be found analytically from
Egs. (6) and (7), we computed them with the package DDE-Biftool. This has the advantage
that the normal form (Lyapunov) coefficient determining the criticality of the Hopf bifurcation
is found as well, which is a difficult task to achieve analytically.

Figure 3 shows the (7, 0)-plane with the Hopf bifurcation curves H? and H]. In accordance
with Eqgs. (6) and (7), they form a grid of vertical and horizontal lines at distance 27 in both
7 and 0. We remark that the intersection points are not codimension-two points of Hopf-Hopf
bifurcation, because each Hopf bifurcation takes place at a different equilibrium. We distinguish
in Fig. 3 the segments where the Hopf bifurcation is supercritical and subcritical. Changes of
criticality occur at codimension-two generalized Hopf (GH) bifurcation points; they have been
found with DDE-Biftool, and the first such point on H. is labelled. When the Hopf bifurcation
is supercritical and the bifurcating equilibrium is attracting, then the emerging periodic orbit is
stable. This happens only along the supercritical segments of the horizontal line H.; along all
other lines and segments, the bifurcating periodic orbit is of saddle type.

A conclusion from Fig. 3 is that an attracting periodic orbit emerges when o is increased
through HCI, for 7 to the left of the point GH;. This is illustrated in Fig. 4 for the case 7 = 0, that
is, for the Hopf bifurcation of the logistic equation with a single delay [16] — the well-studied
case of the Hutchinson-Wright equation [23, 49]. More specifically, we show here time series of
(1) obtained by integration from the initial condition z = 0.5 with the Python package Pydelay,
which employs an algorithm based on the Bogacki-Shampine method [3].
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Figure 4: Time series of (1) with 7 =0 for 0 = 1.2 (a), 0 = 1.6 (b), 0 = 3.5 (¢) and 0 =6 (d);
obtained by integration from z = 0.5.

For o < /2, below Hi, the solution converges to the stable equilibrium 1 in an oscillatory
fashion, as shown in Fig. 4(a) for o = 1.2. For ¢ past the Hopf bifurcation H. there is globally
attracting periodic orbit, which is initially practically sinusoidal, as in panel (b) for o = 1.6. As
o is increased, the attracting periodic orbit increases in amplitude and becomes pulse-like with
distinguished spikes, as shown in panel (c¢) for o = 3.5; notice here that there are segments very
close to the equilibrium 0. When o is increased further, as in panel (d) for o = 6, the time
the periodic orbit spends near 0 increases considerably and the amplitude of the spikes grows
massively; notice the difference in scale between the panels.

3.2 Shilnikov homoclinic bifurcation of equilibrium 0

The increase of the time spent by the solution near 0 observed in Fig. 4(d) suggests the existence
of a homoclinic bifurcation. However, for 7 = 0, the equilibrium 0 has the single unstable eigen-
value A = 1, because the characteristic equation (4) reduces to a simple degree-one polynomial.
Therefore, the eigenspace of 0 is of dimension one, and there cannot be a generic homoclinic
orbit to this equilibrium in the Hutchinson-Wright equation.

For 7 # 0, however, there exists a homoclinic bifurcation to the saddle equilibrium 0, which
we refer to as Homg, where the attracting periodic orbit bifurcating from the supercritical
segments of H}, disappears as o is increased. The corresponding curve in the (7,0)-plane is
shown in Fig. 5 near the point GH; on H! from Fig. 3; also shown are the curve H! and the
curve S of saddle-node of periodic orbits, which emerges from the generalized Hopf point GH;
and turns sharply at a cusp point C. Since the spectrum of 0 has a complex conjugate pair
as its leading eigenvalues for 7 > 0 according to Sec. 3.1 and Fig. 2(a), the connecting orbit
along the curve Homg is a Shilnikov homoclinic orbit: the one-dimensional unstable manifold
W*(0) returns to the equilibrium 0 in a spiraling fashion. Note that Homg has the o-axis as its
asymptote for 7 — 0, in accordance with the fact that there cannot be a homoclinic bifurcation
to 0 when 7 = 0. For increasing 7, the curve Homg has a minimum near 7/4 and then ends
at the codimension-two Shilnikov-Hopf point SHl on the curve Hi of Hopf bifurcation of the
equilibrium 0.

Notice from Fig. 2(a) that the negative real part of the leading pair of complex conjugate
eigenvalues of 0 is much larger in modulus than the real unstable eigenvalue. Hence, their
sum, known as the saddle quantity of 0, is negative, which means that the homoclinic orbit is
attracting and the Shilnikov bifurcation along Homyg is ‘tame’ and creates a single periodic orbit
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Figure 5: Bifurcation diagram in the (7, 0)-plane of Eq. (1) near the point GH; with the curves
H! and H! from Fig. 3; the curve S (grey) of saddle-node of periodic orbits, which emerges
from GH; and has a cusp point C (white dot); and the curve Homg (green) of homoclinic
bifurcation to 0, which has a the Belyakov point BP (ochre dot) at (7,0) ~ (1.97,2.29) and
ends at the Shilnikov-Hopf point SH! on H.. The arrow at 7 = 2.9 represents the branch of
periodic solutions shown in Fig. 6.

[28, 39]. As 7 is increased, however, the real part of the complex pair grows and the saddle
quantity changes sign at 7 ~ 1.97; this point is known as a Belyakov point (BP) [2, 28], and
it marks the transition of the Shilnikov homoclinic bifurcation along Homg to the ‘wild’ case,
where the homoclinic orbit is repelling and complicated types of dynamics are created nearby
[28, 39].

3.3 Further periodic orbits and their bifurcations near the wild Shilnikov
bifurcation

Figure 6 illustrates the emergence of additional periodic orbits and Shilnikov bifurcations near
the wild segment of the curve Homg. Panel (a) and the enlargement panels (b) and (c) show the
periodic orbit branch for 7 = 2.9 emerging from H},, as it approaches the homoclinic bifurcation
Homg when o is increased. This branch is represented here by its increasing period T'. Panel (a)
shows that it has a sequence of (pairs of) saddle-node bifurcations of periodic orbits S; as
it approaches the o-value of the Shilnikov bifurcation in a characteristic oscillating fashion.
The limiting Shilnikov homoclinic orbit on Homg is shown in Fig. 6(d) in projection onto the
(x(t — 7),z(t))-plane, illustrating how the unstable manifold W*(0) returns to 0 in a spiraling
fashion to form the Shilnikov orbit. Near the points S; one finds associated (pairs of) period-
doubling bifurcation points PD; on the branch, of which many are marked in panel (a). Low on
the branch, for low values of T', one finds that the two points of a pair labelled PD; are connected
by a branch of period-two periodic orbits, on which one finds a further pair of period-doubling
points that is connected by a branch of period-four periodic orbits, and so on. This is illustrated
in the enlargement panel (b) of the corresponding frame in panel (a). However, Fig. 6(c)
illustrates that branches of bifurcating periodic orbits do not connect in this way higher up the
initial branch of periodic orbits. From the pair PD4 onwards, one finds bifurcating branches
of periodic orbits that oscillate as they approach a limiting o-values for increasing period T,
where they end on a particular Shilnikov bifurcation themselves. Panel (e) shows the limiting
Shilnikov orbit of the branch of periodic orbits emerging from the point PD4. Note that this
period-two Shilnikov orbit is formed when W*(0) returns to near the equilibrium 0 but ‘misses’
and only connects to the equilirium upon the second return.

The identified bifurcation points can be continued as curves, and this results in the bifurcation
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Figure 6: The branch of periodic orbits (blue) bifurcating from H. for 7 = 2.9 as it is continued
in ¢ towards the wild Shilnikov homoclinic bifurcation at Homg, shown in terms of its period T'
in panel (a) and the enlargement panels (b) and (c), together with branches of periodic orbits
(other colors) that emerge from points PD; (purple dots) of period-doubling bifurcations near
consecutive points S; (black dots) of saddle-node bifurcations of periodic orbit S;; the limiting
o-value is represented by a vertical grey line. Panel (d) shows the Shilnikov orbit on Homg, and
panel (e) the nearby Shilnikov orbit to 0 that is approached by the branch emerging from PDy
in panel (c), both in projection onto the (x(t — 7),z(t))-plane.

diagram near the Belyakov point BP shown in Fig. 7(a). Since the different bifurcation curves
accumulate quickly on Homg, we show them here in a relative plot: for each value of 7, we show
the (signed) distance ¢ in o of the respective curve from the corresponding point on Homg. In
this representation in the (7,d)-plane, the curve Homg is the straight line with 6 = 0, and the
Hopf bifurcation curve H! is a still vertical line (since it does not dependend on ). The point
BP indicates the beginning of the ‘wild’ section of Homg, and all shown bifurcation curves are to
its right. Note that the pairs of points S; and PD; of the same label in Fig. 6(a) on either side of
the limiting o-value lie, in fact, on one and the same curve of the same label in the (7, &)-plane of
Fig. 7(a). The curves S; have cusp points that approach the Belyakov point BP with increasing
index j. Similarly, the curves PD; have minima with respect to 7, which accumulate on BP for
increasing j.

We identified further Shilnikov orbits as limits of period-two branches shown in Fig. 6(c), and
computed them as curves Homj that are also shown in the (7, &)-plane of Fig. 7(a). These curves
start and end at Shilnikov-Hopf bifurcation points on the curve Hl, and they accumulate quickly
with increasing index k to the ‘wild’ segment of Homg; each curve Homlf, has a unique mimimum
with respect to 7, and this sequence of minima converges to the Belyakov point BP. We remark
that these Shilnikov orbits can be continued to the right of H! by the same boundary-value-
problem setup for homoclinic orbits (as a strong connecting orbit of 0 to the small bifurcating
periodic orbit of saddle type); for more details on the continuation of connecting orbits in DDE-
Biftool see [13, 40]. In this way, we found the ‘lowest’ segment of the curve Homg that spirals
into the point labelled TP at (o,7) ~ (4.16,3.14) in Fig. 7(a). This codimension-two point is
known as a terminal point or T-point [7, 18, 20], and it lies on a curve Homj of a homoclinic
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Figure 7: Bifurcation diagram in the rescaled (7, &)-plane relative to the homoclinic bifurcation
curve Homg, where ¢ is the (signed) o-distance of a point to Homg. Panel (a) shows the curves
Homg of Shilnikov homoclinic orbit (green), H. of Hopf bifurcation (blue), S; of saddle-node
bifurcations (black), PD; of period-doubling bifurcations (purple), and Hom} of period-two
homoclinic bifurcations (red). Also shown are the Belyakov point BP (ocre dot), cusp points
C; (white dots), and Shilnikov-Hopf bifurcation points (red dots). The curve Homg ends at a
T-point TP at (o, 7) =~ (4.16, 3.14) (pink dot) on a curve Homy (green) of homoclinic bifurcation
to 1. Panel (b) shows the heteroclinic cycle at TP between the two equilibria 0 and 1.

bifurcation to the equilibrium 1, which we also computed and show.

The situation at the T-point is illustrated in Fig. 7(b) in projection onto (x(t — 7),z(t —
o), x(t))-space: at TP, there exists a heteroclinic cycle between the two equilibria 0 and 1.
It consists of the one-dimensional unstable manifold W*(0), which lies in W*(1) and, hence,
connects to the saddle equilibrium 1. Note that this connecting orbit ‘misses’ the equilibrium 1
once and connects to it at the second approach; this phenomenon is inherited from the period-
two homoclinic orbit Hom in Fig. 6(e). We checked that the connecting orbit indeed spirals
into 1 (due to its leading complex conjugate pair of stable eigenvalue); however, this spiralling
is very ‘steep’ and, apart from a small overshoot, is not visible in Fig. 7(b). Simulataneously,
at TP, the two-dimensional unstable manifold W*(1) intersects W#(0), creating the connecting
orbit back to the saddle equilibrium 0 that is also shown in Fig. 7(b). A suitable perturbation
of the overall heteroclinic cycle creates a homoclinic orbit to 1 as the intersection of W*(1) and
W?(1); this happens along the curve Hom; in Fig. 7(a). We remark that the existence of a
T-point implies complicated dynamics near it; specifically, the existence of further homoclinic
and heteroclinic connections, of chaos, and of so-called a-flips [7, 10, 18, 20]. A more detailed
discussion of the bifurcations close to the T-point TP is beyond the scope of this paper.

4 Attractor regions of the NAS2F model

We now turn to the question where in the (7, o)-plane observable attracting behaviour of Eq. (1)
can be found. To this end, we identify the bounded attractor, if it exists, to which the one-
dimensional unstable manifold W{(0) converges. When the equilibrium 0 has a single real
unstable eigenvalue then W{(0) = W*(0) is the one-dimensional unstable manifold of 0. Ac-
cording to Sec. 3.1, this is the case when 7 < 37/2, and we refer to this part of the (7, o)-plane
with smaller values of 7 as Range I. However, the number of positive eigenvalues of 0 increases
by two when pairs of complex conjugates eigenvalues cross the imaginary axis at the Hopf bi-
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Figure 8: The (7, 0)-plane of Eq. (1) with regions where the one-dimensional unstable manifold
W{(0) approaches an attractor, namely 0 in the light blue region and a different attractor in the
dark blue regions. We distinguish Range I with 7 < 37 /2, where attractor regions are bounded
by the bifurcation curves Homg, S, S1, PD;, Hom", and S”, and Range II with 7 > 37/2, where
they are bounded by curves T,, of torus bifurcation and S,, of saddle-node bifurcations.

» and we define W}(0) € W*(0) as the unique one-dimensional strong unstable
manifold associated with the single real eigenvalue of 0 in this case; we refer to the corresponding
part of the (7,0)-plane with 7 > 37 /2 as Range II. In either case, determining the ‘fate’ of the
one-dimensional (strong) unstable manifold W{(0) is a natural choice for finding attractors of
the infinite-dimensional DDE (1) because 0 is a relevant steady state of the system, and W{(0)
‘encodes’ where nearby trajectories end up. We remark that this is also the case when there
are additional complex conjugates unstable eigenvalues in Range II, because the strong unstable
manifold then still converges to the (continuation of) the relevant attractor to which W*(0) is
attracted.

Because W{(0) consists of two trajectories, it can be computed simply by numerical integra-
tion of the DDE from the initial function x(t) = 0 + ce*0? with 0 < ¢ < max(7, ), which lies in
the unstable eigenspace of 0 at a sufficiently small initial distance € from 0. Specifically, we set
e = 1077, integrate up to time t = 1.5 x 10* and disregard transients to identify the respective
bounded attractor. Figure 8 shows the result in the (7, 0)-plane of this computation for a grid
over the ranges 7 = [0,24] and o = [1,4] in steps of 0.02 each. We find that the negative branch
of W{(0) grows beyond bound throughout. However, there are parameter regions where the
positive branch of WY(0) ends up at a bounded attractor. Below the line H. at o < 7/2 the
equilibrium 0 is always stable and attracts W¥(0) for all 7 > 0. Above H, we find a number of
regions (shaded blue), where the positive branch of W{(0) converges to a periodic, quasi-periodic
or chaotic attractor; we call any such region an attractor region for short. In the complementary
(white) part of the (7, 0)-plane, both branches of W{(0) show unbounded growth in amplitude.

We also show in Fig. 8 the relevant bifurcation curves that act as boundaries of the attractor
regions. To the left of the Hopf bifurcation line H! is the curve Homg of Shilnikov homoclinic,
with its codimension-two point BP where Homg changes from tame to wild. Near the point BP
are the curves S; and PD; associated with the wild segment of Homg discussed in Sec. 3.3. We
find that the right boundary of this largest ‘main’ attractor region is formed by the curve PD;
and the curve S, which emerges from the point GH and sharply turns at the cusp point C; note
that, for clarity of the picture, we only show bifurcation curves above the line H. and in Range

furcations H”
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I, that is, up to the line H!. Near 7 = 0, a group of homoclinic curves Hom" and saddle-node
curves S" bounds additional attractor regions, which become ‘thinner’ as ¢ increases, these new
homoclinic curves accumulate on the curve Homg and also approach the o-axis. In Range II,
for larger values of 7 to the right of the line H, we find further individual and similar attractor
regions above H},, as well as a sequence of torus bifurcation curves T,, and saddle-node curves
S, bounding them.

Figure 8 provides a ‘summarizing view’ of the structure of attractor regions in the (7,0)-
plane. To detail specific properties of the different attractor regions and their bounding bifurca-
tion curves, we discuss first the main attractor region in Range I, then the sequence of attractor

regions near the o-axis for small 7, and finally the repeating attractor regions for increasing 7.

4.1 The main attractor region in Range I

Figure 9 shows an enlargement of main attractor region in Range I in panel (a) and three
examples of attractors in panels (b)—(d). Here, the coloring has been refined and now represents
the periodicity of attractors. Specifically, Fig. 9(a) distinguishes attractors in terms of the
number of local maxima of x(t) per period, up to 10, as indicated by the color bar. Periodic time
traces of attractors with more local maxima and those that have not been found to be periodic
are not distinguished; the corresponding dynamics may be of high periodicity, quasiperiodic or
chaotic. The main attractor region lies above the curve HJ}, from which a basic periodic orbit with
a single local maximum per period bifurcates. Figure 9(b) illustrates how the one-dimensional
manifold W{(0) converges to the basic periodic orbit, which exists in a large sub-region of the
(1,0)-plane. It is bounded above, for increasing o, by the segment of the curve Homg to the
left of the Belyakov point BP. For larger values of 7, however, there is a sequence of period
doublings, starting with the curve PD; that we found near the wild segment of Homg to the right
of BP; see Sec. 3.3. Fig. 9(c) shows how W{(0) converges to a period-doubled periodic orbit
that bifurcates from PD;. The accumulation of further curves of period-doubling bifurcations
(not shown in panel (a)) in a peridod-doubling cascade results in a sub-region where W{(0) lies
in the basin of a chaotic attractor; an example is shown in panel (d).

Overall, we find that the main attractor region in the (7, o)-plane of Fig. 9(a) is bounded by
a segment of the curve S emerging from the point GHj, as well as by segments of the bifurcation
curves Homg, PD1, and S that are associated with the wild case of Shilnikov bifurcation. We
remark that the top-right part of the attractor region with chaotic or high-period attractors is
not clearly delineated by the curves S; and So alone; here, we find the disappearance of the
chaotic attractor in (different kinds of) boundary crises [19, 35].

4.2 Sequence of attractor regions in Range I

Figure 9(a) also shows the second attractor region near the o-axis. It is bounded by homoclinic
curves Hom' and Hom? at bottom and top, and by a saddle-node bifurcation curve S!' to the
right; hence, this second attractor region has a ‘simpler structure’ compared to the main attractor
region. Moreover, except for very near S, we find here an attracting periodic orbit with a single
local maximum; and similarly for the third and further attractor regions near the o-axis.
Figure 10 illustrates that the second attractor region marks the start of an infinite sequence
as o increases; as in Fig. 8(a), we do not distinguish the number of local maxima here. The
relevant part of the (7, 0)-plane in Range I for small 7 in Fig. 10(a) shows that each successive
attractor region is similarly bounded by further curves Hom"™ and S™. Along each of the shown
curves Hom" one finds a tame Shilnikov homoclinic bifurcation since the saddle quantity of
equilibrium 0 is negative here (it only changes sign at 7 ~ 1.97, beyond the range shown);
see Sec. 3.3. Dashing in Fig. 10(a) indicates segments of curves that could not be continued
directly, but whose locations have been verified indirectly and are shown for reference. The issue
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Figure 9: The main attractor region in Range I and example attractors. Panel (a) shows the
relevant part of the (7,0)-plane with coloring by the number of local maxima per period as
indicated by the color bar; also shown are the boundary curves Hl, Homg, S, S;, and PD;
with their corresponding codimension-two points, as well as curves Hom', Hom?, and S' of the
upper left attractor region. Panels (b) to (d) show projections onto the (z(t),z(t — 7))-plane
of the attractors (blue) approached by the one-dimensional unstable manifold WY (0) (red) for
(r,0) = (3,1.6), (3.2,2.1) and (3.3,2.6), respectively; these parameter points are marked in

panel (a).

is that the continuation of bifurcation curves becomes very challenging in light of the increasing
complexity of nearby orbits as the value of o increases.

Observe in Fig. 10(a) the self-similar structure of repeating and accumulating attractor
regions that decrease in size and approach the o-axis with increasing ¢. The curve Homg at
the bottom is the upper boundary of the main attractor region discussed in Sec. 4.1. Near the
righ-hand boundary S' of the second attractor region we find a curve PD! of a first period-
doubling bifurcation of a cascade, which generates a small sub-region of chaotic dynamics; the
chaotic attractor at the marked parameter point is shown in panel (b). This bifurcation structure
repeats for increasing o; however, for n > 2 the curve PD" is already extremely close to the
curve S” where the respective chaotic attractor disappears, meaning that the region with chaotic
dynamics is impractically small. Figure 10 clearly shows an important property of the DDE (1):
the bounding curves Hom™ of successive attractor regions accumulate rapidly on the o-axis
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Figure 10: Sequence of attractor regions (blue) in Range I near 7 = 0 and example attractors.
Panel (a) shows the relevant part of the (7,c)-plane with the boundary curves Homg, Hom"
and S™; dashed segments of bifurcation curves could not be continued directly and are included
for reference. Panels (b) to (e) show projections onto the (z(t),z(t — 7))-plane of the chaotic
attractor at (7,0) = (0.62,3.14), and of the attracting periodic orbit at (7,0) = (0.3,2.68),
(0.26,3.18), and (0.2, 3.5), respectively; these parameter points are marked in panel (a).

and, hence, also on each other. Panels (c) to (e) show the attracting periodic orbits at the
marked parameter points in panel (a), which are all in a ‘similar position’ in the second, third
and fourth attractor region, near the homoclinic bifurcation curves Hom?, Hom* and Hom?,
respectively. From attractor region to attractor region, the size of the periodic orbit grows;
notice the differences in scale in panels (c)—(e). Moreover, as the insets show, the periodic orbit
features increasingly more spiraling near the equilibrium 0.

Figure 10 illustrates that the second delay 7 of the NAS2F model (1) ‘reveals’ the homoclinic
bifurcation Homg, as well as the infinitely many further homoclinic bifurcations Hom™, which
are ‘unavailable’ to the Hutchinson-Wright equation with 7 = 0 [23, 49]. For any fixed value of o,
even small values of T lead to the appearance of many attracting periodic and homoclinic orbits,
and their number increases beyond any bound as ¢ increases. Hence, introducing a small delay
7 into the Hutchinson-Wright equation can be seen as revealing or unfolding this complexity.

4.3 Repeating attractor regions in Range 11

Figure 11 shows the first attractor region in Range II of the (7,0)-plane, which lies between
the lines H: and H2 of Hopf bifurcation. Here, the unstable equilibrium 1 has three unstable
eigenvalues, the strongest real one and a pair of complex conjugate ones. In spite of the larger
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Figure 11: The first attractor region in Range II of the (7, o)-plane, with coloring by the number
of local maxima per period as indicated by the color bar; also shown are the boundary curves T 1
and T 2 (red) of torus, Si (black) of saddle-node, and PD (light purple) of period-doubling bifur-
cations. The one-parameter bifurcation diagrams along the three horizontal segments (golden)
are presented in Figure 12.

dimension of the unstable manifold, the one-dimensional strong manifold W{(0) still reliably
‘picks up’ attractors, which we color again by periodicity of the orbits as given by up to ten local
maxima. To account for the smaller range in the o-direction, its stepsize was reduced to 0.002,
while maintaining the stepsize of 0.02 in the 7-direction. The large region of basic periodic
orbits with a single maximum emerging from H. is delimited by the curves T1,1 on the left and
Ty 2 on the right/top. We also show two additional bifurcations curves: a saddle-node curve gl
with its codimension-two cusp point 6, where it sharply turns and then aligns with Ty ;, and
the period-doubling curve f’\]/D, which lies near the curve T ».

The left boundary of the attractor region in Fig. 11 is effectively formed by the torus bi-
furcation curve Ty ;. This curve effectively bounds the large sub-region above the line H}, of
the basic periodic orbit, and it has a change of criticality at a codimension-two point CH at
T = 7.76, known as Chenciner point [9, 25]. Below the point CH the curve Ty is supercritical
and stable tori exist to its left; this is indicated by attractors of different periodicities, and we
do not compute and show the boundaries of associated resonance tongues. Above the point CH
the curve T ; is subcritical, an unstable torus emerges to its right and W{(0) does not converge
to a finite attractor. The unstable torus coexists with a stable torus and both disappear a bit to
the right of the curve Ty 1 in a fashion similar to a saddle-node bifurcation of periodic solutions;
however, this involves a loss of normal hyperbolicity and break-up of the tori near where they
disappear. To the right of this ‘fold of tori’, W{(0) converges to the basic periodic orbit. Near
its maximum at 7 ~ 1.89, the curve T ; ceases to play a role for the boundary for the attractor
region. Along the curve ﬁf), which runs parallel to Ty 2 up to 7 ~ 1.8, the basic period-one
attractor loses stability and a stable period-two attractor emerges, which loses stability at the
torus bifurcation curve Ty 2. Past its crossing point with PD, the S-shaped curve T; 2 marks
the boundary where the period-one orbit vanishes. The curve T 2 is supercritical throughout,
with stable tori existing to its right and top, with a consideably larger sub-region of attractors
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Figure 12: One-parameter bifurcation diagrams in 7 along the horizontal sections for ¢ = 1.76
(a), 0 = 1.86 (b) and o = 1.9 (c) that are indicated in Fig. 11. Shown are the local maxima
of z(t) of the respective attractor, as obtained from WY (0) (black dots), by paramter sweeping
(green dots), and by numerical continuation of the basic periodic orbit (blue when stable, red
when unstable); also shown are the bifurcation points T1; and Ty 2 (red), PD (light purple) and
Sl (black).

of high periodicity. Thes attractors may be chaotic and appear or disappear in boundary crisis
bifurcations. The curve gl at the top of Fig. 11 is associated with a region of bistability, as we
discuss next.

We now illustrate in Fig. 12 the complexity of the observed dynamics in the attractor region
in Fig. 11 by showing one-parameter bifurcation diagrams in 7 along the three shown horizontal
lines. For each such section, we show the local maxima of x(¢) of the respective attractor,
obtained in three different ways: underlying each image are the branches of the basic periodic
orbit with a single local maximum, which we obtain by continuation; moreover, we show the
attractor as obtained from computing WY (0), as well as the ‘missing’ attractor (not obtained
from W{(0)) in regions of bistability; the latter is obtained by ‘parameter sweeping’ in 7 from
already determined nearby attractors.
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Figure 12(a) shows the one-parameter bifurcation diagram for ¢ = 1.76. Here, the basic
periodic orbit is stable between the point Ty ; of torus bifurcation and the point PD of period-
doubling bifurcation, and it attracts W{(0) throughout this 7-range. To the left of Ty, we
find a transition to an attracting torus with high-period or quasiperiodic dynamics, which then
suddenly disappears at 7 &~ 7.18 in a boundary crisis, seemingly after breaking up and generating
chaotic dynamics. Similarly, to the right of PD, there is a 7-range with a stable period-doubled
periodic orbit, which then undergoes a torus bifurcation at Ty2. The bifurcating attracting
torus also disappears suddenly in a boundary crisis at 7 =~ 10.12; moreover, in the small 7-range
[10.06,10.08] we do not detect a finite attractor, which is likely due to a ‘channel’ formed by
further boundary crisis bifurcations as discussed in [35].

In the one-parameter bifurcation diagram for o = 1.86 in Fig. 12(b), the periodic orbit
branch obtained by continuation features a 7-range of bistability between the two points of
saddle-node bifurcations labelled S;. The ‘hidden’ attractor that is not reached by W{(0) here
is the stable periodic orbit with the larger maximum. Hence, there is a sudden switch at the
left point S; of W{(0) to the periodic orbit with lower maximum. Notice that the upper branch
of stable periodic orbits is also not reached by WY (0) for 7 < 9.5, well to the right of the point
T1,1. This is due to the subcritical nature of this torus bifurcation, which is now encountered at
a much larger value of 7; compare with Fig. 11. A new feature of Fig. 12(b) is also the swapping
of positions of the points Ty and f’]VD, resulting in a larger 7-range with an attracting torus.
The dynamics on the torus is still largely of high period or quasiperiodic, but with some hints
of periodic windows.

Figure 12(c) shows the one-parameter bifurcation diagram for ¢ = 1.9, where the torus
bifurcation point Ty ; is supercritical again; moreover, this point is now near the right-most
saddle-node bifurcation point gl, well past the left-most point gl. As a result, the attracting
torus bifurcating from T ; is reachable by W{(0), but only to the left of the left-most point Si.
At this saddle-node bifurcation of the periodic orbits, W{(0) switches to lying in the basin of
the emerging periodic orbit with the lower maximum, which undegoes the torus bifurcation T o.
To the right of this point, W{(0) ends up at the bifurcating attracting torus. Overall, we find
a 7-range of bistability, still between the two points gl, but now mostly between two attracting
tori in between the points T 2 and Ty 1. Due to the smaller overall T-range of Figure 12(c), the
dynamics on either torus shows clear T-ranges where one finds locked periodic orbits of quite low
periods. These correspond to and explain the differently colored dots in the bifurcation diagram
of Fig. 11, where a complicated mix of different periodicities is observed to the right of the curve
TLQ.

As was already clear from Fig. 8, one finds a sequence of further attractor regions above the
line H}, as 7T is increased. Figure. 13 shows the first three such attractor regions in Range II:
the one from Fig. 11 and two more, which each lie in between successive vertical lines H*. The
crossing of each such Hopf bifurcation curve enlarges the dimension of the unstable manifold
of the equilibrium 0 by two; nevertheless, the one-dimensional strong manifold WY remains a
reliable ‘tool’ to identify the existence of nontrivial attractors; they are shown in Fig. 13 in terms
of the number of detected local maxima per period. The second and third attractor region have
a similar structure, with torus bifurcation curves T, 1 on the left and T), 2 on the right bounding
a large sub-region of a basic attracting periodic solution (with a single maximum). In contrast
to the first attractor region highlighted in Fig. 11, these further torus bifurcation curves do
not have changes of criticality: the bifurcating tori are consistently stable and to the ‘outside’
of the large sub-region of a basic periodic orbits, leading in Fig. 13 to a ‘surrounding’ region
with quasiperiodic or high-period dynamics. Notice also that the second and third attractor
regions do not have period-doubling curves; instead, we find torus bifurcation curves T}, 3 in
corresponding locations. The attractor regions ‘shrink’ in size with increasing 7, with the sub-
regions of period-one attractors becoming yet smaller. Nevertheless, a common feature remains
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Figure 13: The first three attractor regions in Range II of the (7, o)-plane for larger 7; compare
with Figs. 8 and 11.

the existence of a curve §n of saddle-node bifurcation with a cusp point én and associated
T-ranges of bistability.

5 Discussion and outlook

Our central object of study is Eq. (1), a DDE that depends only on two parameters, which are
the (rescaled) delays of the main feedbacks loops in the AMOC. The formulation of Eq. (1) arises
from the idea of representing the two independent feedback loops of the AMOC as ‘isolated’ or
independent processes. The larger delay 7 represents the advective feedback associated with the
exchange of heat and salinity by the AMOC. The second delay o is associated with the vertical
mixing of polar waters due to convection. From the application point of view, 7 is much larger
than ¢ and, hence, this paramter regime is where the physically relevant dynamics occurs.

We focused here on the case of the NAS2F model without external forcing, when it takes
the form of Eq. (1) with the two (rescaled) delays 7 and o as its only parameters. This DDE
can be regarded as a basic conceptual model designed to understand AMOC dynamics due to
the feedback processes without external influences. The key new aspect is that the two feedback
loops interact in a multiplicative way, and Eq. (1) can also be seen as a basic model for any
systems where two independent feedbacks interact in this ‘unusual’ way. More specifically, the
NAS2F model takes the form of the logistic equation with two independent delays and, in
this way, provides a ‘natural unfolding’ of the Hutchinson-Wright equation with an additional
independent delay. This is of general interest because this well-known equation is among the
first examples to demonstrate the richer nature of solutions that DDEs can exhibit, compared
to their ODE counterparts.

Despite the simple looking form of Eq. (1), our bifurcation analysis revealed an intruiging
structure of bifurcations in the (7, o)-plane with a wide variety of observable dynamics. Starting
from the equilibrium solution 1, which is stable for sufficiently low o, we find that oscillations
arise along supercritical segments of Hopf bifurcation. The bifurcating stable oscillating solutions
are subject to nonlinear interactions: they become pulse-like and/or undergo Shilnikov, period-
doubling and torus bifurcations, either of which may lead to observable chaotic dynamics. As
organizing centers of the bifurcation diagram in the (7, 0)-plane we identified a Belyakov point
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(where the Shilnikov bifurcation becomes ‘wild’) and a T-point bifurcation, where two distinctive
homoclinic orbits ‘merge’ into a heteroclinic cycle; the latter codimension-two bifurcation has
not been found previously in a DDE to the best of our knowledge.

We complemented the direct continuation of different types of solutions and their bifurcations
with determining where in the (7,0)-plane one finds relevant attractors of Eq. (1). This is a
particular challenge for DDEs in light of their infinite-dimensional nature, and the key is to
consider the fate of a well-defined invariant object. In our case, we compute the (strong) one-
dimensional unstable manifold of the saddle equilibrium 0 by starting numerical integrations
from the associated eigenfunction of the linearized system. This is a natural and practical
choice because this equilibrium represents one of the states of the AMOC; in particular, 0 is
involved in global bifurcations that change the nature of attractors, and its stable manifold may
separate different basins of attraction.

In this way, we found a main attractor region in the (7,c0)-plane, as well as sequences
of further attractor regions along both the o-axis and the 7-axis; moreover, we were able to
characterize how different bifurcation curves bound them. The repeating attractor regions for
increasing o and low values of 7 are bounded by homoclinic bifurcation curves, all of Shilnikov
type, which accumulate on the o axis. This explains their disappearance in the limit 7 = 0,
where Eq. (1) becomes the (one-delay) Hutchinson-Wright equation. In effect, all this complex
dynamics is not present in the Hutchinson-Wright equation, but any small increase in 7 causes
it to ‘reveal itself’. The relevant sequence of attractor regions from the climate modelling
perspective, however, is the one for increasing 7 and low values of o, where the delay of advective
feedback loop is larger than that of the convective one. These attractor regions effectively consist
of a main region with stable oscillations, which destabilize at curves of torus bifurcations leading
to dynamics on attracting tori that may be quasiperiodic or locked. As a further relevant feature
we found considerable sub-regions of bistability that are bounded by a saddle-node bifurcation
curve with a cusp point. Our estimates for the rescaled delay times 7 and o indicate that these
attractor regions lie within a physically meaningful parameter range.

Despite being a relatively simple phenomenological model, the NAS2F model (1) captures
interesting aspects of the interaction between the two main feedback loops of the AMOC. It
exhibits far richer dynamics than expected from its simple form and, in this way, showcases
the ability of delay differential equations to ‘encode’ complex dynamics in a compact form that
is ameanable to analysis with advanced tools from dynamical systems. Moreover, due to its
direct connection with the doubly-delayed logistic and Hutchinson-Wright equations, we hope
that Eq. (1) will be of interest beyond climate science.

Returning to the context of climate modelling, there are several directions for future research.
Firstly, Eq. (1) could be made more ‘realistic’ even at the conceptual level by considering other
effects, particularly, external influences via the forcing component included in Eq. (2). A first
natural step is to study constant forcing representing the average freshwater inflow into the
North Atlantic. Even this simple addition has the potential to alter the dynamics of Eq. (1)
significantly, but we do not expect the attractor regions to disappear entirely. From the modelling
perspective, it is also important to consider the impact of seasonal variations on the AMOC
by introducing periodic forcing around an average value of constant fresh water influx. The
analysis of the resulting periodically forced NAS2F DDE model would constitute an interesting
and substantial project in its own right.

Secondly, the NAS2F model offers interesting qualitative insights, but direct comparison
with more complex models or even data is challenging. We presented here estimates for ranges
of the two delays. While this showed that attractor regions we found lie in plausable parameter
region, it simultaneaoulsy demonstrates the difficulty of determining values of parameters of
conceptul models. Nevertheless, attempting such comparisons, initially with more manageable
intermediate models, would be of interest. In this regard we mention that the modelling approach
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of including explicit delayed terms could also be used to ‘calibrate’ models by ‘matching’ similar
types of dynamics observed in different models. Moreover, there is the possibility to enhance
intermediate models by modelling feedback loops in a similar way, either to improve the models
efficiency in simulations, or to incorporate feedback effects that have not yet been included.

Finally, the introduction of explicit delayed terms into box models, such as those of Stommel
and Welander [42, 48] and variations [1, 32] opens perspectives for the investigation of the
AMOC, as well as other global climate phenomena; investigations in this direction are ongoing.
In this context we note that DDEs were first introduced and studied as conceptual models of the
El Nifio Southern Oscillation (ENSO) [17, 24, 27, 43, 50]. The underlying idea or paradigm is the
so-called delayed action oscillator description of ENSO, where perturbations of the thermocline
off the coast of Peru are transported by Rossby and Kelvin waves across the Pacific Ocean
to generate a delayed feedback loop. While most DDE models in climate dynamics are of a
phenomonological nature, it is important to realise that delay equations can be derived more
rigorously as reduction of more complicated models described by partial differential equations;
an example of such a derivation can be found in [14].
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