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Abstract

Canard orbits are relevant objects in slow-fast dynamical systems that organize the spiraling of
orbits nearby. In three-dimensional vector fields with two slow and one fast variables, canard
orbits arise from the intersection between an attracting and a repelling two-dimensional slow man-
ifold. Special points called folded nodes generate such intersections: in a suitable transverse two-
dimensional section Σ, the attracting and repelling slow manifolds are counter-rotating spirals that
intersect in a finite number of points. We present an implementation of Lin’s method that is able to
detect all of these intersection points and, hence, all of the canard orbits near a folded node. With
a boundary-value-problem setup we compute orbit segments on each slow manifold up to Σ, where
we require that the corresponding end points in Σ lie in a one-dimensional subspace known as the
Lin space Z. The Lin space Z must be transverse to the slow manifolds and it remains fixed during
the detection of canard orbits as zeros of the signed distance along Z. During the computation, a
tangency of Z with one of the intersection curves in Σ may arise. To overcome this, we update the
Lin space at an intermediate continuation step to detect a double tangency of Z to both curves
in Σ, after which the canard detection is able to continue. Our method is demonstrated with the
examples of the normal form for a folded node and of the Koper model.

1 Introduction
Slow-fast systems arise as mathematical models in various applications and they describe
physical phenomena, such as chemical reactions, non-harmonic oscillations, spiking and
bursting [8, 21, 28, 29, 33, 41, 43, 50]; their study has been an active area of research.
All the natural questions from classic dynamical systems theory about the local and global
configuration of phase space are valid for slow-fast systems, yet the existence of different
time scales gives rise to new questions in the slow-fast context. In particular, such systems
are known to exhibit mixed-mode oscillations, which are orbits of a vector field characterized
by an alternation of both small and large-amplitude oscillations. Mixed-mode oscillations
were first discovered in the Belousov-Zhabotinskii reaction [27, 49], and since then have been
found in a broad range of chemical and biological systems [9, 14, 19, 46, 52].

Solutions of slow-fast systems can be thought of as a concatenation of slow motion and
fast segments, where the fast segments are described by a layer problem and the slow mo-
tion is organized by slow manifolds [15, 16, 30, 40]. These are locally invariant manifolds



Lin’s method approach for canard orbits J. Mujica, B. Krauskopf, H. M. Osinga

that, together with equilibria, periodic orbits and their corresponding invariant manifolds,
organize the dynamics and the slow-fast nature of the system globally. The existence of slow
manifolds as perturbations of the so-called critical manifold, formed by the intersection of
the nullclines of the fast variables, is guaranteed by Fenichel theory [15, 16, 30], provided
that a condition known as normal hyperbolicity is satisfied. We are particularly interested
in three-dimensional slow-fast systems with two slow and one fast variables. In this setup,
the critical manifold is a two-dimensional surface. Therefore, the corresponding slow man-
ifolds are two-dimensional surfaces in the three-dimensional phase space that can be either
attracting or repelling under the dynamics; determining their geometry in R3 may be quite
challenging. Two slow manifolds of different type may interact with each other. Geometri-
cally, in our setup with two slow and one fast variables, the intersections of an attracting slow
manifold with a repelling slow manifold are structurally stable and give rise to canard orbits.
These are orbits associated with trajectories of the slow flow that connect an attracting and
a repelling sheet of the critical manifold by crossing through fold curves. Canard orbits have
the unusual property that they follow a repelling slow manifold for a considerable amount of
time [5, 22, 51]; as such, they are global objects that are responsible for the creation and/or
organization of complex dynamics. The literature about canard orbits in R3 is extensive;
see for instance [2, 5, 12, 23, 38, 39, 51, 53]. It is known that canard orbits arise near folded
singularities, that is, singularities of the slow flow located on fold curves of the critical mani-
fold. In particular, a folded node generates canard orbits; the number of which is determined
by their eigenvalue ratio [51, 53]. Canard orbits have been extremely useful for explaining
the organization of small-amplitude oscillations of mixed-mode oscillations in many applied
models [4, 6, 11, 48, 54]. Therefore, it is extremely important to be able to detect canard
orbits in R3. Note that, in general, canard orbits cannot be found analytically and must be
computed numerically.

The use of advanced numerical techniques has been very successful for the computation
and visualization of slow manifolds [17, 24, 25, 35, 36]. However, these methods do not allow
for the detection of canard orbits straight away; in particular, it is generally not possible to
find canard orbits by integrating a single orbit segment, because canard orbits are unstable
objects in both forward and backward time. Up to now, the visualization of slow manifolds
has been used for the approximate detection of canard orbits near folded nodes. This is done
with a shooting approach by integration in forward or backward time, up to a suitable cross
section, of initial conditions on curves that lie far from the fold on the critical manifold. The
intersection points of the two intersection curves of the attracting and repelling slow mani-
folds are then found in the cross section by inspection. When this computation is performed
with a continuation and boundary-value-problem setup, a correction step can be used to find
canard orbits accurately [7, 8]. However, this approach is ad-hoc in that each intersection
point must be found by inspection and then corrected individually. This makes the detection
of all canard orbits near a given folded singularity cumbersome and time consuming.

Here we present an approach for the systematic detection of all canard orbits near a folded
node in slow-fast systems with two slow and one fast variables. It is based on the continu-
ation of orbit segments that are solutions of two-point boundary value problems (2PBVP);
these are solved with the package AUTO [10], which uses collocation in combination with
pseudo-arclength continuation where the size of the continuation step is determined by con-
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sidering the change along the entire orbit segment instead of merely the initial condition.
This computational setup is able to cope very well with sensitive systems such as slow-fast
systems [13]. Specifically, we simultaneously compute and continue two orbit segments —
one on the attracting slow manifold and one on the repelling slow manifold — up to a section
Σ through the folded node. These two orbit segments are coupled by requiring that their
end points lie along a fixed direction. This Lin’s method approach [37, 42, 45] is a way of
defining a suitable test function that can be monitored: its zeros indicate that a canard orbit
has been found; see already Fig. 1.

Lin’s method was developed as an analytic technique for finding periodic or aperiodic so-
lutions near heteroclinic or homoclinic cycles [26, 31, 42, 47, 55]. It considers one or several
suitable sections transverse to the flow, and defines algebraic bifurcation equations from or-
bits with gaps in lower-dimensional subspaces. Simultaneous zeros of the gaps correspond to
the global objects sought. Lin’s method has been implemented also as a numerical technique
for finding heteroclinic and homoclinic connections; see for instance [18, 32, 37, 45]. More
recently, the approach has been successfully applied in the slow-fast context; specifically,
for detecting so-called connecting canard orbits arising as codimension-zero intersections
between the two-dimensional unstable manifold of a saddle-focus equilibrium and a two-
dimensional repelling slow manifold in a model near a singular Hopf bifurcation [44]. Here,
we follow a similar approach to compute canard orbits, which are codimension-zero objects
since they are structurally stable in R3.

Lin’s method requires the genericity condition that the Lin space is transverse to both
the attracting and repelling slow manifolds; this is not a problem locally near the intersection
point. However, finding all the canard orbits near a folded node is more of a global problem.
As we show, tangencies of the Lin space with the intersection curves of the slow manifolds
in Σ do occur and create a problem for the detection of all the intersection points; this is
due to the counter-rotating nature of attracting and repelling slow manifolds near a folded
node. In our approach, we detect these tangencies and, through an intermediate adjustment
step, we update the Lin space in a suitable way. This allows the systematic detection of all
the canard orbits near a folded node singularity in a sequence of continuation steps.

This paper is organized as follows. Section 2 gives the necessary background on slow-
fast systems and canard orbits. Section 3 describes the general numerical setup for the
computation of slow manifolds and the implementation of Lin’s method. Section 4 shows
our approach implemented for a normal form of a folded node; here we use the symmetry
of the system to define the Lin space Z. Section 5 describes the situation for Z in general
position, when the detection of canard orbits encounters tangencies of Z with the intersection
curves of the slow manifolds with the section. In section 6 we present our overall method that
deals with tangencies and allows for the systematic detection of all canard orbits . Section 7
demonstrates our approach with the Koper model for idealized chemical reactions. We end
with a discussion in section 8.
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2 Background: Fenichel theory and canard orbits in R3

We now present some background on slow-fast systems in R3 with two slow and one fast
variables, as needed for this paper. For further details, we refer the interested reader to, for
example, [1, 9, 15, 16, 30, 40].

We consider a slow-fast vector field of the form
εẋ = f(x, y, z, λ),
ẏ = g1(x, y, z, λ),
ż = g2(x, y, z, λ),

(1)

where f , g1 and g2 are smooth functions and λ ∈ Rk is a vector of parameters. Here,
0 < ε � 1 represents the ratio of time scales, so that the variable x ∈ R is fast and the
variables y, z ∈ R are slow (in this paper we only encounter the case that f , g1 and g2 do not
depend on ε). Solutions of slow-fast systems can be thought of as a concatenation of slow
motion with fast segments. Considering system (1) for ε = 0 gives the slow flow or reduced
system 

0 = f(x, y, z, λ),
ẏ = g1(x, y, z, λ),
ż = g2(x, y, z, λ),

(2)

for the limiting slow motion. It is a differential-algebraic equation (DAE) where the con-
straint on the first equation defines the critical manifold

S := {(x, y, z) ∈ R3 : f(x, y, z, λ) = 0},

which is the nullcline of the fast variable x. The dot in system (1) represents differentiation
with respect to time on the slow time scale τ . One can rewrite system (1) with respect to
the fast time scale t via a time rescaling by ε to obtain

x′ = f(x, y, z, λ),
y′ = εg1(x, y, z, λ),
z′ = εg2(x, y, z, λ),

(3)

where the prime denotes the derivative with respect to time on the fast time scale. Fast
segments of solutions of (1) are approximated by solutions of the layer equations

x′ = f(x, y, z, λ),
y′ = 0,
z′ = 0,

(4)

which is a family of differential equations on the fast time scale, obtained as the singular
limit of (3) for ε = 0. Here the x′-equation depends on y and z, which are now treated as
parameters. Note that the critical manifold S is a manifold of equilibria for the fast subsys-
tem.

The properties of the critical manifold S come from the fast subsystem. Accordingly, we
say that a subset N ⊂ S is normally hyperbolic if all its points are hyperbolic equilibria of
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the fast subsystem x′ = f(x, y, z, λ). In other words, N ⊂ S is normally hyperbolic if, for all
p ∈ N , the Jacobian Dxf(p, λ) has no eigenvalues with zero real part. Since system (1) has
a single fast variable, the normal hyperbolicity is reduced to fx(p, λ) 6= 0; hence, system (4)
implies that the critical manifold S may have parts that are either attracting or repelling.
More precisely, the attracting sheet is

Sa := S ∩ {fx(x, y, z, λ) < 0},

and the repelling sheet is
Sr := S ∩ {fx(x, y, z, λ) > 0}.

The sheets Sa and Sr of S may meet at fold curves that are defined by

F := S ∩ {fx(x, y, z, λ) = 0}.

Note that normal hyperbolicity of S occurs away from the set F .

The fast dynamics of (1) is well understood by analyzing system (4); its solutions are
one-dimensional fast fibers that are attracted to or repelled from S. On the other hand, the
slow dynamics deserves a more detailed analysis. Since the reduced system (2) is restricted
to its critical manifold, one can use the normal hyperbolicity of S away from fold curves and
apply the Implicit Function Theorem to describe S locally as a graph x = φ(y, z) and, thus,
obtain a two-dimensional system projected onto the plane of slow variables{

ẏ = g1(φ(y, z), y, z, λ),
ż = g2(φ(y, z), y, z, λ). (5)

Unfortunately, S is not a graph over the slow variables near F . Alternatively, to study the
dynamics on S, one can choose, say, x and z as the defining variables, and use the constraint
f = 0 and the equations for ẏ and ż in (2) to obtain the system{

−fxẋ = fyg1 + fzg2,
ż = g2.

(6)

This formulation holds for all of S, though the system is singular at fold curves. System (6)
can be desingularized by rescaling time by the factor −fx. This way, one obtains{

ẋ = fyg1 + fzg2,
ż = −fxg2,

(7)

which allows the extension of (6) to fold curves. Note that in system (7) the flow on the
repelling sheet Sr is reversed. Generically along a fold curve, trajectories of (2) approach
F in either forward or backward time on both the attracting and repelling sheets Sa and
Sr of S. Singularities of the desingularized system (7) lie on F and are known as folded
singularities. At such points trajectories of the slow flow (2) pass from Sa to Sr. A point
q ∈ F is a folded singularity if

fy(q, λ)g1(q, λ) + fz(q, λ)g2(q, λ) = 0. (8)

The stability of a folded singularity q comes from the analysis of q as a singularity of (7).
Let λ1 and λ2 denote the eigenvalues of the Jacobian matrix of the desingularized system (7)
at q. We call q a
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• folded saddle, if λ1λ2 < 0 and λ1, λ2 ∈ R.

• folded node, if λ1λ2 > 0 and λ1, λ2 ∈ R.

• folded focus, if λ1, λ2 ∈ C with Im(λ1,2) 6= 0; in this case λ1 = λ2.

Note that folded singularities are typically not singularities of the full system (1), and they
are only defined for the desingularized system (7). In this paper we focus on folded nodes,
which are associated with the existence of canard orbits in the full system (1) for 0 < ε� 1;
see [51, 53] for a detailed analysis of folded singularities.

For 0 < ε � 1, Fenichel Theory [15, 16] guarantees the existence of attracting and re-
pelling smooth slow manifolds Sa

ε and Sr
ε in the full system (1) that lie at distance O(ε) away

from Sa and Sr where S is normally hyperbolic, that is, away from fold curves. Trajectories
of system (1) with ε > 0 are attracted to Sa

ε and repelled from Sr
ε in forward time at fast

exponential rates; trajectories that lie on a slow manifold remain slow for an O(1) time on
the slow time scale. Slow manifolds are not unique, but the distance between a pair of slow
manifolds of the same type is of order O(exp(− c

ε
)) for some c > 0 [30]. Slow manifolds

can be extended in forward and backward time by the flow; however, their behavior is not
controlled by the singular limits (2) and (4). In particular, one can extend slow manifolds
close to folded singularities, where Fenichel theory does not apply and slow manifolds are
no longer approximations of the corresponding sheets of the critical manifold; attracting
and repelling slow manifolds may exhibit complex oscillations in a neighborhood of a folded
node and start interacting. In this paper, the slow manifolds are two-dimensional surfaces
that intersect in canard orbits, which remain on Sr

ε for an O(1) time, in contrast to most
trajectories of (1), which jump at folds along fast fibers.

Canard orbits in R3 have been classified and analyzed in [2, 4, 51, 53] by using Geometric
Singular Perturbation Theory and blow-up techniques. Generically, for a folded node q, one
has an inequality of the form λs := |λ1| > λw := |λ2| for its eigenvalues. The corresponding
eigendirections γ̃s and γ̃w are referred to as the strong and weak singular canards, respectively.
The ratio λw/λs < 1 between the weak and the strong eigenvalues of q determines the
number of secondary (maximal) canard orbits that arise as additional transverse intersections
between Sa

ε and Sr
ε for 0 < ε� 1; see [51, 53].

3 Numerical setup
We now describe the numerical techniques we use for the computation of slow manifolds via
the continuation of solutions to a 2PBVP implemented in AUTO [10], as well as the nu-
merical setup for the detection of canard orbits with Lin’s method. For further background
information we refer the interested reader to, for example, [8, 9, 35, 37, 45].

Throughout, instead of a slow-fast system of the form (1), we consider its equivalent
version (3) written in the fast time scale, which contains the ratio of time scales ε as part
of the right-hand side of the equation. As is standard in AUTO, we rescale time and write
system (3) in the form

u̇ = TF (u, λ); (9)
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where u = (x, y, z) ∈ R3, the function F : R3×Rk → R3 corresponds to the right-hand side of
system (3), and λ ∈ Rk is a vector of parameters. Here, any orbit segment is parameterized
over the unit interval [0, 1] and T is the actual integration time, which is considered as a
separate parameter. We assume that system (1) and its rescaled version (9) has a folded
node at the point p0 ∈ R3 for λ = λ0. The goal is to find intersections between Sa

ε and Sr
ε by

looking at their corresponding intersection curves with a cross-section Σ that is transverse to
the critical manifold S. Since Sa

ε and Sr
ε are expected to spiral and interact near the folded

node p0, we stipulate that p0 ∈ Σ and write Σ as

Σ = p0 + YΣ, (10)

where YΣ is a two-dimensional subspace of R3 that is normal to the fold curve containing p0.
We consider the intersection sets

Ŝa
ε := Sa

ε ∩ Σ
and

Ŝr
ε := Sr

ε ∩ Σ.
To obtain Ŝa

ε and Ŝr
ε we need to compute the slow manifolds up to Σ and track their

intersection sets. In this setup, the relevant part of the attracting slow manifold Sa
ε is a

family of orbit segments that are solutions to the 2PBVP
u̇a(t) = TF (ua(t), λ),
ua(0) ∈ La ⊂ Sa,
ua(1) ∈ Σ,

(11)

where the line La lies on the attracting sheet Sa of S, parallel to and sufficiently far away
from the fold curve F , that is, La is transverse to the flow. Solutions of (11) provide an
accurate approximation of Sa

ε , since Fenichel theory [15, 16, 30, 40] ensures, for ε > 0, the
existence of slow manifolds as O(ε) perturbations of the corresponding sheets of the critical
manifold away from fold curves. The end point ua(1) of a solution of (11) lies on the inter-
section curve Ŝa

ε , which is the diffeomorphic image of La under the flow. We need to find
a ‘good’ initial orbit segment that satisfies the 2PBVP (11), which is to be continued along
La to compute Sa

ε and Ŝa
ε . We follow [8, 9] and compute an initial orbit in two homotopy

steps, which we explain briefly here. Starting at the folded node p0, with the trivial solution
u ≡ p0 of (11) for T = 0, we continue u(0) along the fold curve by setting initially La = F
and keeping the condition u(1) ∈ Σ until u(0) is far enough from p0. We then continue u(0)
on the attracting sheet of the critical manifold until u(0) lies on the actual line La, keeping
the condition u(1) ∈ Σ again.

Similarly, the 2PBVP 
u̇r(t) = TF (ur(t), λ),
ur(1) ∈ Lr ⊂ Sr,
ur(0) ∈ Σ,

(12)

has as its solutions a family orbit segments that approximate Sr
ε , where the line Lr lies on

the repelling sheet Sr of S away from F and is transverse to the flow; the end points ur(0)
describe the intersection curve Ŝr

ε , which is now the diffeomorphic image of Lr under the
backward-time flow; see [7, 8, 9, 35] for further details on the computation of slow manifolds.
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Having initial solutions to the 2PBVPs (11) and (12), we can set up Lin’s method to find
intersections between Ŝa

ε and Ŝr
ε on Σ and, therefore, intersections between Sa

ε and Sr
ε . The

main idea of Lin’s method is that one couples the 2PBVP (11) and (12) to construct a new
2PBVP that has as its solution two orbit segments, one from La to Σ and the other from
Σ to Lr. The difference between their two end points in Σ is chosen in a codimension-one
subspace, called the Lin space Z; this gives rise to a well-defined test function, called the
Lin gap η. A zero of the Lin gap η corresponds to a canard orbit. In other words, a canard
orbit can be thought of as a connection from La to Lr, which is found as a concatenation of
an orbit segment from La to Σ and another orbit segment from Σ to Lr.

To get started, we choose initial orbit segments ua and ur on Sa
ε and Sr

ε that are solutions
of (11) and (12), respectively, and consider their corresponding end points pa := ua(1) and
pr := ur(0) in Σ. We then use pa and pr to define the unit vector

vZ := pa − pr

‖pa − pr‖
∈ Σ,

as well as its normal unit vector nZ ∈ Σ, with nZ ⊥ vZ . The vector vZ spans the Lin space,
that is,

Z := span{vZ}.

Note that there are many ways to define Z, given by different choices for pa and pr. The
genericity condition for the Lin space Z requires that Z is transverse to the intersection
curves Ŝa

ε and Ŝr
ε , which are unknown at the beginning of the calculation. However, Z will

generically be transverse to both Ŝa
ε and Ŝr

ε . Once it is defined, the vector vZ remains fixed
during the continuation.

In order to cope with the counter-rotating spirals Ŝa
ε and Ŝr

ε it is convenient to represent
vZ and nZ as follows. One can always find an orthonormal basis on the subspace YΣ that
defines Σ in (10), so that

vZ :=
[
cos(2πα)
sin(2πα)

]
and nZ :=

[
− sin(2πα)

cos(2πα)

]
(13)

in that basis. Here, the single parameter α ∈ [0, 1] parameterizes vZ and nZ , and it is ini-
tialized by the choices of pa and pr; fixing vZ and nZ means fixing α. We stress that, for the
detection of a single canard orbit with Lin’s method, the vectors vZ , nZ and the parameter
α remain fixed during the continuation.

We now look for solutions to the coupled problems (11) and (12) with the additional
boundary conditions

(ua(1)− ur(0)) · nZ = 0, (14)

vZ · (ua(1)− ur(0)) = η. (15)

The boundary condition (14) ensures that the end points ua(1) and ur(0) lie along the Lin
space Z during the continuation of the overall 2PBVP, and (15) defines the signed Lin gap
η. The 2PBVP (11), (12), (14) and (15) is well defined and the test function η depends on
a single internal parameter, which can be thought of as identifying the end point ua(0) ∈ La
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Figure 1: Lin’s method setup for finding canard orbits in system (16) with µ = 8.5. Panel (a1)
shows Sa

ε (red surface) and Sr
ε (blue surface) computed from La and Lr, respectively, up to

Σ. The initial orbit segments ua (red curve) and ur (blue curve) are each other’s symmetric
counterparts and define the Lin space Z = span{(0, 0, 1)} (dark-gray line) that defines the
Lin gap η. Panel (b1) shows the situation when the Lin gap is closed and the canard
orbit ξ1 (orange) is detected. The relevant objects in Σ are shown in panels (a2) and (b2),
respectively.

or, alternatively, ur(1) ∈ Lr. Here, T and η are free parameters that move as the end
points of the corresponding orbit segments move along La and Lr. Again, once chosen, the
vectors vZ and nZ remain fixed during the continuation of (11), (12), (14) and (15). Contin-
uing this 2PBVP and monitoring η allows us to detect a canard orbit automatically as η = 0.
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Figure 1 shows the setup of our implementation of Lin’s method for detecting canard or-
bits in system (16) that we present in the next section. Panel (a1) shows Sa

ε (red surface) and
Sr

ε (blue surface) up to Σ from the line segments La (red) and Lr (blue), respectively. The
initial orbit segments ua and ur that define pa and pr and, hence, the Lin space Z, are shown
as the highlighted red and blue trajectories, respectively; the Lin space Z is the dark-gray
vertical line in Σ (green plane). Note that the curves Ŝa

ε and Ŝa
ε intersect on both sides of Z

in Σ. Panel (a2) shows the intersection curves Ŝa
ε (red) and Ŝr

ε (blue) in Σ together with Z,
as defined by pa and pr, and the Lin gap η. Panels (b1) and (b2) show what we would like to
achieve: the same objects when η = 0 and the canard orbit ξ1 (orange) is detected; here Z
is shown in orange through ξ1 and the orange orbits on Ŝa

ε and Ŝr
ε connect as ξ1 from La to Lr.

Overall, we want to find all of the zeros of the Lin gap, and hence, the canard orbits as
the intersections of Ŝa

ε and Ŝr
ε in Σ. The intersection curves Ŝa

ε and Ŝr
ε , as well as the slow

manifolds Sa
ε and Sr

ε , are computed as part of the process.

4 Systematic detection of canard orbits in a normal
form of a folded node

As an illustrative example, we consider the normal form vector field for a folded node,
introduced by Wechselberger [53], which is given by

ẋ = 1
2µy − (µ+ 1)z,

ẏ = 1,
ż = x+ z2.

(16)

Here, the variable z is fast, x and y are the slow variables, and the parameter µ ∈ R is such
that µ−1 corresponds to the eigenvalue ratio of the folded node singularity of the reduced
flow. The normal form (16) does not have the ratio of time scales ε as part of the equations,
because it has been obtained via ε-dependent blow-up and rescaling. The remainder terms
are O(

√
ε); see [53] for details. In spite of the absence of ε in system (16) and in order to be

consistent with the standard notation, we denote the attracting and repelling slow manifolds
by Sa

ε and Sr
ε and their intersection sets in Σ by Ŝa

ε and Ŝr
ε , respectively.

One advantage of using system (16) is that it has an easy representation of the folded
node and the relevant objects that are necessary for the slow-fast analysis. The critical
manifold of (16) is

S := {(x, y, z) ∈ R3 : x+ z2 = 0},
which has the attracting sheet

Sa := S ∩ {z < 0},
and the repelling sheet

Sr := S ∩ {z > 0}.
They meet at the fold curve F , which is the y-axis and contains the folded node at the origin.
We choose the section as the (x, z)-plane

Σ := {y = 0},
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which is transverse to the flow and contains the folded node. System (16) possesses the
time-reversal symmetry

(x, y, z, t)→ (x,−y,−z,−t),
which implies that Sa

ε and Sr
ε are related by this symmetry; this means that one can obtain

Ŝr
ε by reflecting Ŝa

ε with respect to the x-axis in Σ. Hence, the intersection points between
Ŝa

ε and Ŝr
ε in Σ, that is the canard orbits, occur exactly when Ŝa

ε and/or Ŝr
ε cross the line

z = 0 in Σ. The geometry of the slow manifolds in (16) and how it depends on the eigenvalue
ratio µ was studied in [7], which showed how canard orbits organize the number of small-
amplitude oscillations near the folded node. Slow manifolds were computed with a 2PBVP
and the symmetry was used to detect canard orbits, for different values of µ, as zeros of the
z-coordinates of points on Ŝa

ε .

We now demonstrate how our Lin’s method approach is able to detect canard orbits
in (16) without monitoring the z-coordinate along Ŝa

ε and/or Ŝr
ε . Throughout this section

we consider system (16) with µ = 8.5, which implies the existence of five canard orbits (two
primary and b(µ− 1)/2c = 3 secondary canard orbits) [53]. We define

La := Sa ∩ {x = −3}

and
Lr := Sr ∩ {x = −3}.

Due to the symmetry of system (16), it is natural to choose the initial orbit segments ua

and ur defining pa and pr, respectively, as symmetric counterparts. This means that Z is
the vertical direction of the (x, z)-plane Σ.

Figure 2 illustrates the continuation runs to find the first two canard orbits ξ0 in row (a)
and ξ1 in row (b), respectively, which are located on either side of the initial choice of Z
(thick dark gray line). Shown are the intersection sets Ŝa

ε and Ŝr
ε in Σ and the points pa

and pr defining Z. The light-gray vertical lines are translations of Z at selected points on
Ŝa

ε (and Ŝr
ε) during the computation, so that we can appreciate how the Lin gap η is chang-

ing; the arrows indicate the direction of the end points ua(1) and ur(0) along Ŝa
ε and Ŝr

ε

during the respective continuation run. Figure 2(a1) shows the first continuation run, when
the corresponding end points tracing out Ŝa

ε and Ŝr
ε initially move to the right. Here, we

monitor η and detect the canard orbit ξ0 when η = 0. Panel (a2) illustrates that the end
points ua(1) and ur(0) continue past a simultaneous tangency of Z with both Ŝa

ε and Ŝr
ε

at the points pt
a and pt

r, respectively. While the computation continues, no further canard
orbits exist past the double tangency. Figure 2(b1) shows the second continuation run, when
ua(1) and ur(1) initially move from pa and pr to the left. The Lin section Z becomes again
tangent to both Ŝa

ε and Ŝr
ε simultaneously, at the points pt

a and pt
r. Panel (b2) shows that

the end points on Ŝa
ε and Ŝr

ε are continued past the double tangency. Monitoring η, as in
each continuation run, results in the detection of the canard orbit ξ1 when η = 0. Note that
panels (b1) and (b2) are part of the same continuation run, which continues past further
double tangencies and results in the detection of all the subsequent canard orbits ξ2–ξ4. In
between any two consecutive canard orbits, that is, zeros of η, the normal form (16) has a
double tangency of Z with both Ŝa

ε and Ŝr
ε .
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Figure 2: Illustration of the Lin’s method approach to detect canard orbits for (16) with
µ = 8.5 in the section Σ, which is the (x, z)-plane. Shown are the intersection sets Ŝa

ε

(red curve) and Ŝr
ε (blue curve), together with the Lin space Z (vertical dark-gray line).

Panels (a1) and (a2) show the detection of the canard orbit ξ0 (cyan), and panels (b1)
and (b2) show the detection of ξ1 (orange).

Figure 3 represents a three-dimensional view of the result of the two continuation runs.
Shown are the critical manifold S with the fold curve F , the slow manifolds Sa

ε and Sr
ε com-

puted from the line segments La ⊂ Sa and Lr ⊂ Sr up to Σ, the intersection curves Ŝa
ε and

Ŝr
ε and the canard orbits ξ0–ξ4. Note that ξ1–ξ3 lie between ξ0 and ξ4 on Sa

ε and Sr
ε , which

correspond to the so-called strong and weak maximal canards, respectively. Furthermore,
from ξ0 to ξ3 the number of twists of the canard orbits around ξ4 increases, as predicted by
the theory [51, 53]. Note that for part of Sr

ε and Sr
ε and the respective canard orbits shown

in Fig. 3, the flow on La and Lr initially points away from the fold curve F . However, this
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Figure 3: Three-dimensional view of the slow manifolds Sa
ε and Sr

ε , and all canard orbits
ξ0–ξ4 of the normal form (16) for µ = 8.5.
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Figure 4: Illustration of the Lin’s method approach for (16) with µ = 8.5 and a Lin space
Z in general position. Panel (a1) shows when Z becomes tangent to Ŝa

ε as the end points
tracing Ŝa

ε and Ŝr
ε move to the right, and panel (a2) shows that it is not possible to detect

a canard orbit by keeping Z fixed. Panels (b1) and (b2) show a similar situation when the
end points tracing Ŝa

ε and Ŝr
ε move to the left.

does not affect their crossing through Σ and the detection of the canards with our approach.

5 Lin space in general position
The choice of Z as orthogonal to the symmetry axis is natural, but nongeneric. This makes
the detection of canard orbits in Fig. 2 quite special. Figure 4 shows the setup of Lin’s
method for a different, more typical Lin space Z, which comes from a different choice of the
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points pa and pr. Panel (a1) shows the first continuation run, when ua(1) and ur(0) move
initially to the right. The Lin section Z becomes tangent to Ŝa

ε at the point pt
a before the

canard orbit ξ0 is detected. Panel (a2) shows that the continuation goes on and ua(1) keeps
tracing Ŝa

ε further, but ur(0) turns around and goes back over the same part of Ŝr
ε . Even

though the tangency point pt
a is extremely close to the canard orbit ξ0, it is not possible to

detect ξ0 by Lin’s method for this choice of Z. Similarly, row (b) of Fig. 4 illustrates the
second continuation run; this time the end points on Ŝa

ε and Ŝr
ε move initially to the left.

Panel (b1) shows a tangency of Z with Ŝa
ε at the point pt

a, and panel (b2) shows that ua(1)
continues along Ŝa

ε , while ur(0) goes back along Ŝr
ε as in row (a), so no canard orbits are

found for this choice of Z.

Overall, we conclude that a single tangency of the fixed Lin section Z with one of the
curves Ŝa

ε or Ŝr
ε poses a problem for the detection of canards orbits. The curve that has

the tangency is traced past the fold, as was shown. However, as a result, the continuation
of the other curve also enforces a ‘fold’, meaning that the curve is traced back along the
part that was already computed. Because of this, the next canard orbit cannot be found.
This artificial turn-around is a result of the coupling between the two intersection curves
by the boundary condition (14). This also explains why our approach works well when a
double fold occurs; a double tangency of Z with both Ŝa

ε and Ŝr
ε does not have this issue

and both curves are continued correctly past the double fold. Since there is an alternation
of canard orbits and (double) tangencies due to the counter-rotating spiral of Ŝa

ε and Ŝr
ε ,

a general algorithm will need to deal with the issue of single tangencies. To have a good
general method that finds all the canard orbits, we need to be able to move Z, so that the
nearby double tangency is found. The idea for achieving this is to continue a single tangency
by varying Z until the second tangency is also detected. Once the double tangency has been
found, Z is again fixed.

6 Detecting a double tangency and overall method
Instead of defining a fixed Lin section Z that will become tangent to both Ŝa

ε and Ŝr
ε si-

multaneously, which is generally impossible, one can first detect a single tangency of Z with
either Ŝa

ε or Ŝr
ε , which is generic. To this end, we introduce the projections

βa = nZ · ua(1), (17)

and
βr = nZ · ur(0), (18)

of the end points ua(1) and ur(0) in Σ onto nZ , respectively. Specifically, the boundary
conditions (17) and (18) introduce the parameters βa and βr that represent these projections.

We continue the overall 2PBVP (11), (12), (14) and (15) with the additional boundary
conditions (17) and (18), where vZ and nZ are parameterized by α as defined in (13); the
parameter α is fixed, while T , η, βa and βr are free continuation parameters. We monitor
βa and βr and detect their folds; namely, a fold of βa or βr indicates that Z has become
tangent to Ŝa

ε or Ŝr
ε , respectively, since it corresponds to an extremum of the projection on

nZ . AUTO is able to detect such a fold as a limit point; once it is detected, the fold can be
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continued. To this end, α in (13) becomes an extra free parameter. Hence, the Lin direction
Z rotates while the fold (tangency) that was found is also continued, that is, its existence is
preserved. A second fold of βr or βa, respectively, can be detected at, say α = α∗. This new
fold then corresponds to a simultaneous double fold, where Z is tangent to both Ŝa

ε and Ŝr
ε .

We then fix Z by setting α = α∗ and resume the detection of canard orbits as zeros of the
Lin gap η for this adjusted Lin space.

Our general approach for the systematic detection of all the canard orbits via Lin’s
method, therefore, consists of the following steps:

(I) Initialization. Define a Lin space Z, that is, define vectors vZ and nZ , by computing
pa and pr.

(II) Main continuation. Continue the overall 2PBVP (11), (12), (14) and (15), with the
extra boundary conditions (17) and (18) for fixed α, with T , η, βa and βr as continuation
parameters, while detecting canard orbits as η = 0 and monitoring for fold points in
βa and βr.

(III) Intermediate step. If a fold of βa, that is, a tangency of Z with Ŝa
ε , is detected, continue

this fold with α as a continuation parameter until a fold point of βr is detected for
α = α∗; and similarly for a first fold of βr. Then fix α = α∗ and return to step (II).

We briefly mention a few technical implementation issues. First of all, when one activates
the fold detection in AUTO, the continuation routines possibly detect folds with respect to
different parameters. Therefore, it is necessary to be particularly careful to ensure that one,
indeed, detects a fold in either βa or βr. Secondly, at the moment of detecting the double
tangency, one needs to take care that the end points ua(1) and ur(0) on Ŝa

ε and Ŝr
ε are con-

tinued in the correct direction when resuming step (II). This can be ensured by continuing
ua(1) and ur(0) ever so slightly past the double tangency, meaning that the detection of
canard orbits with the Lin space given by α = α∗ is not started right at the tangency points.

We now show that this overall implementation works for a practical example.

7 Systematic detection of canard orbits in the Koper
model

We consider the idealized model of a chemical reaction introduced by Koper [33, 34]:
ε1ẋ = ky − x3 + 3x− λ,
ẏ = x− 2y + z,
ż = ε2(y − z),

(19)

where x, y and z are real numbers representing chemical quantities. System (19) was an-
alyzed by Koper to study complex oscillations of chemical systems, where the mixed-mode
oscillations are related to the presence of a Shilnikov homoclinic bifurcation [41]. This system
has very rich dynamics and different sources for small-amplitude oscillations, such as folded
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nodes and singular Hopf bifurcations [3, 9, 20]. We use (19) here as a more typical test-case
example of a three-dimensional slow-fast system with two slow variables. To this end, we set

λ = 7, k = −10, ε2 = 1 and ε1 = 0.01, (20)

so that x is fast and y and z are slow.

The critical manifold of (19) is

S := {ky − x3 + 3x− λ = 0},

which is a cubic surface that has two attracting sheets

Sa,+ := S ∩ {1 < x}

and
Sa,− := S ∩ {x < −1},

and one repelling sheet
Sr := S ∩ {−1 < x < 1}.

The attracting sheets Sa,+ and Sa,− meet Sr at the fold curves F+ and F−, respectively,
given by

F+ := S ∩ {x = 1} and F− := S ∩ {x = −1}.
System (19) with the parameters given by (20) has a folded node at the point

p0 = (−1,−0.9,−0.8),

that lies on the fold curve F−, where Sa,−
ε interacts with Sr

ε . Therefore, we look for canard
orbits that arise from the intersections between these two slow manifolds. To simplify the
notation, from now on we denote Sa,− simply by Sa and F− by F . As usual, in order to
implement the coupled 2PBVP (11), (12), (14) and (15), we consider the section

Σ ⊂ {z = −0.8},

which contains the folded node p0 and is transverse to both the flow and the critical manifold,
together with the lines

La := Sa ∩ {x = −1.5}
and

Lr := Sr ∩ {x = −0.2}.
In the same way as for the general setup described in section 3, we use homotopy steps
for finding initial orbits on Sa

ε and Sr
ε that define the points pa and pr in Σ and the Lin

space Z. The situation here is generic in the sense that there is no symmetry as for the
normal form of a folded node singularity. Figure 5 shows a three-dimensional view of the
parts of Sa

ε and Sr
ε computed up to Σ. Here La and Lr are not shown, since they are too

far from F , outside the frame of the figure, which focuses on the spiraling of Sa
ε and Sr

ε near F .

The inverse of the eigenvalue ratio λw/λs for p0 is approximately 10.6. Hence, there exist
six canard orbits (two primary and b(10.6−1)/2c = 4 secondary canard orbits) [53]. Figure 6
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ε

Sr
ε

Σ

F

Figure 5: Three-dimensional view of the slow manifolds computed up to section Σ ⊂ {z =
−0.8} of the Koper model (19) for the parameters values given by (20).

shows the continuation runs for the detection of the canard orbits ξ0, ξ1 and ξ2, in the same
layout as in Fig. 2. Panel (a1) shows the first continuation run. Here, the points p0

a and p0
r in

Σ define the Lin space Z0 for α = α0, and the corresponding end points tracing out Ŝa
ε and

Ŝr
ε move initially to the right. The canard orbit ξ0 (cyan dot) is detected when η = 0. Then

the continuation detects a fold in βa, meaning that the Lin section Z0 becomes tangent to Ŝa
ε

at the point pt
a; the intermediate step (III) from section 6 changes the Lin section so that the

computation can continue (not shown), but there are no further canard orbits past this point.
Figure 6(a2) illustrates the second continuation run, when ua(1) and ur(0) move initially to
the left. Here, a fold in βr is detected, where the Lin space Z0 is tangent to Ŝr

ε at the point
pt

r. This single tangency is very close to the double tangency, yet we know from section 5
that the continuation cannot go past it to find the next canard orbit. The intermediate step
(III) detects the double tangency as a fold also on βa for α = α1 near α0; the points p1

a and
p1

r of double tangency of the Lin space with Ŝa
ε and Ŝr

ε , respectively, define the new Lin space
Z1 for α = α1. Figure 6(b1) shows the next part of the computation, that is, the return to
step (II) with the Lin space Z1. The end points ua(1) and ur(0) now move to the right, past
p1

a and p1
r, and the canard orbit ξ1 (orange dot) is detected when η = 0; note that ξ1 is very

close to the double tangency of Z1 with Ŝa
ε and Ŝr

ε . The continuation then detects a fold
in βa, that is, the point pt

a of tangency of Z1 with Ŝa
ε . Applying the intermediate step (III)
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Figure 6: Illustration of the Lin’s method approach to detect canard orbits of (19) with
parameter values as (20) in section Σ, represented by the (x, y)-plane. Shown are the inter-
section sets Ŝa

ε (red curve) and Ŝr
ε (blue curve), together with the corresponding Lin space

(dark-gray line). Panel (a1) shows the detection of the canard orbit ξ0 (cyan) and panel (a2)
shows a tangency of the Lin space Z0 with Ŝr

ε . Panels (b1) and (b2) show the detection of
ξ1 (orange) and ξ2 (green), respectively.

again, the double tangency points p2
a and p2

r are detected, which define the Lin space Z2 for
α = α2. Figure 6(b2) shows the continuation run with the subsequent detection of the canard
orbit ξ2 (green dot), up to the moment when Z2 becomes tangent to Ŝa

ε at the point pt
a; the

process continues with steps (II) and (III) until all other canard orbits ξ3–ξ5 are also detected.

As illustrated, finding a double tangency of the Lin section with Ŝa
ε and Ŝr

ε through the
intermediate step (III) is the key for our systematic detection of canard orbits. Figure 7 illus-
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Figure 7: Intermediate step (III) for the detection of a simultaneous tangency of the Lin space
with Ŝa

ε and Ŝr
ε , for the Koper model (19) with parameters as in (20). Panel (a1) shows the

detection of the points defining the Lin space Z1 and panel (a2) shows the corresponding
fold of βa. Panels (b1) and (b2) show step (III) for the detection of the points defining the
Lin space Z2.

trates in rows (a) and (b) the continuation runs of the intermediate step (III) for finding the
updated Lin spaces Z1 and Z2, respectively. Panel (a1) shows an enlargement near the dou-
ble tangency of Z1 with Ŝa

ε and Ŝr
ε . The continuation run starts with the Lin space Z0 (gray

line) through the point ua(1) ∈ Ŝa
ε and the first detected tangency point ur(0) = pt

r ∈ Ŝr
ε ,

which is the situation just after step (II). Since we are continuing a fold in βr, the intermedi-
ate end points ui

a(1) and ui
r(0) move along Ŝa

ε and Ŝr
ε , respectively, in such way that the line

through them, that is, the moving Lin space (light-gray line), is always tangent to Ŝr
ε . The

continuation then detects a fold in βa as well, that is, the two points p1
a ∈ Ŝa

ε and p1
r ∈ Ŝr

ε of
double tangency that define the Lin space Z1 (dark-gray line). Figure 7(a2) shows the fold in
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Figure 8: Slow manifolds and the canard orbits ξ0–ξ5 of the Koper model (19) for the
parameter values (20).

βa during step (III), which is best observed when it is plotted against the (AUTO) L2-norm
‖ · ‖2 of the corresponding orbit segment. Similarly, Fig. 7(b1) shows an enlargement near
the double tangency of the Lin space Z2 with Ŝa

ε and Ŝr
ε , and illustrates step (III) for finding

and updating Z2 when starting from Z1. Notice that the angle between the Lin sections Z1
and Z2 is now much larger, so that it is easier to see the process. The fold of βr, again best
observed when plotted against the (AUTO) L2-norm ‖ · ‖2, is shown in Fig. 7(b2).

Figure 8 shows a three-dimensional view of Sa
ε and Sr

ε together with the section Σ and
all canard orbits ξ0–ξ5, which were detected systematically as just described. Note the
spiraling of the slow manifolds and the different numbers of small oscillations performed by
ξ0–ξ4 around ξ5; here, ξ0 and ξ5 are again the so-called strong and weak maximal canards,
respectively. The situation is qualitatively the same as for the normal form in Fig. 3, as
one would expect, but without exact symmetry between Sa

ε and Sr
ε . Importantly, ξ0–ξ5 are

nevertheless found systematically via the alternation of steps (II) and (III).
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8 Discussion
We presented a Lin’s method approach for the detection of all the canard orbits near a folded
node in slow-fast systems in R3 with two slow and one fast variables, based on the continu-
ation of solutions to suitable 2PBVP. We showed a new context where the underlying idea
of Lin’s method is utilized to achieve an efficient and accurate numerical implementation. It
employs two independent well-posed 2PBVP that are coupled through additional boundary
conditions.

Our overall implementation allows for the systematic detection of all of the canard or-
bits arising as intersection points of an attracting and a repelling slow manifold in a two-
dimensional section Σ that contains a folded node. It has the novel feature that the Lin space
is updated in an suitable way during an intermediate continuation step, which overcomes a
geometric obstruction that arises due to the counter-rotating nature of slow manifolds near
a folded node. The spiraling nature of the slow manifolds is reflected by their intersection
curves in Σ. Our method uses the geometry of these intersection curves, in particular the
alternation between their intersection points and tangencies with the Lin space. Specifically,
we vary the Lin space until we detect double tangencies with both slow manifolds, and then
fix the Lin space again. This approach has been demonstrated for the automatic detection
and computation of canards in the Koper model.

Once a canard orbit is detected, it is natural to continue it in system parameters to
study how the interaction between the attracting and repelling slow manifolds changes. This
is particularly useful, for example, to identify the creation or destruction of regimes with
different numbers of small-amplitude oscillations. To this end, one can fix the Lin gap at
η = 0 in the overall 2PBVP, as was done in [44]. This has the advantage that one can still
keep track of the intersection of the canard orbits with the section Σ. Alternatively, one can
concatenate the two orbit segments that form the canard orbit, so that it becomes a single
orbit segment that is then continued in parameters.

The overall 2PBVP implementation of Lin’s method presented in this paper may also
be useful for the detection of connecting orbits in a broader context, especially when the
intersection curves of the manifolds of interest generate folds with any Lin space, for example,
due to their spiraling.
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