## Introduction to Using the TI-89 Calculator

Note: If this is the first time that you have used the TI-89 computer algebra system (CAS) calculator then you should first work through the Introduction to Using the TI-89. Some of the information found there in terms of key presses, menus, etc. will be assumed in what follows. While much of the information provided here describes how to carry out many mathematical procedures on the TI-89, using technology is not simply about finding answers, and we would encourage you NOT to see this calculator as primarily a quick way to get answers. Research by the authors, and others, shows that those who do this tend to come to rely on the calculator to the detriment of their mathematical understanding. Instead learn to see the TI-89 as a problem-solving, and investigative tool that will help you to understand concepts by providing different ways of looking at problems, thus helping you reflect on the underlying mathematics.

## 1. Saying 'Hello' to your graphics calculator

Instructions

| You will use the following keys. |
| :--- |
| a) Press ON |
| The calculator cursor should be in the Home |
| Screen (see the black cursor flashing in the |
| bottom left hand corner). |
| - Press 2nd ON |
| The calculator should turn off. |
| - If you can't see the screen use |
| (darker) or $\square \square$ (lighter) to change screen |
| contrast. |
| - [HOME] displays the Home Screen, where |
| you perform most calculations. |

## Basic Facilities of the TI-89



Application Short Keys
Used with the $\square$ key to let you select commonly used applications:
[Y=] [WINDOW] [GRAPH] [TblSet] [TABLE]


Calculator Keypad
Performs a variety of mathematical and scientific operations.


2nd $\rightarrow$ and j modify the action of other keys:

| Modifier | Description |
| :---: | :--- |
| 2nd <br> (Second) | Accesses the second function of the next key you <br> press |
| (Diamond) | Activates "shortcut" keys that selects <br> applications and certain menu items directly <br> from the keyboard. |
| $\square$ <br> (Shift) | Types an uppercase character for the next letter <br> key you press. |
| j | Used to type alphabetic letters, including a space <br> character. On the keyboard, these are printed in <br> the same colour as the j key. <br> 2nd j used to type alphabetic letters. |


|  | Key | Description |
| :---: | :---: | :---: |
|  | $\begin{gathered} \text { APPS } \\ \text { ESC } \\ \text { ENTER } \\ \text { MODE } \\ \text { CLEAR } \\ \text { [CATALOG] } \end{gathered}$ | Displays a menu that lists all the applications available on the TI-89. <br> Cancels any menu or dialogue box. <br> Evaluates an expression, executes an instruction, selects a menu item, etc. <br> Displays a list of the TI-89's current mode settings, which determine how numbers and graphs are interpreted, calculated, and displayed. <br> Clears (erases) the entry line. <br> Press b or c to move the d indicator to the function or instruction. (You can move quickly down the list by typing the first letter of the item you need.) <br> Press ENTER. Your selection is pasted on the home screen. |


| Application | Lets you: |
| :--- | :--- |
| $[$ Home $]$ | Enter expressions and instructions, and performs calculations |
| $[\mathrm{Y}=]$ | Define, edit, and select functions or equations for graphing |
| $[\mathrm{Window}]$ | Set window dimensions for viewing a graph |
| $[$ Graph $]$ | Display graph |
| $[$ Table $]$ | Display a table of variable values that correspond to an entered <br> function |


| Press: | To display |
| :--- | :--- |
| F1, F2, etc. | A toolbar menu- Drops down from the toolbar at the top of most <br> application screens. Lets you select operations useful for that <br> application |
| 2nd [CHAR] | CHAR menu- Lets you select from categories of special characters <br> (Greek, math, etc.) <br> MATH menu- Lets you select from categories of mathematical <br> operations |
| 2nd [MATH] |  |


| Press | To perform |
| :---: | :--- |
| 2nd [F6] | Clean Up to start a new problem: |
| Clear a-z | Clears (deletes) all single-character variable <br> names in the current folder. <br> If any of the variables have already been <br> assigned a value, your calculation may produce <br> misleading results. |


| Problem? | Try this! |
| :--- | :--- |
| If you make a typing error | If you make a typing error use $\boxed{\text { a to undo one }}$ <br> character at a time <br> If necessary, also press M to clear the complete <br> line. |
| If you want to clear the home screen completely | Press F1 n |

## Mode Settings



## (a) Entering a Negative Number

## Instructions

Use | for subtraction and use $\sum$ for negation.
To enter a negative number, press $\sum$ followed by the number.

## Examples

To enter the number -7 , press $(-) 7$.
9 区 (-) $7=-63$,
$9 \boxtimes \square 7=$ displays an error message
To calculate $-3-4$, press $(-) 3 \square 4$ ENTER
(b) Implied Multiplication

| If you enter: | The TI-89 interprets it as: |
| :---: | :--- |
| $2 a$ | $2^{*} a$ |
| xy | Single variable named $x y ;$ TI-89 does not read as <br> $x^{*} y$ |

(c) Substitution

| Instructions | Examples |
| :---: | :---: |
| Using [2nd [ \\| ] key | eg) $\quad \underset{-7}{(-))^{\wedge}} x^{\wedge} 2+2 \mid x=3$ <br> This calculates the value of $-x^{2}+2$ when $x=3$ |
| Using 'STORE' key: ST0` | eg) Find $f(2)$ if $f(x)=-x^{3}+2$ <br> (-)) $x^{\wedge} 3+2$ ST0๑ $f(x) \quad-x^{3}+2 \rightarrow f(x)$ <br> $f(2) \quad-6$ |

## (d) Rational Function Entry

| Instructions | Example |
| :--- | :--- |
| $\frac{f(x)}{g(x)}=\frac{(f(x))}{(g(x))}=$ (numerator) $\div($ denominator $)$ | $\frac{x+1}{2 x-1} \rightarrow(x+1) \doteqdot(2 x-1)$ |

## (e) Operators

addition: $+\quad$ subtraction : $-\quad$ multiplication: $\times \quad$ division: $\div$ Exponent: $\wedge$

## (f) Elementary Functions

## Exponential: $\mathrm{e}^{\wedge}(\boldsymbol{x})$

natural logarithm: $\ln (x)$
square root: $\sqrt{ }$
absolute value: $\operatorname{abs}(x)$

Trigonometric:
$\sin (x), \cos (x), \tan (x), \sin ^{-1}(x), \cos ^{-1}(x), \tan ^{-1}(x)$
If you want $\underline{\sec (x)}$ then put $1 / \cos (x), \operatorname{cosec}(x)$ is $1 / \sin (x)$.
Note: The trigonometric functions in TI-89 angles are available in both degrees and radians. If you want degrees $\left(180^{\circ}\right)$ or radians $(\pi)$ change using the MODE key previously discussed.
(g)

| To find: | Work |
| :--- | :--- |
| $i:$ imaginary number | with 2nd key |
| $\pi: \mathrm{Pi}$ | with 2nd key |
| $\infty:$ infinity | with $\square$ key |

(h) Recalling the last answer

| Instructions | Example |  |
| :---: | :---: | :--- |
| 2nd | anS] | ans(1) <br> ans(2) | | Contains the last answer |
| :--- |
| Contains the next-to-last answer |

(i) Cutting, Copying and Pasting

| Press: | To: |
| :--- | :--- |
| $\uparrow \bigcirc$ or $\quad \uparrow \bigcirc$ | highlight the expression. |
|  |  |
| 2nd [ENTRY] | cut, copy and paste. | | replace the contents of the entry line with any |
| :--- |
| previous entry. |

(j) When differentiating with respect to $x$

| To find: | Type: |
| :--- | :--- |
| Limit $\lim _{x \rightarrow a} f(x):$ | $\lim (\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{x}, \boldsymbol{a})$ |
| Indefinite Integral $\int f(x) d x:$ | $\int(\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{x}, \boldsymbol{c})$ |
| Definite integral $\int_{a}^{b} f(x) d x:$ | $\int(\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{x}, \boldsymbol{a}, \boldsymbol{b})$ |
| Area between $f(x)$ and $g(x)$ on the interval $[a, b]:$ | $\int_{a}^{b}\|f(x)-g(x)\| d x$ |
| Differentiation $\frac{d}{d x} f(x):$ | $d(f(x), x)$ |

2. [ $Y=]$ and [Table]
(a) The [ $\mathrm{Y}=]$ menu


If there are any functions to the right of any of these eight equal signs, place the cursor on them (using the arrow keys) and press CLEAR
Place the cursor just to the right of $\mathrm{y} 1=$ and follow the sequence below.

| Press |  | See |
| :--- | :--- | :--- |
| $\mathbf{2} \boldsymbol{x}^{\prime} \mathbf{3}$ | $\mathrm{y} 1(x)=2 x+3$ | Explanation <br> $\mathrm{y} 1=2 x+3$ |
| $[\mathrm{HOME}]$ | This returns you to a blank <br> Home Screen. |  |
| $\mathrm{y} 1(x) \Pi$ | $\mathrm{y} 1(x)$ <br> $2 x+3$ | This pastes yl on the Home <br> Screen. |
| $\mathrm{y} 1(4) \Pi$ | y1(4) <br> 11 | This finds the value of y 1 <br> when $x=4$. |

(b) Table

## Instructions

Press - [TABLE] to see the table of values for $2 x+3$, as shown below:

Press $\quad$ [TblSet], try change the settings and see the effect in [TABLE].

## Screen Shot



Instructions
By changing [TblSet] from [1. AUTO] to [2.ASK], complete the table below:
Remember: y 1 is still set to $2 x+3$

| X | y 1 |
| :---: | :---: |
| 11 | $?$ |
| -3 | $?$ |
| -5 | $?$ |

Screen Shot


## 3. Graphing

(a) Displaying Window Variable in the Window Editor

| Instructions | Screen Shot |
| :---: | :---: |
| Press $\rightarrow$ [WINDOW] or APPS 3 to display the Window Editor. |  |
|  |  |

\(\left.\begin{array}{|l|l|}\hline Variables \& Description <br>
\hline x \min , x \max , y \min , y \max \& Boundaries of the viewing window. <br>
x \mathrm{scl}, y \mathrm{scl} \& These x and y scales set the distance between tick marks on the <br>

x and y axes (see above right)..\end{array}\right\}\)| Sets pixel resolution (1 through 10) for function graphs. The |
| :--- |
| default is 2. |

(b) Overview of the Math Menu


| Math Tool | Description |
| :--- | :--- |
| Value | Evaluates a selected $y(x)$ function at a specified $x$ value |
| Zero, Minimum, | Finds a zero ( $x$-intercept), minimum, or maximum point within an |
| Maximum | interval. |
| Intersection | Finds the intersection of two functions. |
| Derivatives | Finds the derivative (slope) at a point. |
| $\int f(x) d x$ | Finds the approximate numerical integral over an interval. |
| $\Delta \cdot$ Tancent | nrawc a tancent line at a noint and dicnlave ite armation |

(b) Finding the Maximum \& Minimum Values of a Function from its Graph

| Instructions | Screen Shot |  |
| :---: | :---: | :---: |
| 1. Display the $\mathbf{Y}=$ Editor. | $\qquad$ |  |
| 2. Enter the function |  |  |
| 3. Enter graph mode ( $\Delta$ F3). Open the Math Menu F5, and select 4: Maximum. |  |  |
| 4. Set the lower bound. |  |  |
| 5. Set the upper bound. |  |  |
| 6. Find the maximum point on the graph between the lower and upper bounds. |  |  |
| 7. Transfer the result to the Home screen, and then display the Home screen. <br> [Home] |  |  |

(c) Overview of the Zoom Menu

## Instructions

Press $\mathbf{F 2}$ from $\boldsymbol{y}=$ Editor, window Editor, or Graph screen

Screen Shot


| Zoom tool | Description |
| :--- | :--- |
| $1:$ ZoomBox | Lets you draw a box and zoom in on that box. |
| 2:ZoomIn 3:ZoomOut | Lets you select a point and zoom in or out by an amount defined by <br> SetFactors. |
| $4:$ ZoomDec | Sets $\Delta x$ and $\Delta y$ to 0.1, and centres the origin. |
| $6:$ ZoomStd | Sets Window variables to their default values. <br> $x \min =-10, ~$ <br> $\mathrm{max}=10, x \mathrm{scl}=1, y \min =-10, y \mathrm{max}=10, y \mathrm{scl}=1, x \mathrm{res}=2$ |

Note: To get out of the graphing mode use 2 K .
This will not work while the BUSY icon is flashing in the bottom right hand corner.
Adjust your graph by selecting F2 and choosing 2:ZoomIn, 3:ZoomOut, or
A:ZoomFit
Example: Graph $y=x^{2}$ by following these instructions.


To draw a new graph go to $[\boldsymbol{y}=]$ and change the formula in the $\boldsymbol{y} \mathbf{1}$ position using the cursor to move up to it to delete it. This effectively clears the previous graph as well. Alternatively, using y 2 will add the new graph to $y=x^{2}$.
[HOME] returns you to the Home screen.

## 4. The Algebra Menu

| Menu Item | Description F2 MENU |  |  |
| :---: | :---: | :---: | :---: |
| 1: solve | Solves an expression for a specified variable. This returns solutions only, regardless of the Complex Format mode setting (For complex solutions, select A:Complex from the algebra menu). |  |  |
| 2: factor | Factorises an expression with respect to all its variables or with respect to only a specified variable. |  |  |
| 3: expand | Expands an expression with respect to all its variables or with respect to only a specified variable. |  |  |
| 4: zeros | Determines the values of a specified variable that make an expression equal to zero. |  |  |
| 5: approx | Evaluates an expression using floating-point arithmetic, where possible. |  |  |
| 6: comDenom | Calculates a common denominator for all terms in an expression and transforms the expression into a reduced ratio of a numerator and denominator. |  |  |
| 7: propFrac | Returns an expression as a proper fraction expression. |  |  |

## Using the TI-89 in Mathematics

## Topic 0 Preliminaries

### 0.2 Inequalities and the absolute value

| Instructions | Screen Shot |
| :---: | :---: |
| Inequalities <br> We can directly solve these, for example $\begin{gathered} 3 x-2 \geq 7 x+10 \\ \text { F2 } 3 x \square 2 \square[>] 7 x \boxplus 10 \square x \square \text { ENTER } \end{gathered}$ | Tolis $\begin{aligned} & \text { - solve }(3 \cdot x-2 \geq 7 \cdot x+10, x) \\ & \text { Solve }(3 x-2 \geq 7 x+10, x) \quad x \leq-3 \\ & \text { MAlN } \frac{1 / 30}{\text { Rin AUTD }} \end{aligned}$ |
| We can also transform an inequality into the form $x \geq$ or $x \leq$ by performing the same operation on both sides. <br> For example we can solve the inequality $3 x-2 \geq 7 x+10$ ENTER <br> by adding $-7 x$ to both sides of the equation, then adding 2 <br> 2nd [ANS] $-7 x$ ENTER <br> 2nd [ANS] +2 ENTER |  |
| and dividing by -4 gives the answer. <br> 2nd [ANS] $-(-) 4$ ENTER <br> Note that the CAS reverses the inequality when dividing by the - ve quantity. |  |
| The absolute value function is found in the [MATH] menu (press 2nd 5), select 1: Number, select 2: abs( (or Press D and ENTER) and press ENTER. <br> (This function also gives the modulus of a complex number.). To switch from exact to approximate mode we press ENTER |  |
| Inequalities with absolute values can be solved when they are broken down into single inequalities, | $\begin{array}{lc} \text { - solve }(-5<x+2, x) & x>-7 \\ \text { a solve }(x+2<5, x) & x<3 \\ \hline \text { Solve }(x+2<5, x) & \end{array}$ |

or sometimes by squaring both sides of the inequality (note the unusual notation for this).

F2 1: Solve( ( 2nd 51: Number 2: abs $(x-5)<$ (2nd 5 1: Number 2: $\operatorname{abs}(x+3))^{\wedge} 2, x$ )

$$
\begin{aligned}
& \text { - solve }\left((|x-5|<|x+3|)^{2}, x\right) \\
& \frac{x>1}{\frac{\text { solve }(a b s(x-5)<a b s(x+3)) \ldots}{\text { MAlN } \quad \text { Binderact FUNE }} 1 / 30}
\end{aligned}
$$

Note: The use of the $\square$ key to switch between exact and approximate modes (the TI-89 tries to use fractions in exact mode).

### 0.3 Domain, range and graph of a function

| Instructions | Screen Shot |
| :---: | :---: |
| We can use the [ $\mathrm{Y}=$ ] menu obtained by pressing $\bullet[\mathrm{Y}=]$ to draw graphs. Place the cursor just to the right of $y 1=$ and enter the function required. Note that we can use previously defined functions in later ones. |  |
| To enter a split domain function we use the when () function and nest them if there are more than two parts to the piecewise function. This has been done by defining a function g and using $y \mathrm{l}=g$. | - Define $g(x)=\left\{\begin{array}{l}\left\{\begin{array}{l}1, x<0 \\ x, \text { else }, x< \\ x-3, \text { else }\end{array}\right.\end{array}\right.$ Done Define $g(x)=$ when $(x<4$, when... Mall <br> Bind Exact Func $1 / 30$ |
| We can use $g$ a number of times this way. | - 4 fine $g(x)=\left\{\begin{array}{l}\left\{\begin{array}{l}1, x<0 \\ x, \text { else }, x<4 \\ x-3, \text { else }\end{array}\right.\end{array}\right.$ $\ldots \quad$ Don <br>  |
| Note that these graphs look better when plotted in the dot style. This found on the [ $\mathrm{Y}=$ ] screen under F6 Style, 2: Dot. |  |
| We can test the value of the function g at the points $x=0$, and $x=4$ on the [HOME] screen, as shown. |  <br>  |

Or we could use a table of values.


Note: Use $\square \mathrm{TblSet}]$ to zoom in on the table values.

### 0.4 Trigonometric functions

## Instructions

## Screen Shot

The graphs of the functions $f(x)=x \cos (x)$ an
$f(x)=x^{2} \sin ^{2}(x)$ (entered as $\left.\sin (x)^{\wedge} 2\right)$ are
shown on the TI-89. We can verify that
one is an odd function and the other even,
by checking $f(a)$ against $f(-a)$ on the
[HOME] screen.
It's an odd function.


|  |
| :--- |
|  |

Graph of the function

$$
f(x)=x^{2} \sin ^{2}(x)
$$

It's an even function.


- $91(a) \quad a^{2} \cdot(\sin (a))^{2}$
$\frac{y 1(-a)}{y 1(-a)} \quad a^{2} \cdot(\sin (a))^{2}$
MAIN


### 0.5 Translations and compositions of functions

## Instructions

We can check the effect of a transformation by looking at multiple graphs of a function, using the $\mid$ command to set values of a variable (which can be read as 'when').
Fintar F 1 1. Nafina $\mathrm{F}(\mathrm{r})=$ Ond 51 .


| Number 2: $\operatorname{abs}(x)$ |  |
| :---: | :---: |
|  |  |
| The graph function is at F4 Other 2: Graph |  |
| Composite functions can be obtained from previously defined functions using the notation $f(g(x))$. |  |

### 0.6 0ne-to-one and inverse functions

| Instructions |
| :--- |
| Graphs of functions which are inverses, |
| such as exp and $l n$ will not look like |
| reflections in $y=x$ on the TI-89 unless the |
| same scale can be used on each axis. |
| This can be done using F2 Zoom 5: Zoom |
| Sqr (as shown in these graphs). |



Note: We can not use $f(x)^{\wedge}-1$ for inverse functions. This gives the reciprocal of the function.

## Topic 1 Limits

### 1.1 Limits of a function



Example 1.1

| Instructions | Screen Shot |
| :---: | :---: |
| Example $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ <br> Some limits do not exist. We can build an understanding of some reasons for this. |  |
| We can plot the graph and zoom in on $x=0$. |  |


| Or from the table we can see that no matter how much we zoom in on $x=0$ values do not tend towards the same number (left and right limits do not exist). |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{.45402}{}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | (e) | - |  |  |
|  | (e) |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | (e.er | - |  |  |
|  |  |  |  |  |
|  | (1) | $\square$ |  |  |
|  | Minc |  |  |  |
|  |  |  |  |  |
|  | (1) | + |  |  |
|  | (1) |  |  |  |
|  | (e) | - |  |  |
|  | ( | - |  | - |
|  |  | - |  |  |
|  | 边 |  |  |  |

## Example 1.2

| Instructions | Screen Shot |
| :---: | :---: |
| Example: Find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ <br> This is an important limit, but one that cannot be found by putting $x=0$, since the function is undefined for $x=0$. Enter F3 $3 f(x)=$ SIN $x \square \leftrightarrows x \square x \square \square \square$ ENTER |  |
| If we change the value of $x$, taking steps closer to 0 then the value of $f(x)$ gets closer to 1 . $\square \text { ENTER }$ |  |
| Looking at the graph can help with what the limit might be. |  |



### 1.3 Continuity

Instructions
Screen Shot
The function $g$ used in 0.3 is
discontinuous at $x=0$ and $x=4$. The limits at $x=4$ were calculated in Example 1.1.



### 1.3.2 The intermediate value theorem

## Instructions

| This is very useful for showing that there |
| :--- |
| is a root of $f(x)=0$ between two domain |
| values. If $f(a)<0$ and $f(b)>0$ (or vice versa) |
| then there is a zero of $f$ between $a$ and $b$. |
| Using the table of values in a graph we can <br> then zoom in on the root. |
| For the function below we see from the <br> table that $f(4)<0$ and $f(5)>0$, so we zoom <br> in to find the root, using the Intermediate <br> Value Theorem. |
| This table shows it is between 4.6 and 4.8. |

This table shows it is between 4.65 and 4.7. This can be continued to the required accuracy.

We could of course get the TI-89 to find the root directly from the [Graph] or [Home] screens, but we need to understand that this theorem is one basis for finding it. For the graph use F5 Math, 2: Zero, enter the lower and upper bounds (4 and 5 from the theorem) and we get
 4.69315 for the root of $f(x)=0$ or the zero of $f$.

| In the [Home] screen we use F2 1: Solve ( and enter $f(x)=0, x)$. We need approximate mode (holding down when pressing (ENTER) to get the decimal answer. |  |
| :---: | :---: |
|  |  |
|  | $x=\ln (2)+4$ |
|  | $x=4.69315$ |
|  |  |

### 1.4 Limits involving infinity

| Instructions | Screen Shot |
| :---: | :---: |
| Limits involving infinity are entered as before but using $[\infty]$ key $(\square$ [CATALOG] )as if it is the value approached. |  |
|  | $=\lim _{x \rightarrow \infty}\left(\frac{1-2 \cdot x}{3 \cdot x+5}\right) \quad-2 / 3$ |
|  | - $\lim _{x \rightarrow-\infty}\left(\frac{1-2 \cdot x}{3 \cdot x+5}\right) \quad-2 / 3$ |
|  |  |

### 1.4.3 Asymptotes

## Instructions

Use the limits to find the horizontal asymptotes. For sloping asymptotes we can use the TI-89 to divide the numerator of a function by its denominator, using F2, 3: Expand (the function F2, 7: propFrac( will give the same result here). The asymptote here is $y=-x / 3+10 / 9$ since as $x \rightarrow \infty$ the remainder of the expansion approaches 0 .

The answer can be checked by drawing both graphs.

Screen Shot


- expand $\left(\frac{3 \cdot x-x^{2}}{3 \cdot x+1}\right)$
$\frac{\frac{-10}{9 \cdot(3 \cdot x+1)}-\frac{x}{3}+10 / 9}{\frac{\text { expand }\left(\left(3 x-x^{\wedge} 2\right) /(3 x+1)\right)}{\text { MAlN } \quad \text { RAD EXACT FUNG } \quad 1 / 30}}$



### 2.1 Tangents and rate of change

## Instructions

Consider the function $y=x^{2}$. We can define a rate of change function $r$ to be the gradient of a chord of length $h$. That is: $r(h)=\frac{f(x+h)-f(x)}{h}$ (NB there is a built-in numeric derivative function at F3 A: nDeriv which could be used but looks

Screen Shot rather different). We can then use this function $r$ at a point, for example, $x=2$. Whenever we change $h$ taking steps of $h$ closer to 0 then the value of $r$ is getting closer to 4 .

We can confirm this by asking for the limit of $r$ as $h$ approaches 0 .

$\qquad$


Note: $f^{\prime}(x)=\lim _{h \rightarrow 0} r(h)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ (where the limits exist). Thus here the rate of change at $x=2: \lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=f^{\prime}(2)=4$.

### 2.2 The derivative as a function

## Instructions

Screen Shot

To differentiate on the TI- 89 we use the

## 

 F3 Calc, 1: $d$ ( differentiate command, which is also found at 2nd 8. The format is $d$ (function, variable to differentiate with respect to).

In the second example we can use the function Trig collect, found in F2, 9:
Trig, 2: tCollect to simplify the answer. Use 2nd $(-)$ for ANS, the previous answer.

- $\frac{d}{d x}\left(3 \cdot x^{3}-7 \cdot x^{2}+6\right)$

| $\frac{9 \cdot x^{2}-14 \cdot x}{\alpha\left(3 x^{\wedge} 3-7 x^{\wedge} 2+6, x\right)}$ |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

- $\frac{d}{d x}\left[(\sin (x))^{2}-\cos (x)\right]$
$2 \cdot \sin (x) \cdot \cos (x)+\sin (x)$
- tCollect $(2 \cdot \sin (x) \cdot \cos (x)+1$
$\frac{\sin (2 \cdot x)+\sin (x)}{\text { tCollect(ans }(1))}$


## Example 2.1

| Instructions | Screen Shot |
| :---: | :---: |
| Find out whether the function $f(x)=\left\{\begin{array}{cc}x^{2} & \text { for } x<2 \\ 6-x & \text { for } x \geq 2\end{array}\right.$ is differentiable at $x=2$. <br> Define the piecewise functions by using the following instructions. <br> F4 $1 \quad f(x)=$ when $\square x$ 2nd $[<] 2 \square x$ 囚 $2 \square 6 \square x \square$ ENTER <br> Then we graph the function $f$. We can define a function $D f$ as its derivative $\frac{d(f(x))}{d x}$ (use F6 2: Dot in [ $\left.\mathrm{Y}=\right]$ to plot the derivative). Note that this may not be defined on the whole domain. We can see the discontinuity in the derived function's graph, but must check the limits on the [HOME] screen. |  |
| Right limit is: F3 3 $d f(x)$ <br> $\square$ ENTER <br> Left limit is: F3 $3 d f(x) \square x \square 2 \square 1$ <br> $\square$ ENTER |  |
| Since the limits are not the same the function is not differentiable at $x=2$ and $d f(2)$ is undefined. |  |

## Example 2.2

| Instructions | Screen Shot |
| :---: | :---: |
| Example. Find the derivative of $f(x)=x^{n}$ Define the function $f(x)=x^{n}$. When we define the value of power, $n=1,2,3,4$, 10 the functions are changed to the actual functions, $x, x^{2}, x^{3}, x^{4}, x^{10}$. |  |


| If we define the slope function $r$ as the average rate of change, |  |
| :---: | :---: |
|  |  |
| then we can see that the derivative of the functions are $1,2 x, 3 x^{2}, 4 x^{3}, 10 x^{9}$. |  |
| Using the rate of function $r$, we can get that the general derivative of $x^{n}$ is $n x^{\mathrm{n}-1}$ |  |
| Thus $\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}=n x^{n-1}$ |  |

### 2.2.1 Second and higher derivatives

## Instructions

## Screen Shot

These can be accomplished by using repeated applications of the CAS function $d$. Here functions $y 4(x)$ and $y 40(x)$ from the [ $\mathrm{Y}=$ ] list have been used. Note the inclusion of the variable each time and the option of finding the value of a derivative at a specific value of $x$.

| 44(x) | $4 \cdot x \cdot\left(x^{2}+3\right)$ |  |
| :---: | :---: | :---: |
| $\text { - } \frac{d}{d \times}\left(\frac{d}{d \times}(y 4(x))\right)$ |  | $24 \cdot x$ |
| $\overline{d(d)}$ |  |  |
| MAIN ${ }^{\text {ando }}$ EXACT | FUNC | 2/30 |


|  |  $\begin{aligned} & \text { - } \frac{d}{d \times}\left(\frac{d}{d \times}(440(x))\right) \\ & \frac{-1}{\sqrt{25-x^{2}}}-\frac{x^{2}}{\left(25-x^{2}\right)^{3 / 2}} \\ & \frac{d(d(440(x), x), x)}{\text { Hall }} \end{aligned}$ |
| :---: | :---: |
|  |  |
| Alternatively we can specify the $n$th derivative with F3 1: $d$ ( differentiate function, $x, n$ ) |  $\begin{aligned} & -\frac{d^{3}}{d x^{3}}\left(4 \cdot x \cdot \sqrt{x^{2}+3}\right) \\ & \frac{108}{\left(x^{2}+3\right)^{5 / 2}} \\ & \frac{\left.d\left(4 x \sqrt{2}\left(x^{\wedge} 2+3\right), x, 3\right)\right]}{} \end{aligned}$ |

### 2.3 Differentiation rules

## Instructions

The TI-89 can act on functions that are unknown, to give the differentiation formulas.

Screen Shot
$\left[\begin{array}{l}-\frac{d}{d x}(f(x) \cdot g(x))\end{array}\right.$

$$
\frac{d}{d x}(f(x)) \cdot g(x)+\frac{d}{d x}(g(x)) \cdot f(x)
$$



| Otherwise the TI-89 can be used to check differentiation of these functions by direct entry, as here. |  |
| :---: | :---: |
|  |  |
|  |  |
|  | $\begin{aligned} & \text { - } \frac{d}{d x}\left(\tan (x) \cdot(\sin (x))^{2}\right) \\ & \frac{(\tan (x))^{2} \cdot\left(2 \cdot(\cos (x))^{2}+1\right)}{2\left(\tan (x) *(\sin (x))^{\wedge} 2, x\right)} \end{aligned}$ |
|  |  |
|  | $-\frac{d}{d \times}\left(\frac{2 \cdot x^{2}-5}{3-7 \cdot x^{3}}\right)$ |
|  | $\frac{x \cdot\left(14 \cdot x^{3}-105 \cdot x+12\right)}{\left(7 \cdot x^{3}-3\right)^{2}}$ |
|  | $\frac{\left.\alpha\left(2 x^{\wedge} 2-5\right) /\left(3-7 x^{\wedge} 3\right), x\right)}{}$ |

### 2.4 The Chain Rule

Instructions
Screen Shot



### 2.5 Implicit differentiation

## Instructions

## Screen Shots



### 3.1 Maximum and minimum values <br> and

### 3.2 Derivatives and the shapes of curves

## Instructions

## Screen Shots

Relative Extrema: Find all relative extrema of the function $g(x)=x^{3}-9 x^{2}+24 x-7$ and confirm your result by sketching the graph. The TI-89 method combines use of the differentiation command, the solve command for $\frac{d y}{d x}=0, \ldots$
graphs of the function and its derivative to relate the algebraic solution to the pictures,...

$\qquad$

|  |  |
| :---: | :---: |
| and a table of values to get coordinates of points, check limits, etc. |  |
|  |  |

## Example 3.1

Instructions
Find the relative maximum and minimum values of the function $f(x)=x^{3}-x$.
First we can get an idea of the solutions by sketching the graphs of the function and ite derivative

Screen Shot


|  |  |
| :---: | :---: |
| Note the use of $y 2(x)=\frac{d(y 1(x))}{d x}$ to sketch the graph of the derivative. |  |
|  |  |
|  |  |
| Answers obtained from using F5 Maths 3: Minimum or 4: Maximum from the graph screen can be checked algebraically for accuracy in the [HOME] screen. |  |
|  |  |

Example 3.2
The derivative can be zero without there being a relative maximum or relative minimum.
Example. $f(x)=x^{3}-3 x^{2}+3 x-1$


|  |  |
| :---: | :---: |
|  |  |
| The second derivative test can be used to confirm that we have a point of inflection at $x=1$. Put $y 3(x)$ equal to the second derivative and view the table of values, around $x=1$. We see that $\frac{d^{2} y}{d x^{2}}$ changes sign from negative to positive through $x=1$ (and is zero at $x=1$, check on the [HOME] screen and note the Intermediate Value Theorem) and so we have a point of inflection $\left(y 68=f, y 69=f^{\prime}\right.$ and $y 70=f^{\prime \prime}$ here). |  |
| We can check this on the graph screen by using F5 Maths 8: Inflection. |  |

### 3.3 Optimisation problems

Instructions
Often in these questions we have to find the optimum value of a function of two or more variables by first substituting for one of the variables a function previously formed. This can be done in a relatively easy way on the TI-89. Taking example 2 on the manual in section 3.3, we have to minimise the cost, $C=2\left(2 \pi r^{2}\right)+2 \pi r h$ subject to $\pi r^{2} h=300$. Note that the form of the condition (using $\mid$ ) means that the answer comes out well or does not come

## Screen Shot

F17 F2r F37 F47 F5 F6\%

- Define $c=4 \cdot \pi \cdot r^{2}+2 \cdot \pi \cdot r \cdot h$
- solve $\left[\frac{d}{d r}\left(4 \cdot \pi \cdot r^{2}+2 \cdot \pi \cdot r \cdot r\right)\right.$




### 3.4 Antidifferentiation

## Instructions

## Screen Shot

| Use the symbol $\int$ found at 2 nd 7 for the antiderivative. We can enter on the [ $\mathrm{Y}=$ ] screen the function $y 1(x)=$ 2nd 7 function, $x)+c$ when $c=\{$ list of values separated by commas $\}$. This will give us a number of antiderivatives of the function. |  Relots |
| :---: | :---: |
| $y 1$ is then the function $F(x)$. |  |
| Graphing the function will show what these functions look like and the relationship between them. |  |


|  |  PLDTS $\begin{aligned} & y 1=\int\left(x^{3}+x\right] d x+c \mid c=\varepsilon-1 \\ & y 2=y 1(x) \\ & y 3=\frac{e^{x-4}-2}{1+(x-4)^{2}} \end{aligned}$ <br> $y 1(x)=\int\left(x^{\wedge} 3+x, x\right)+c \mid c=(-1, \ldots$ <br>  |
| :---: | :---: |
|  |  |
| Since they only differ by a constant the graphs are all translations of each other parallel to the $y$-axis. | (Tivell |

## Displacement, velocity and acceleration

## Instructions

Set the graph drawing mode to differential equations using MODE Graph 6: DIFF EQUATIONS. In the $\mathrm{Y}=$ mode the DEs are then set up ready for you to enter. The TI-89 uses $t$ not $x$.
The variable $t$ is given a key of its own on the TI-89, like $x, y$, and $z$ namely «.

To draw a direction field using the TI-89.

## Screen Shot



| Select the [ $\mathrm{Y}=$ ] screen and enter the differential equation using $t$ (and $Y 1$-or $Y \mathrm{n}$-if needed). There is no use of $x$. Use $\square$ [Window] (F2) to set the window dimensions to an appropriate $t$ and $Y$ size. Choose 'GRAPH' and it will put in the direction field. |  |
| :---: | :---: |
| Selecting F8 IC enables a particular antiderivative solution to be drawn: IC stands for Initial Conditions, meaning a point (or points) known to be on the graph of the antiderivative required. Enter the co-ordinates or move the cursor to a chosen point and press ENTER. |  |
| The solution curves for the antiderivative through the given point(s) is drawn. |  |
| To solve a DE algebraically we use the command F3 C: deSolve( <br> Use 2nd = for the $y^{\prime}$. <br> Example 189 use <br> F3 C: deSolve $(y$ 2nd $==2 t(y+3)$ and $\mathrm{y}(0)=4, t, y)$ | $\begin{aligned} & \text { - deSolve }\left(y^{\prime}=2 \cdot t \cdot(y+3)\right. \text { ar } \\ & \frac{y=7 \cdot e^{2}-3}{\text { deSolve }\left(y^{\prime}=2 t *(y+3) \text { and } y+1 \cdot n\right.} \end{aligned}$ |
|  |  |

## 4. Integration

### 4.1 The area problem

To find the area under the curve $f(x)=x^{2}+2$, from $x=-1$ to $x=2$. using rightsum we have $x_{0}=-1, x_{1}=-1+3 / n, x_{2}=-1+2.3 / n, \ldots x_{i}=-1+3 i / n, \ldots x_{n}=-1+3 n / n=-1+3=2$.

So the area can be obtained by taking the limit (if it exists) of the Riemann sum as $n \rightarrow \infty$.
Area $=\underset{n \rightarrow \infty}{\operatorname{Lim}}\left(\sum_{i=1}^{n} \frac{3}{n}\left(f\left(x_{i}\right)\right)\right)=\operatorname{Lim}_{n \rightarrow \infty}\left(\sum_{i=1}^{n} \frac{3}{n}\left(\left(-1+\frac{3 i}{n}\right)^{2}+2\right)\right)$.

## Instructions

On the TI-89 this is entered as:
F3 3: limit( F3 4: $\Sigma$ ( sum expression), $x$, $n, 1, \infty)$, or enter the sum first and then take the limit. The,$x$ tells the calculator to sum with respect to $x$, and the $n, 1, \infty$ ) is part of the limit (from $n=1$ to $\infty$ ). Don't forget to make sure that $n$, and $i$ do not have values in them (use F4 4: Delvar if they do).

The summation function F3 4: $\Sigma$ ( sum will also give the general summation results in Theorem 4.2.1.
-

Screen Shots


- $\sum_{i=1}^{n}\left(\frac{3}{n} \cdot\left(\left[-1+\frac{3 \cdot i}{n}\right)^{2}+2\right)\right)$



### 4.4 Fundamental Theorem of the Calculus

## Instructions

 on the TI-89 to see the area represented by the integral and numeric integration to calculate it.
$\bullet[\mathrm{Y}=] x \oplus 2$ ENTER $\bullet[$ GRAPH F 572 ENTER 5 ENTER

| Note: Only the $\boldsymbol{x}$ value of the lower and upper limit needs to be typed in. Ignore the $y$-value. This should appear on your screen. | Nom |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
| On the [HOME] screen we just enter the function into F3 2: integrate, and the lower and upper limits. Note the use of ENTER again (approximate mode) to get the decimal answer. |  |
|  |  $\begin{aligned} & \left(\frac{e}{2}-1\right) \cdot \cos (1)+\frac{e \cdot \sin (1)}{2}+1 \\ & -\int_{0}^{1}\left(\sin (x)+e^{x} \cdot \cos (x)\right) d x \end{aligned}$ $1.83772$ <br>  |

Area $=\int_{a}^{b}\{f(x)-g(x)\} d x$, where $x=a$ and $x=b$ are the $x$-values of the two points of intersection (if they exist).
We can also use the formula $\int_{a}^{b}|f(x)| d x$ to find the area between the graph of $f$ and the $x$-axis, and then we do not have to worry about where the function intersects the axis or the signs of the integrals. This works well on the TI-89 since we have the function abs.
For example calculate the area between $f(x)=x(x+1)(x-2)$ and the $x$-axis from $x=-1$ to $x=2$. It is always good to look at the graph of the function to see what is going on.

## Instructions Screen Shot

Define $y 1=x(x+1)(x-2)$ and draw the graph. Entering $y 2$ as abs $(y 1(x)$ ) (which gives a reflection of $y 1$ in the $x$-axis) enables the area to be found without finding the intersections with the axis. Note that the area is NOT equal to $\int_{-1}^{2} x(x+1)(x-2) d x$ (compare screens 2 and 4)





## 5. Integration techniques

## Instructions

| Instructions | Screen Shot |
| :---: | :---: |
| Specific techniques for integration are not required when using the TI-89 since it will integrate all integrable functions, using the $\int$ function. However, we can verify some of the formulas for general results, as well as more specific functions. |  |
| Note how functions such as $\sec ^{2}(a x)$ are entered, and the need for () around the whole of a numerator and/or a denominator in $\frac{1}{a^{2}+x^{2}}$ and $\frac{3 x+2}{x\left(x^{2}+1\right)}$. |  <br> - $\int\left(\frac{1}{(\cos (a \cdot x))^{2}}\right) d x$ $\qquad$ <br> $\frac{\tan (a}{a}$ , |
| Integrating a rational function |  $\begin{aligned} & -\int\left(\frac{3 \cdot x+2}{x \cdot\left(x^{2}+1\right)}\right) d x \\ & \frac{\ln \left(\frac{x^{2}}{x^{2}+1}\right)+3 \cdot \tan ^{-1}(x)}{\frac{\left.f(3 x+2)<\left(x+\left(x^{\wedge}+1\right)\right), x\right)}{\ln (3)}} \end{aligned}$ |
| An inverse trig function. |  |
| Integrating a rational function |  |
|  | $\overline{\frac{f( }{m}\left(x^{\wedge} 2-x-2\right) /(x-1)^{\wedge} 3 *\left(x^{\wedge} 2 \ldots\right.}$ |


|  |  |
| :---: | :---: |
| Indefinite and definite integrals. |  |

## 6 Functions of Two Variables

| Instructions | Screen Shot |
| :---: | :---: |
| Set the graph drawing mode to 3D using MODE Graph 5: 3D. In the $\square Y=$ mode the DEs are then set up ready for you to enter $z 1=$ etc. The TI-89 uses $y$ and $x$ for these functions. |  |
| Use [GRAPH] to draw the graph (this may take a few seconds) <br> You may need to resize the window using $\square$ [WINDOW] where you can set all three variables. The viewing angle can also be changed using the eye variables or by using the keys. |  |
| Pressing [ENTER] will rotate the graph dynamically. |  |


| We can draw contours too. |  |
| :---: | :---: |
| Select the $\quad \mathrm{Y}=$ mode and press Change Style 1: WIRE FRAME to 3: <br> CONTOUR LEVELS and press ENTER. <br> Use [GRAPH] and then F6 Draw 7: <br> Draw Contour command in the graph mode to enter the $x$ and $y$ values (here each 0 ). This can also be rotated discretely or dynamically. |  |
| Here is the graph of $y=\sqrt{16-x^{2}-y^{2}}$. |  |
| For partial derivatives, the TI-89 assumes letters to be constants unless told they are variables, so will do these as shown using F3 1: $d$ (differentiate Here with respect to $x$ |  |
| Here differentiate with respect to $x \ldots$ |  |
| ...and here with respect to $y$ <br> Remember that these are the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ not what the CAS notation implies. |  |
| We can use the F4 1: Define to define a function in two variables and hence find the value of the function. |  |


| We can get $f_{x x}$ by differentiating twice with respect to $x$... |  <br> - Define $f(x, y)=x^{3}+y^{3}$ <br> Done <br> - $\frac{d^{2}}{d x^{2}}(f(x, y))$ <br> $6 \cdot x$ <br> $\frac{d(f(x, y), x, 2) \mid}{}$ <br> Mall |
| :---: | :---: |
| $\ldots$ and $f_{y y}$ by differentiating twice with respect to $y$ | - Define $f(x, y)=x^{3}+y^{3}$ <br> Done <br> - $\frac{d^{2}}{d y^{2}}(f(x, y))$ <br> $\frac{d(f(x, y), y, 2)}{\text { MAll }}$ |
| For $f_{y x}$ and $f_{x y}$ we differentiate twice, once for each variable. |  <br> - Define $f(x, y)=x^{3}+y^{3}$ <br> Done <br> - $\frac{d}{d y}\left(\frac{d}{d x}(f(x, y))\right)$ <br> $\overline{d(d<}(f(x, y), x), y)$ |
|  | - Define $f(x, y)=x^{3}+y^{3}$ <br> Done <br> - $\frac{d}{d x}\left(\frac{d}{d y}(f(x, y))\right)$ <br> $\frac{d(d(f(x, y), y), x)}{\operatorname{Man}(x)}$ |
| Example 207 | Trit <br> - Define $f(x, y)=-3 \cdot x^{4}+6 \cdot$ Done |
| Then use the Hessian obtained as above to test each point. |  $\begin{gathered} \text { - solve }\left(\frac{d}{d x}(f(x, y))=0, x\right) \\ x=1 \text { or } x=0 \text { or } x=-1 \\ \text { - solve }\left(\frac{d}{d y}(f(x, y))=0, y\right) \\ y=0 \end{gathered}$ <br> solve $(d(f(x, y), y)=0, y) \mid$ |

## 7 Linear Systems

### 7.1 Gaussian Elimination <br> Matrix notation

When there are 3 equations - in $x, y$, and $z$ - we start by eliminating the first variable $(x)$ in the last 2 equations and then eliminate the second variable ( $y$ ) in the last equation. This leaves us with a set of equations in echelon form. Once the equations are in echelon form, they can be solved by back substitution.
This can be done using the row operations on the TI-89, or using functions which give echelon form and reduced echelon form. First, we need to know how to enter a matrix into the Data/matrix Editor or into the Home screen.

References: TI-89 Guidebook 229-233
Entering a matrix into the Data/matrix editor:

| Instructions | Screen Shot |
| :---: | :---: |
| Press APPS 6, open the Data/matrix editor and then select 3 . New |  |
| For Type, select Matrix, as following. |  |
| Press B and select 2: Matrix. |  |
| Press D D and enter the variable name M1. (Some names are reserved, if you try to use a reserved name you will get an ERROR message). <br> Enter the row and column dimensions of the matrix. |  |


| Type in the first three rows and columns of the matrix. You will need to use the arrow keys to move around. Press ENTER to register each entry. You can use fractions and operations when you enter values. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{\text { M19T }}{3 \times 3}$ |  |  |  |  |  |
|  |  | C1 | c2 | c | 3 |  |
|  | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 2 | 3 | 3 |  |  |
|  |  | -1 | -1 | 2 |  |  |
|  |  |  |  |  |  |  |
|  | Y4C1 $=$ Mals |  |  |  |  |  |
| Press the " key and enter M1 return. You should now see the matrix in this standard form. |  |  |  |  |  |  |
|  | -m1 |  |  |  | $\begin{array}{ll}1 & 1 \\ 2 & 3 \\ -1 & -1\end{array}$ |  |
|  | $\frac{\text { m1 }}{\text { M } 1 / \mathrm{IN}}$ |  | Cillo |  | INC |  |

## Entering a matrix into the Home Screen

| Instructions | Screen Shot |
| :---: | :---: |
| Method 1: <br> From the Home screen, enter a matrix by using Define(which can be accessed by F4 1 or could be typed in). Use the square bracket [ ] to enclose the matrix. We enter the matrix by typing the first row and then the second and so on. Use commas to separate entries and semicolons to separate rows. |  |
| Method 2: <br> To enter a matrix into the Home screen, use one set of brackets around the entire matrix and one set of brackets around each row. Use commas to separate the entries in a row. Then press $\mathbf{S T O} \rightarrow$, type a name for the matrix, and press ENTER. <br> Example: <br> $[[1,2,3][-1,3,4]]$ STO $\rightarrow r$ ENTER |  |

### 7.2 Matrix Row Operations

| Instructions | Screen Shot |
| :---: | :---: |
| To swap two rows in one matrix, use 2nd [MATH] 4:Matrix J:Row ops 1:rowSwap(. |  |
| Example: We can change rows 1 and 2 of matrix r with the command $\operatorname{rowSwap}(r, 1,2)$. |  <br> $-\left[\begin{array}{lll}1 & 2 & 3 \\ -1 & 3 & 4\end{array}\right] \rightarrow r \quad\left[\begin{array}{lll}1 & 2 & 3 \\ -1 & 3 & 4\end{array}\right]$ <br> - rowSwap( $r, 1,2$ ) $\quad\left[\begin{array}{lll}-1 & 3 & 4 \\ 1 & 2 & 3\end{array}\right]$ <br> rowSwap( $r, 1,2$ ) |
| To add the entries of one to those of another row, use 2nd [MATH] 4:Matrix J:Row ops 2:rowadd(. <br> Example: Add the entries of row 1 to those of row 2 and store them into row 2 with the command rowAdd (r, 1,2). |  <br> $-\left[\begin{array}{lll}1 & 2 & 3 \\ -1 & 3 & 4\end{array}\right] \rightarrow r \quad\left[\begin{array}{lll}1 & 2 & 3 \\ -1 & 3 & 4\end{array}\right]$ <br> - rowAdd $(r, 1,2) \quad\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 7\end{array}\right]$ <br> rowfidd (r, 1,2) |
| To multiply the entries of one row by a value, use 2nd [MATH] 4:Matrix J:Row ops 3:mRow(. <br> Example: Multiply the entries of row 1 by 3 and store them into row 1 with the command $m \operatorname{Row}(3, r, 1)$. | [itill <br> $-\left[\begin{array}{lll}1 & 2 & 3 \\ -1 & 3 & 4\end{array}\right] \rightarrow r$ - $\operatorname{mRow}(3, r, 1)$ $\left.\begin{array}{lll}1 & 2 & 3 \\ -1 & 3 & 4\end{array}\right]$ $\left.\begin{array}{lll}3 & 6 & 9 \\ -1 & 3 & 4\end{array}\right]$ |
| To multiply the entries of one row by a value and add the products to another row, use 2nd [MATH] 4:Matrix J:Row ops 4:mRowAdd(. Example: Multiply the elements of row 1 by 3, add the products to row 2, and store them into row 2 with the command $m \operatorname{RowAdd}(3, r, 1,2)$. |  |

Example 7.2.1: Solve the following system:

$$
\begin{aligned}
3 x-y+2 z & =13 \\
-x+4 y+2 z & =-1 \\
4 y+3 z & =4
\end{aligned}
$$

| Instructions | Screen Shot |
| :---: | :---: |
| The augmented matrix is: $\left[\begin{array}{cccc} 3 & -1 & 2 & 13 \\ -1 & 4 & 2 & -1 \\ 0 & 4 & 3 & 4 \end{array}\right]$ <br> Use the following instructions to row reduce this matrix. $[3,-2,2,13 ;-1,4,2,-1 ; 0,4,3,4]$ <br> STOD a ENTER <br> 2nd [MATH] 4:Matrix J:Row ops 3:mRow (3, a, 2) ENTER multiply the entries of row 2 by 3 and store them into row 2. |  |
| 4:mRowAdd (1, ans(1), 1, 2) ENTER multiply the elements of row 1 by 1 , add the products to row 2 and store them into row 2. |  |
| Multiply the elements of row 2 by 4. |  |
| Multiply row 3 by 11. |  |
| Multiply row 2 by -1 , add the products to row 3 , and store them in row 3 . |  |


| Here is the echelon form. $\begin{gathered} 3 x-y+2 z=13 \\ 11 y+8 z=-1 \\ z=4 \end{gathered}$ <br> By back substitution, $\begin{aligned} & z=4, \\ & 11 y+8(4)=-1, \text { so } y=-2 \\ & 3 x-(-2)+2(4)=13, \text { so } x=1 \end{aligned}$ |  |
| :---: | :---: |
| On the TI-89 this is also obtained by: $[3,-2,2,13 ;-1,4,2,-1 ; 0,4,3,4]$ STO- a ENTER <br> 2nd [MATH] 4:Matrix 3:ref ( a ) ENTER |  |

