Maximum Size of Automorphism Groups on Compact Riemann Surfaces of Small Genus

Ilya Chevyrev, Supervisor: Marston Conder

Abstract

Given a compact Riemann surface *S* with genus g > 1, we know that the group of automorphisms on *S* is isomorphic to a finite quotient Γ/Λ where Λ is the fundamental group of *S* and Γ is the normaliser of Λ in PGL(2, \mathbb{R}). The groups Γ and Λ are Fuchsian groups and in particular Γ has signature (γ ; $m_1, ..., m_r$) where γ is the orbit-genus and the m_i are the orders of the branch points. Accordingly Γ has presentation

$$\Gamma = \langle x_1, x_2, \dots x_r, a_1, b_1, \dots a_{\gamma}, b_{\gamma} | x_1^{m_1}, x_2^{m_2}, \dots x_r^{m_r}, \prod_{i=1}^r x_i \prod_{j=1}^{\gamma} [a_j, b_j] \rangle$$

The order of the automorphism group $G = \operatorname{Aut}(S) \cong \Gamma/\Lambda$ is given by the Riemann-Hurwitz formula

$$2(g-1) = |G| \left(2(\gamma - 1) + \sum \left(1 - \frac{1}{m_i} \right) \right).$$

Conversely for every torsion-free normal subgroup Λ of finite index in Γ , there exists a compact Riemann surface S with Aut(S) isomorphic to Γ/Λ and with genus given by the formula above.

Let $\mu(g)$ represent the order of the largest automorphism group of a compact Riemann surface of genus g. Hurwitz showed that $\mu(g) \leq 84(g-1)$ for all g and Macbeath proved that this upper bound was sharp, in the sense that it is achieved for infinitely many values of g. Maclachlan and Accola independently proved that 8(g+1) is a lower bound for $\mu(g)$, and that it is sharp in the same sense.

Here we are concerned with finding the exact value of $\mu(g)$ for small g. This can be achieved by finding γ and m_i which minimize the expression in the brackets above, subject to the existence of a suitable quotient of a Fuchsian group Γ with the corresponding signature. We have done this for $2 \le g \le 200$ using a computer algorithm for finding normal subgroups of small index in finitely-presented groups.