Example 7.2.2:

Instructions Screen Shot

First enter the augmented matrix, here into m 1 .
Note: To remove a variable used for a matrix or other calculation use Ω Delvar (variable name).

(varar	$\left.\begin{array}{llll}2 & 1 & 3 & 20\end{array}\right]$
	m1
Then use the command [MATH] menu (2nd 5) select 4: Matrix and 3. ref for row echelon form,	$\xrightarrow{\text { Hetit }}$
	(1) $\left[\begin{array}{llll}2 & 1 & 3 & 20\end{array}\right]$
	$\left[\begin{array}{llll} 1 & 1 / 3 & -1 / 3 & 25 / 3 \\ 0 & 1 & -1 & 10 \\ 0 & 0 & 1 & 0 \end{array}\right]$
or 4. rref for reduced echelon form.	
	$\begin{array}{llll}0 & 1 & -1 & 10\end{array}$
	$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$
	-rref(mi) $\quad\left[\begin{array}{cccc}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 0\end{array}\right]$

7.3 Systems which contain unknown coefficients

Example 7.3.1:

For what values of k does the following system of linear equations have no solution, a unique solution, or infinitely many solutions?

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=2 \\
& 3 x_{1}+x_{2}-x_{3}=2 \\
& 2 x_{1}+x_{2}-x_{3}=k
\end{aligned}
$$

Instructions
First enter the augmented matrix, here into m , then continue as follows:

Screen Shots

	$\left[\begin{array}{llll} 1 & -1 & 1 & 2 \\ 3 & 1 & -1 & 2 \\ 2 & 1 & -1 & k \end{array}\right]$
$\mathrm{R} 2-3 \mathrm{R} 1 \rightarrow \mathrm{R} 2$ mRowAdd($-3, \mathrm{M}, 1,2$) STOص M multiply R1 by -3 , add the product to R2 and store it in row 2.	 mRowfdd $-3, m, 1,2) \rightarrow m$ $\left[\begin{array}{cccc}1 & -1 & 1 & 2 \\ 0 & 4 & -4 & -4 \\ 2 & 1 & -1 & k\end{array}\right]$ m Rowndd $(-3, m, 1,2) \rightarrow m$

Of course we can get the last stage directly using $\operatorname{rref}(\mathrm{m})$. However, note that the full working will be required for the examination.

We see that the coefficients of the variables have all become zero on the bottom row, R3, so we can not have a unique solution.
Thus if $k-1=0$ i.e $k=1$ then there will be an infinite number of solutions.
If $k \neq 1$ then we get an inconsistent set of equations since R3 is false and there are no solutions.
There is never a unique solution.
When $k=1$

$$
\begin{gathered}
x_{2}-x_{3}=-1 \text { so } x_{2}=x_{3}-1 \\
x_{1}=1
\end{gathered}
$$

and
so for any real number parameter t

$$
\left(x_{1}, x_{2}, x_{3}\right)=(1, t-1, t) \text { a straight line. }
$$

8. Matrices

8.1 Matrix arithmetic

Instruction	Screen Shot
The order of the matrix is determined by the number of rows and columns it contains. Example. Determine a 2×3 matrix and represent it as A. 2nd [c] 3 $\square-2 \square 5$; 2 $\square 4 \square$ $-7 \square$ 2nd []] STOD A	
Column vector (e.g 2×1 matrix)	
Row vector (e.g 1×3 matrix)	
Square matrix (e.g 3×3 matrix)	
Addition of Matrices Matrices are added by adding elements in corresponding positions. \star Matrices can only be added if they are of the same order. To perform matrix arithmetic simply define the matrices.	
Then find the sum or the difference.	

8.2 Multiplying matrices

Instructions	Screen Shot
Multiplication of a Matrix by a Matrix	
We need the multiplication sign (*) in $A B$ and $B A: A * B$ and $B * A$	

8.3 Identity Matrix

Instructions	Screen Shot
Identity matrix This is defined as that matrix I for which $A I=I A=A$	
On the TI-89 this is obtained by : 2nd [MATH] \{see 5\} 4: Matrix 6: identity (then type n) for an $n x n$ identity.	

Example:	
	- identitu(2) identity(3)
	$\frac{\text { identitu(3) }}{\text { MAIN }} \underset{\text { RAD }}{\text { MUTO }} \quad$ FUNG $\quad 2 / 40$

8.4 The Transpose of a Matrix

Instructions Screen Shot	
On the TI-89 the transpose A^{T} of a matrix A is obtained by : $[2,3 ;-4,2]$ STOص a ENTER a 2nd [MATH] 4: Matrix 1: ${ }^{\text {T }}$ ENTER	
Example:	

Example 8.4.1:

Consider the following matrices.

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}
9 & 1 \\
0 & -3
\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 2 & 1 \\
-2 & 0 & 3
\end{array}\right] \\
& \mathrm{D}=\left[\begin{array}{ccc}
1 & 3 & 1 \\
1 & 0 & -6 \\
7 & 0 & 1 \\
2 & 2 & 1
\end{array}\right] \quad \mathrm{E}=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
2 & 3 & 4 & 2 \\
1 & 0 & 2 & 3
\end{array}\right] \quad \mathrm{F}=\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
1 & -3 & 0 & 2 \\
1 & -3 & 2 & 0 \\
0 & 1 & 4 & 3
\end{array}\right]
\end{aligned}
$$

If possible, compute each of the following.
a) $\mathrm{A}+\mathrm{B}$
b) $3 \mathrm{~A}-4 \mathrm{~B}$
c) A.B
d) $\mathrm{A}+\mathrm{C}$
e) D.E
f) E.D
g) E.C
h) D.E $+\mathrm{F}^{2}$

Here are the results.

8.5 The inverse of a matrix

Example 8.5.1:

Instruction	Screen Shot
To find the inverse of a matrix enter the required matrix. The augmenting is done with the following commands:	- a $\left[\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & -1 \end{array}\right]$
2nd [MATH] \{see 5\} 4: Matrix 7: augment then [2nd [MATH] \{see 5\} 4: Matrix 6: identity(then type 3)) and store the result in A using STO® A.	 - augment(a, identity(3)) \rightarrow a $\left[\begin{array}{cccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \end{array}\right]$ a, identitu(3)) $\rightarrow 5$
We would then add -2 lots of row 1 to row $2(\mathrm{R} 2+(-2) \times R 1)$ and store the result in A using 2nd [MATH] \{see 5\} 4: Matrix J: Row ops 4: mRowAdd(mRowAdd($-2, \mathrm{~A}, 1,2$) STOD A	 MROWAdd($-2, a, 1,2) \rightarrow a$ $\left[\begin{array}{cccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \end{array}\right]$
Continue as above, remembering to edit the last command each time to save time.	 mRowAdde ($-1, a, 2,3$) $\rightarrow a$ $\left[\begin{array}{cccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & -1 & 1 \end{array}\right]$ MRowFidd $-1, a, 2,3$) $\rightarrow a$
	 mRowidd ($2, a, 3,2$) $\rightarrow a$ $\left[\begin{array}{lllllll} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & -1 & 2 \\ 0 & 0 & 1 & 2 & -1 & 1 \end{array}\right]$ $\mathrm{MROWFdd}(2, a, 3,2) \rightarrow \mathrm{a}$
Here is the inverse of the matrix.	 MRowhdd($-1, a, 3,1) \rightarrow a$ $\left[\begin{array}{cccccc} 1 & 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & 0 & 2 & -1 & 2 \\ 0 & 0 & 1 & 2 & -1 & 1 \end{array}\right]$ MRowFdd $-1, a, 3,1) \rightarrow a]$

8.6 Inverses and systems of Equations

Instructions
Not all square matrices have an inverse (such matrices are called singular). If we try to obtain the inverse of a matrix which is not invertible on the TI-89, an error results.

Application of systems of linear equations

Example 8.6.1:

A baby food is to be manufactured from the ingredients carrot, cereal, and chicken. The amounts of three vitamins, measured in mg per ounce are as shown below:

	Vitamin A	Thiamine	Riboflavin
Carrot	1	0.02	0.01
Cereal	0	0.10	0.05
Chicken	0	0.02	0.05

Calculate in what proportion these ingredients should be mixed in order to produce a mixture with the three vitamins in the ratio 5:4:3.

Solution:

Matrices

TI-89

In matrix form we have:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.02 & 0.1 & 0.02 \\
0.01 & 0.05 & 0.05
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=k\left(\begin{array}{l}
5 \\
4 \\
3
\end{array}\right)
$$

$k>0$, and solving by row reduction to echelon form we use:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 5 k \\
0.02 & 0.1 & 0.02 & 4 k \\
0.01 & 0.05 & 0.05 & 3 k
\end{array}\right)
$$

Note we can actually work without the $k s$. R2x100; R3x100

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 5 k \\
2 & 10 & 2 & 400 k \\
1 & 5 & 5 & 300 k
\end{array}\right)
$$

R2-2R1; R3-R1

8.7 Determinants

Instructions	Screen Shots
The determinant of a 2×2 matrix is obtained on the TI-89 by : 2nd [MATH] 4: Matrix -2 : $\operatorname{det}([\mathrm{a}, \mathrm{b} ; \mathrm{c}, \mathrm{d}]$	
For example:	
The determinant of a 3×3 matrix is obtained on the TI-89 by : $[3,2,-1 ; 1,6,3 ; 2,-4,0]$ STOص a ENTER 2nd [MATH] 4: Matrix 2 : $\operatorname{det}(\mathrm{a} \square$ ENTER	

Determinant can be used at the start of a problem on simultaneous equations to check for consistency.

Example 8.7.1:
Solve the following sets of simultaneous equations.

Equations	
a) $\begin{gathered} x+y=4 \\ 2 x+2 y=6 \end{gathered}$	

9. Vectors

9.1 Eigenvalues and Eigenvectors

Example 9.1.1:

Find the eigenvalues and eigenvectors for the following matrices:

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}
2 & 1 \\
-2 & 0
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 2 & 1 \\
-2 & 0 & 3
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
1 & -3 & 0 & 2 \\
1 & -3 & 2 & 0 \\
0 & 1 & 4 & 3
\end{array}\right]
$$

Solution:

Instructions

Screen Shot
Use the define option to enter the matrices as $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d}, respectively. To find the eigenvalues of the matrix A, use Math 49 a) ENTER or type eigvl(a) and ENTER. To find the eigenvectors of the matrix a use Math 4 A a) ENTER or type eigve(a). The figure shows the eigenvalues and eigenvectors of the matrix \mathbf{A}.

Note: The first column of the result of eigenvector is an eigenvector corresponding to the eigenvalue which is listed in eigv1(a), similarly for the second. Note that TI 89 is normalizing the vectors, that is the eigenvectors are unit vectors. For easier notations, it is convenient to rewrite the eigenvectors with integer entries. One possible method is to replace the smallest number in the columns by 1 and divide the other entries in that column by the smallest value you just replaced. Use the command eigve(a) $[\mathbf{j}, \mathbf{k}]$ to refer to the $j-k$ entry of the matrix eigve(a). It is clear that the entries in the first column are equal. Thus for an eigenvector corresponding to the eigenvalue -1 , we may take $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ The second one may not be clear so we replace -.316228 by 1 . Note then that $.96683 /-.316228$ is 3.062 . Thus it is highly recommended that you compute $\operatorname{eigvc}(\mathbf{a})[2,1] / \operatorname{eigvc}(\mathbf{a})[2,2]$. We find that this is 3 . Thus we may take $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ as the second eigenvector.

Instructions
If we are evaluating eigvl(b), we will get the message Non-real result. This means that the characteristic equation of the matrix \mathbf{B} has complex roots. Note that by using the command $\mathbf{c S o l v e}(\operatorname{det}(\mathbf{b}-\mathbf{x}$ *identity (2)) $=\mathbf{0 , x}$) ENTER, we get the complex eigenvalues, namely, $\mathrm{x}=1+\mathrm{i}$ or $\mathrm{x}=1-\mathrm{i}$ as shown.

Screen Shot

- eigul(b)
Error: Non-real result
- cSolve (det(b $b-\times$ identitul
$x=1+i$ or $x=1-1$
...Et(b-x*identity(2)) $=0, x)$

