# **Introduction to Using the TI-89 Calculator**

**Note:** If this is the first time that you have used the TI-89 computer algebra system (CAS) calculator then you should first work through the Introduction to Using the TI-89. Some of the information found there in terms of key presses, menus, etc. will be assumed in what follows. While much of the information provided here describes how to carry out many mathematical procedures on the TI-89, using technology is not simply about finding answers, and we would encourage you NOT to see this calculator as primarily a quick way to get answers. Research by the authors, and others, shows that those who do this tend to come to rely on the calculator to the detriment of their mathematical understanding. Instead learn to see the TI-89 as a problem-solving, and investigative tool that will help you to understand concepts by providing different ways of looking at problems, thus helping you reflect on the underlying mathematics.

### 1. Saying 'Hello' to your graphics calculator



#### **Basic Facilities of the TI-89**

| Function Keys                                          | Cursor Pad                                    |
|--------------------------------------------------------|-----------------------------------------------|
| [F1] through [F8] function keys let you select         | The cursor is controlled by the large blue    |
| toolbar menus.                                         | circle on the top right hand side of the      |
|                                                        | calculator. This allows access to any part of |
| F4 Y- F7 WINDOW F4 GRAPH Tbl5H TABLE<br>F1 F2 F3 F4 F5 | an expression.                                |

| Application Short Keys                                                                                                                                                                  | Calculator 1                                                              | Keypad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Used with the $\checkmark$ key to let you select<br>commonly used applications:<br>[Y=] [WINDOW] [GRAPH] [TblSet]<br>[TABLE]<br>F6 Y- F7 WINDOW F8 GRAPH TblSet TABLE<br>F1 F2 F3 F4 F5 | Performs a<br>variety of<br>mathematical and<br>scientific<br>operations. | $\begin{array}{c} U_{1} & \Psi^{\ast} \\ \Psi^{\ast} &$ |

### **[2nd]** • • • and j modify the action of other keys:

| Modifier  | Description                                        |
|-----------|----------------------------------------------------|
| 2nd       | Accesses the second function of the next key you   |
| (Second)  | press                                              |
| •         | Activates "shortcut" keys that selects             |
| (Diamond) | applications and certain menu items directly       |
|           | from the keyboard.                                 |
| t         | Types an uppercase character for the next letter   |
| (Shift)   | key you press.                                     |
| j         | Used to type alphabetic letters, including a space |
|           | character. On the keyboard, these are printed in   |
|           | the same colour as the j key.                      |
|           | [2nd] j used to type alphabetic letters.           |

|                         | Key       | Description                                               |
|-------------------------|-----------|-----------------------------------------------------------|
|                         | APPS      | Displays a menu that lists all the applications available |
|                         |           | on the TI-89.                                             |
|                         | ESC       | Cancels any menu or dialogue box.                         |
|                         | ENTER     | Evaluates an expression, executes an instruction, selects |
| (alpha) (APPS)          |           | a menu item, etc.                                         |
|                         | MODE      | Displays a list of the TI-89's current mode settings,     |
| (HOME) (MODE) (CATALOG) |           | which determine how numbers and graphs are                |
|                         |           | interpreted, calculated, and displayed.                   |
|                         | CLEAR     | Clears (erases) the entry line.                           |
|                         | [CATALOG] | Press b or c to move the d indicator to the function or   |
|                         |           | instruction. (You can move quickly down the list by       |
|                         |           | typing the first letter of the item you need.)            |
|                         |           | Press ENTER. Your selection is pasted on the home         |
|                         |           | screen.                                                   |

| Application | Lets you:                                                        |
|-------------|------------------------------------------------------------------|
| [Home]      | Enter expressions and instructions, and performs calculations    |
| [Y=]        | Define, edit, and select functions or equations for graphing     |
| [Window]    | Set window dimensions for viewing a graph                        |
| [Graph]     | Display graph                                                    |
| [Table]     | Display a table of variable values that correspond to an entered |
|             | function                                                         |

| Press:       | To display                                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| F1, F2, etc. | A toolbar menu– Drops down from the toolbar at the top of most<br>application screens. Lets you select operations useful for that<br>application |
| 2nd [CHAR]   | CHAR menu– Lets you select from categories of special characters (Greek, math, etc.)                                                             |
| 2nd [MATH]   | MATH menu– Lets you select from categories of mathematical operations                                                                            |

| Press     | To perform                                                                                                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2nd [F6]  | Clean Up to start a new problem:                                                                                                                                                                     |
| Clear a–z | Clears (deletes) all single-character variable<br>names in the current folder.<br>If any of the variables have already been<br>assigned a value, your calculation may produce<br>misleading results. |

| Problem?                                        | Try this!                                        |
|-------------------------------------------------|--------------------------------------------------|
| If you make a typing error                      | If you make a typing error use 🖛 to undo one     |
|                                                 | character at a time                              |
|                                                 | If necessary, also press M to clear the complete |
|                                                 | line.                                            |
| If you want to clear the home screen completely | Press F1 n                                       |

### **Mode Settings**

| Instructions                                                                                                                             | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Press MODE, which shows the modes and their current settings                                                                             | MODE       Page 1 Page 2 Page 3       Graph       Graph       Gurrent Folder       Main 7       Display Disits       FLDAT 6 3       Current Folder       Bisplay Disits       FLDAT 6 3       Complex Format       REL 2       Vector Format       RECTANGULAR 3       Pretty Print       Discense       Main       RAD AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| If you press <b>F2</b> then 'Split Screen' specifies how<br>the parts are arranged: FULL (no split screen),<br>TOP-BOTTOM, or LEFT-RIGHT | MODE       F1     F2       Pa3e 1Pa3e 2[Pa3e 3]       * Split Screen       Split 1 App       Home +       Split 2 App       Graph +       Number of Graphs       Station +       Station + <t< td=""></t<> |

### (a) Entering a Negative Number

| Instructions                                           | Examples                                        |
|--------------------------------------------------------|-------------------------------------------------|
| Use   for subtraction and use $\sum$ for negation.     | To enter the number –7, press (-) 7.            |
| To enter a negative number, press $\Sigma$ followed by | $9 \times (-) 7 = -63,$                         |
| the number.                                            | $9 \times - 7 = $ displays an error message     |
|                                                        | To calculate $-3 - 4$ , press (-) $3 - 4$ ENTER |

### (b) Implied Multiplication

| If you enter: | The TI-89 interprets it as:                                     |
|---------------|-----------------------------------------------------------------|
| 2 <i>a</i>    | $2^*a$                                                          |
| ху            | Single variable named <i>xy</i> ; TI-89 does not read as $x^*y$ |

### (c) Substitution

| Instructions            | Examples                                                                                |
|-------------------------|-----------------------------------------------------------------------------------------|
| Using [2nd] [   ]key    | eg) (-) $x^{2+2}   x=3$<br>-7<br>This calculates the value of $-x^{2} + 2$ when $x = 3$ |
|                         |                                                                                         |
| Using 'STORE' key: STO► | eg) Find $f(2)$ if $f(x) = -x^3 + 2$<br>$f(x) = -x^3 + 2 \rightarrow f(x)$<br>f(2) = -6 |

### (d) Rational Function Entry

| Instructions                                                                    | Example                                          |
|---------------------------------------------------------------------------------|--------------------------------------------------|
| $\frac{f(x)}{g(x)} = \frac{(f(x))}{(g(x))} = $ (numerator) $\div$ (denominator) | $\frac{x+1}{2x-1} \rightarrow (x+1) \div (2x-1)$ |

#### (e) **Operators**

addition: + subtraction: - multiplication: × division: ÷ Exponent: ^ (f) Elementary Functions

| Exponential: $e^{(x)}$     | Trigonometric:                                                        |
|----------------------------|-----------------------------------------------------------------------|
| natural logarithm: $ln(x)$ | $\sin(x), \cos(x), \tan(x), \sin^{-1}(x), \cos^{-1}(x), \tan^{-1}(x)$ |
| square root: √             |                                                                       |
| absolute value: abs(x)     | If you want $\underline{sec}(x)$ then put $1/\cos(x)$ , $\cscc(x)$ is |
|                            | $1/\sin(x)$ .                                                         |
|                            | Note: The trigonometric functions in TI-89                            |
|                            | angles are available in both degrees and radians.                     |
|                            | If you want degrees (180°) or radians ( $\pi$ ) change                |
|                            | using the MODE key previously discussed.                              |

### (g) Constants

| To find:                    | Work         |
|-----------------------------|--------------|
| <i>i</i> : imaginary number | with 2nd key |
| $\pi$ : Pi                  | with 2nd key |
| $\infty$ : infinity         | with 🔹 key   |

### (h) Recalling the last answer

| Instructions | Exam   | ple                              |
|--------------|--------|----------------------------------|
| [2nd] [ANS]  | ans(1) | Contains the last answer         |
|              | ans(2) | Contains the next-to-last answer |

### (i) Cutting, Copying and Pasting

| Press:                                          | To:                                                             |
|-------------------------------------------------|-----------------------------------------------------------------|
| $\mathbf{t} \odot \text{ or } \mathbf{t} \odot$ | highlight the expression.                                       |
| • 5, • 6 and • 7                                | cut, copy and paste.                                            |
| [2nd] [ENTRY]                                   | replace the contents of the entry line with any previous entry. |

### (j) When differentiating with respect to x

| To find:                                                  | Туре:                                         |
|-----------------------------------------------------------|-----------------------------------------------|
| Limit $\lim_{x \to a} f(x)$ :                             | $\lim(f(x), x, a)$                            |
| Indefinite Integral $\int f(x)dx$ :                       | $\int (f(x), x, c)$                           |
| Definite integral $\int_{a}^{b} f(x) dx$ :                | $\int (f(x), x, a, b)$                        |
| Area between $f(x)$ and $g(x)$ on the interval $[a, b]$ : | $\int_{a}^{b} \left  f(x) - g(x) \right   dx$ |
| Differentiation $\frac{d}{dx}f(x)$ :                      | d(f(x), x)                                    |

## 2. [Y= ] and [Table]

(a) The [Y= ] menu

| Instructions                        | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Press • [Y= ] to see the following: | F1 700     F2× F3     F3     F5× F5     F6×     F1       y1=     y2=     y3=     y4=     y4=       y5=     y3=     y3=       y3=     y3=     y3=       y3=     y3=     y3=       y3=     y4=     y4=       y5=     y4=     y5=       y4=     y5=     y4=       y5=     y4=     y4=       y4=     y4= </td |

If there are any functions to the right of any of these eight equal signs, place the cursor on them (using the arrow keys) and press CLEAR

Place the cursor just to the right of  $y_1 = and$  follow the sequence below.

| Press        | See            | Explanation                 |
|--------------|----------------|-----------------------------|
| $2x \cdot 3$ | y1(x) = 2x + 3 | You have entered            |
|              |                | $y_1 = 2x + 3$              |
| [HOME]       |                | This returns you to a blank |
|              |                | Home Screen.                |
| $y_1(x)$     | y1(x)          | This pastes y1 on the Home  |
|              | 2x + 3         | Screen.                     |
| y1(4) ∏      | y1(4)          | This finds the value of y1  |
|              | 11             | when $x = 4$ .              |

### (b) Table

| Instructions                                                                      | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Press $\bullet$ [TABLE] to see the table of values for $2x + 3$ , as shown below: | Fill         Fill <th< td=""><td></td></th<>                                                     |  |
| Press • [TblSet], try change the settings and see the effect in [TABLE].          | F1         F2         F2<                                                                                                                                                         |  |
|                                                                                   | Figure         Figure |  |
|                                                                                   | Image: Setup [c] ] # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                   | F2         F2<                                                                                                                                                         |  |

| Instru               | ctions              | Screen Shot                                      |
|----------------------|---------------------|--------------------------------------------------|
| By changing [TblSet  | ] from [1. AUTO] to | Setup Stipes Del Porting Port                    |
| [2.ASK], complet     | e the table below:  | tblStart: -2.                                    |
| Remember: y1 is stil | l set to $2x + 3$   | 0 atbl: 1.                                       |
|                      |                     | 1 Graph <-> Table: OFF→<br>2 Independent: 1:80TO |
|                      |                     | 4 (Enter=SAVE)                                   |
|                      |                     | $5.$ 13. <b>x</b> = $^{-2}$ .                    |
|                      |                     | MAIN RAD AUTO FUNC                               |
| Х                    | y1                  | Setup Cell Header Del Row Ins Row                |
| 11                   | ?                   | × 91<br>11. 25.                                  |
| -3                   | ?                   | -3357                                            |
| -5                   | ?                   | 1. 5                                             |
|                      | ·                   | 3. 9                                             |
|                      |                     | 5. 13.                                           |

### 3. Graphing

### (a) Displaying Window Variable in the Window Editor

| Instructions<br>Press (IWINDOW) or APPS 3 to display<br>the Window Editor. | Screen Shot           Tools200m           xmin=-10.           xmax=10.           xscl=1.           ymin=-10.           yscl=1.           xres=2 |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            | xmin<br>xscl<br>yscl<br>ymin                                                                                                                    |

| Variables                                              | Description                                                                   |
|--------------------------------------------------------|-------------------------------------------------------------------------------|
| <i>x</i> min, <i>x</i> max, <i>y</i> min, <i>y</i> max | Boundaries of the viewing window.                                             |
| xscl, yscl                                             | These <i>x</i> and <i>y</i> scales set the distance between tick marks on the |
|                                                        | x and y axes (see above right)                                                |
| xres                                                   | Sets pixel resolution (1 through 10) for function graphs. The                 |
|                                                        | default is 2.                                                                 |

#### (b) Overview of the Math Menu

| Press <b>F5</b> from the Graph screen | F1+ F2+ F3 F4 F5+ F6+ F7+ <sup>5</sup> ::<br>ToolsZoomTraceRegraph Math DrawPen::<br>1: Value<br>2: Zero<br>3: Minimum |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                       | 4:Maximum<br>5:Intersection<br>6:Derivatives ►<br>7:Jf(x)dx<br>8↓Inflection                                            |
|                                       | E<br>MAIN RAD AUTO FUNC                                                                                                |

| Math Tool      | Description                                                     |
|----------------|-----------------------------------------------------------------|
| Value          | Evaluates a selected $y(x)$ function at a specified x value     |
| Zero, Minimum, | Finds a zero (x-intercept), minimum, or maximum point within an |
| Maximum        | interval.                                                       |
| Intersection   | Finds the intersection of two functions.                        |
| Derivatives    | Finds the derivative (slope) at a point.                        |
| $\int f(x)dx$  | Finds the approximate numerical integral over an interval.      |
| ∆·Tangent      | Draws a tangent line at a point and displays its equation       |

### (b) Finding the Maximum & Minimum Values of a Function from its Graph

| Instructions                                                                                                  | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Display the <b>Y=Editor</b> .                                                                              | F1 7m0     F2 ▼ ↓     F3     F4     ↓     F5     ↓     ↓       PLDTS     y1=     y1=     ↓     ↓     ↓     ↓       y2=     y3=     ↓     ↓     ↓     ↓       y3=     y3=     ↓     ↓     ↓       y5=     y6=     ↓     ↓     ↓       y6=     ↓     ↓     ↓       y7=     ↓     ↓     ↓       y10=     ↓     ↓     ↓       ↓     ↓     ↓     ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. Enter the function                                                                                         | $\begin{array}{c} \begin{array}{c} r_{1} = r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \\ r_{4} \\ r_{5} \\ r_$                                                                                                                                                                                                                                                                                                                                      |
| <ol> <li>Enter graph mode ( F3). Open the Math Menu F5, and select 4: Maximum.</li> </ol>                     | Fix     Fix </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4. Set the lower bound.                                                                                       | Fiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5. Set the upper bound.                                                                                       | F17 m0     F2     F3     F4       Zoom     F10 m2     F8     F7       v     Image: Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6. Find the maximum point on the graph between the lower and upper bounds.                                    | $\begin{array}{c} \begin{array}{c} \text{Figure}{} & Fi$ |
| <ul><li>7. Transfer the result to the Home screen, and then display the Home screen.</li><li>[Home]</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### (c) Overview of the Zoom Menu

| Instructions                                                             | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Press <b>F2</b> from <i>y</i> =Editor, window Editor, or<br>Graph screen | F1+       F2+       F3       F4       F5+       F6+       F7+       F3+         1001s       200m       TraceRegraph       Math       Draw       Pen       S2+         1:       200m       200m       TraceRegraph       Math       Draw       Pen       S2+         1:       200m       200m       TraceRegraph       Math       Draw       Pen       S2+         1:       200m       Coom       TraceRegraph       Math       Draw       Pen       S2+       Draw       Pen       S2+       Draw       Draw       Pen       S2+       Draw       Draw |

| Zoom tool          | Description                                                        |
|--------------------|--------------------------------------------------------------------|
| 1:ZoomBox          | Lets you draw a box and zoom in on that box.                       |
| 2:ZoomIn 3:ZoomOut | Lets you select a point and zoom in or out by an amount defined by |
|                    | SetFactors.                                                        |
| 4:ZoomDec          | Sets $\Delta x$ and $\Delta y$ to 0.1, and centres the origin.     |
| 6:ZoomStd          | Sets Window variables to their default values.                     |
|                    | xmin=-10, xmax= 10, xscl=1, ymin=-10, ymax= 10, yscl= 1, xres= 2   |

*Note*: To get out of the graphing mode use 2 K. This will not work while the **BUSY** icon is flashing in the bottom right hand corner. Adjust your graph by selecting **F2** and choosing **2:ZoomIn**, **3:ZoomOut**, or **A:ZoomFit** 

**Example:** Graph  $y = x^2$  by following these instructions.

| Instructions         | Screen Shot                                                                                                                                                                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • [Y=] x ^ 2 [ENTER] | F1+     F2+     F3+     F5+     F6+     ::>       Toots/200m/Edit     Att Style::><     >       *PLDTS     92=       92=     93=       94=     93=       95=     94=       95=     94=       95=     94=       95=     94=       95=     94=       95=     94=       95=     94=       92=     Main       RAD AUTO     FUNC |
| ● [GRAPH]            | F1+     F2+     F3     F4     F5+     F6+     F7+     F3:::       ToolsZoom     Trace     Re3raph     Math     Draw     Pen     :::       MAIN     RAD AUTO     FUNC                                                                                                                                                        |

To draw a new graph go to [y=] and change the formula in the y1 position using the cursor to move up to it to delete it. This effectively clears the previous graph as well. Alternatively, using y2 will add the new graph to  $y = x^2$ .

[HOME] returns you to the Home screen.

### 4. The Algebra Menu

| Menu Item   | Description F2 MENU       First |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1: solve    | Solves an expression for a specified variable. This returns solutions only,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | regardless of the Complex Format mode setting (For complex solutions, select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | A:Complex from the algebra menu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2: factor   | Factorises an expression with respect to all its variables or with respect to only a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|             | specified variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 3: expand   | Expands an expression with respect to all its variables or with respect to only a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| -           | specified variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4: zeros    | Determines the values of a specified variable that make an expression equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 5: approx   | Evaluates an expression using floating-point arithmetic, where possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 6: comDenom | Calculates a common denominator for all terms in an expression and transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             | the expression into a reduced ratio of a numerator and denominator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 7: propFrac | Returns an expression as a proper fraction expression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# Using the TI-89 in Mathematics

### **Topic 0 Preliminaries** 0.2 Inequalities and the absolute value

| Instructions                                     | Screen Shot                                                                              |
|--------------------------------------------------|------------------------------------------------------------------------------------------|
| Inequalities                                     | F1+ F2+ F3+ F4+ F5<br>Toole919ebra(cole90bar/8+9mill(1ean.up                             |
| We can directly solve these, for example         |                                                                                          |
| $3x - 2 \ge 7x + 10$                             |                                                                                          |
|                                                  |                                                                                          |
| F2 $3x - 2 \bullet [>] 7x + 10 , x ) ENTER$      | ■ solve(3·x - 2≥7·x + 10, x)                                                             |
|                                                  | ×≤-3                                                                                     |
|                                                  | MAIN RAD AUTO FUNC 1/30                                                                  |
| We can also transform an inequality into the     | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebralCalcl0therPr9mi0Clean UP                              |
| form $x \ge$ or $x \le$ by performing the same   | ■ 3·× - 2≥7·× + 10                                                                       |
| operation on both sides.                         | $3 \cdot x = 2 \ge 7 \cdot x + 10$<br>= $(3 \cdot y = 2 \ge 7 \cdot y + 10) = 7 \cdot y$ |
| For example we can solve the inequality          | -(3*× - 2 ≥ 1 × + 10) - 1 × ×<br>-4 · × - 2 ≥ 10                                         |
| $3x - 2 \ge 7x + 10$ [ENTER]                     | ■(-4·×-2≥10)+2                                                                           |
| by adding $-7x$ to both sides of the equation,   | $-4 \cdot \times \geq 12$                                                                |
| then adding 2                                    | MAIN RAD AUTO FUNC 3/30                                                                  |
| 2  nd [ANS] = 7x [ENTER]                         |                                                                                          |
| 2nd ANS + 2 ENTER                                |                                                                                          |
|                                                  |                                                                                          |
|                                                  | F1+ F2+ F3+ F4+ F5                                                                       |
| and dividing by $-4$ gives the answer.           | $= (3 \cdot x - 2 \ge 7 \cdot x + 10) - 7 \cdot x$                                       |
|                                                  | $-4 \cdot \times -2 \ge 10$                                                              |
| [2nd] [ANS] [÷] [(-)] 4 [ENTER]                  | $=(-4 \cdot \times - 2 \ge 10) + 2$<br>-4 · ∨ ≥ 12                                       |
| Note that the CAS reverses the inequality when   | 4·×≥12                                                                                   |
| dividing by the –ve quantity.                    | -4 x 2 3                                                                                 |
|                                                  | MAIN RADIAUTO FUNC 4/30                                                                  |
| The absolute value function is found in the      | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAl9ebraCalcOtherPr9mlOClean Up                            |
| [MATH] menu (press 2nd 5), select 1: Number,     |                                                                                          |
| select 2: abs( (or Press D and ENTER)) and press | I -3.56  89/25                                                                           |
| ENTER).                                          | ■[-3.56] 3.56                                                                            |
| (This function also gives the modulus of a       | - La + F. (1)                                                                            |
| complex number.). To switch from exact to        | -[a + 5 + 5i] $(a + 25)$                                                                 |
| <b>approximate</b> mode we press • ENTER         | MAIN RAD EXACT FUNC                                                                      |
| Inequalities with absolute values can be solved  | F1+ F2+ F3+ F4+ F5<br>ToolsAlgebraCalcotherPrgml0Clean Up                                |
| when they are broken down into single            |                                                                                          |
| inequalities,                                    |                                                                                          |
|                                                  |                                                                                          |
|                                                  | ■solve(-5 <x+2,x) x="">-7</x+2,x)>                                                       |
|                                                  | • solve(x + $2 < 5$ , x) x < 3                                                           |
|                                                  | SOIVE(X+2(5,X)<br>MAIN RAD EXACT FUNC                                                    |

| or sometimes by squaring both sides of the inequality (note the unusual notation for this). | F1+ F2+ F3+ F4+ F5<br>Too1sA19ebraCa1clOther Pr3miD C1ean Up                                                   |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| F2 1: Solve( (2nd 5 1: Number 2: $abs(x-5) < (2nd 5 1: Number 2: abs(x+3))^2, x)$           | ■ solve $(( x - 5  <  x + 3 )^2, x)$<br>x > 1<br><u>solve((abs(x-5)(abs(x+3))</u><br>Main Rep.Fract. Find 1/30 |

**Note:** The use of the • key to switch between exact and approximate modes (the TI-89 tries to use fractions in exact mode).

#### 0.3 Domain, range and graph of a function

| Instructions                                | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We can use the $[Y=]$ menu obtained by      | F1+ F2+ [3] 51; 51; 51; 51; 51; 51;<br>Tools Zoom(3) 31; 7 \$85; 85; 75; 85; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 85; 75; 75; 85; 75; 75; 75; 75; 75; 75; 75; 75; 75; 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| the cursor just to the right of $v1$ = and  | y1=x·cos(x)<br>y2=y1(-x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| enter the function required. Note that we   | $u_3 = \frac{e^{x-4}-2}{e^{x-4}-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| can use previously defined functions in     | $1 + (x - 4)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| later ones.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| To enter a split domain function we use     | F1+ F2+ F3+ F4+ F5<br>Too1sA19ebraCa1cluther Pr9ml0C1ean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| the when () function and nest them if       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| piecewise function. This has been done      | [{1,×,<0,×<,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| by defining a function g and using $y1=g$ . | • Define $g(x) = \begin{cases} x, else \\ x - 3, else \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             | Done<br>Define g(x)=when(x(4,when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| We can use $g$ a number of times this way   | MAIN RAD EXACT FUNC 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | roominiseer de archader (* Sonale rean av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             | (()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             | $ \begin{cases} 1, \times < 0 \\ 1, \times < 1 \\ 2, \times $ |
|                                             | Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             | n(x<4,when(x<0,1,x),x-3)<br>MAIN RAD EXACT FUNC 1/20<br>MAIN RAD EXACT FUNC 1/20<br>MAIN RAD EXACT FUNC 1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Note that these graphs look better when     | ToolsZoom Trace ReGraph Math Draw Pen ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [Y=] screen under F6 Style 2. Dot           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| We can test the value of the function g at  | MAIN RAD EXACT FUNC<br>F1+ F2+ F3+ F4+ F5<br>ToolsA13ebra(Callather)Pr3m(D)Clean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the points $x=0$ , and $x=4$ on the [HOME]  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| screen, as shown.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             | (x − 3,eise<br>■g(0) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | ■ g(4) <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Or we could use a table of values | F1+ F2 C3 F4 C C3 C3 C |
|-----------------------------------|------------------------|
| of we could use a more of values. |                        |
|                                   |                        |
|                                   | 5 1.                   |
|                                   | 0. 0.                  |
|                                   | .5 .5                  |
|                                   |                        |
|                                   | y1(x)=0.               |
|                                   | MAIN BAD EXACT FUNC    |

**Note:** Use • [TblSet] to zoom in on the table values.

### 0.4 Trigonometric functions

| Instructions                                                                                                                                                                                                                                 | Screen Shot                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The graphs of the functions $f(x)=x\cos(x)$ and $f(x)=x^2\sin^2(x)$ (entered as $\sin(x)^2$ ) are shown on the TI-89. We can verify that one is an odd function and the other even, by checking $f(a)$ against $f(-a)$ on the [HOME] screen. | Tools zoom Trace Regraph Hath Draw Pen :                                                                                                                                                                                                                                                                                        |
| It's an odd function.                                                                                                                                                                                                                        | <ul> <li>y1(a) a · cos(a)</li> <li>y1(-a) -a · cos(a)</li> <li>y1(-a) -a · cos(a)</li> <li>y1(-a) -a · cos(a)</li> </ul>                                                                                                                                                                                                        |
| Graph of the function<br>$f(x) = x^2 \sin^2(x)$                                                                                                                                                                                              | F1+)     F2+)     F3     F4     F5+)     F6+)     F7+)     F5+)       Tools     Zoom     Trace     ReGraph     High     High     High       MAIN     BAD     EXACT     FUNC                                                                                                                                                     |
| It's an even function.                                                                                                                                                                                                                       | $\begin{array}{c} F_{1} \cdot F_{2} & F_{3} \cdot F_{4} & F_{5} \\ \hline Tools[A13ebro]Colc[Other]Pr3ml0]Clean Up \\ \hline \\ \texttt{y1(a)} & a^{2} \cdot (sin(a))^{2} \\ \hline \\ \texttt{y1(-a)} & a^{2} \cdot (sin(a))^{2} \\ \hline \\ \hline \\ \texttt{y1(-a)} & \text{AD EXACT} & FUNC & 2/30 \\ \hline \end{array}$ |

0.5 Translations and compositions of functions

| Instructions                              | Screen Shot                                                       |
|-------------------------------------------|-------------------------------------------------------------------|
| We can check the effect of a              | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebra[Calc Other Pr9ml0 Clean Up |
| transformation by looking at multiple     |                                                                   |
| graphs of a function, using the   command |                                                                   |
| to set values of a variable (which can be | <pre>Define f(x) =  x  Done</pre>                                 |
| read as 'when').                          | ■Graph 5·f(x+k) k=(-2 🕨                                           |
| Enter F4 1. Define i $F(r) = 2nd 5 1$ .   | Done                                                              |

| Number 2: abs(x)                              |                                                                     |
|-----------------------------------------------|---------------------------------------------------------------------|
|                                               | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAl3ebraCalcOtherPr9mIOClean Up       |
|                                               | ■ Define f(x)= x  Done                                              |
|                                               | • $\langle k \rangle   k = \langle -2 -1 0 1 2 \rangle$<br>Done<br> |
| The graph function is at F4 Other 2:<br>Graph | TooTsZoomTraceReGraphMathDrawFen-C                                  |
| <b>Composite functions</b> can be obtained    | F1+F2+F2+F3+F4+F5<br>ToolsA13ebraCa1COtherPr3mlOC1ean Up            |
| the notation $f(g(x))$ .                      | <pre>Define h(x) = x + sin(x) Done</pre>                            |
|                                               | • $h(f(x))$ sin( $ x $ ) + $ x $                                    |
|                                               | ■ f(h(x))  sin(x) + x                                               |
|                                               | MAIN RAD EXACT FUNC 4/30                                            |

### 0.6 One-to-one and inverse functions

| Instructions                                                                                                                                                                           | Screen Shot                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Graphs of functions which are inverses,<br>such as <i>exp</i> and <i>ln</i> will not look like<br>reflections in $y=x$ on the TI-89 unless the<br>same scale can be used on each axis. | F1+ F2+ F3 F4 F5+ F6+ F7+81<br>ToolsZoomTraceReGraphMathDrawPenic                                                  |
| This can be done using F2 Zoom 5: Zoom Sqr (as shown in these graphs).                                                                                                                 | MAIN     BAD EXACT     FUNC       F1+     F2+     F3     F4       Too1s/200m/Trace/ReGraph/Math/Draw/Penic       Y |
| Note there is also a function in graph<br>mode F6 Draw 3; DrawInv to draw an<br>inverse function's graph                                                                               | F1+ F2+ F3     F4       ToolsZoom/Trace/ReGraph/Math/Draw/Penic       Y       Y       MBIN     BAD AUTO   FUNC     |



Note: We can not use  $f(x)^{-1}$  for inverse functions. This gives the reciprocal of the function.

### **Topic 1** Limits

### 1.1 Limits of a function

| Instructions                                  | Screen Shot                                                   |
|-----------------------------------------------|---------------------------------------------------------------|
| Use F3 3: Limit( to find limits. The order    | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAlgebraCalcOtherPrgmlDClean Up |
| is Limit(function, variable, value            |                                                               |
| approached).                                  | ■ lim a(x) 2                                                  |
|                                               | x+2                                                           |
|                                               | ■ lim g(x) undef                                              |
|                                               | ×→4<br>limit(g(x),x,4)<br>MAIN RAD EXACT FUNC 2/30            |
| We can also find one-sided limits by          | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCalcOtherPr3mIDClean UP     |
| writing 1 or –1 before closing the bracket    | <pre>lim g(x) undef</pre>                                     |
| for right and left limits respectively (NB    | $\times \neq 4$                                               |
| do <b>NOT</b> enter +1, only 1). If the limit | ×+4 <sup>-</sup> 4                                            |
| does not exist we are given the answer        | lim g(x) 1                                                    |
| undef(ined). Checking the right and left      | $\frac{x \neq 4^*}{\text{limit}(q(x), x, 4, 1)}$              |
| limits may help us see why this is so.        | MAIN RAD EXACT FUNC 4/30                                      |
| Checking a table of values can also be        | Tools Setup Collinger in Standard Stand                       |
| useful.                                       | x y1<br>3-8 3-8                                               |
|                                               | 3.9 3.9                                                       |
|                                               | 4. 1. 4.1                                                     |
|                                               | 4.2 1.2                                                       |
|                                               | ×=4.2                                                         |
| While not proving them, we can verify         | MAIN RAD EXACT FUNC<br>(F1+\ F2+ \F3+\F4+\ F5 \ F6+ \ )       |
| limit laws for some examples. You             | Tools A19ebra Ca1c Other Pr9mIO Clean UP                      |
| should check them with some functions         | (h(x))                                                        |
| of your own. Note the use of the              | lim g(x)                                                      |
| calculator's approximate mode here            | $=\frac{x+2}{\lim h(x)}$ .687451                              |
| calculator s'approximate mode nere.           | x+2                                                           |
|                                               | limit(g(x),x,2)/limit(h(x<br>Main Rad Exact Func 3/30         |

#### Example 1.1

| Instructions                              | Screen Shot                                                                 |
|-------------------------------------------|-----------------------------------------------------------------------------|
| Example $\lim_{x\to 0} \sin \frac{1}{x}$  | F177m0) F2▼<br>▼∰— A1gebra Ca1c Other PrgmIO Clean Up                       |
| Some limits do not exist. We can build an |                                                                             |
| understanding of some reasons for this.   | • Define $f(x) = sin\left(\frac{1}{x}\right)$ Done                          |
|                                           | ■ lim f(x) undef<br>x+0                                                     |
|                                           | 1imit(f(x),x,0)<br>MAIN 600 AUTO FUNC 2/30                                  |
| We can plot the graph and zoom in on      | fi Tano F2 F3 F3 F4 F5 F5 F6 F7 F6 F1 F1 Zoom Trace ReGraph Math Draw 🗸 🖉 🗄 |
| x = 0.                                    | 9                                                                           |
|                                           | Au                                                                          |
|                                           |                                                                             |
|                                           | ×                                                                           |

| Or from the table we can see that no matter how much we zoom in on $x = 0$ values do not tend towards the same number (left and right limits do not exist). | F1     F2     F2     F3     <                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                             | F2         F2 |
|                                                                                                                                                             | F1     F2     F2     F2       Setup (201) (201) (201) (201) (201)     F2     F2       x     y1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Example 1.2

| Instructions                                                                                                                                                                                                                                     | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example: Find $\lim_{x\to 0} \frac{\sin x}{x}$<br>This is an important limit, but one that<br>cannot be found by putting $x = 0$ , since<br>the function is undefined for $x = 0$ . Enter<br>F3 (3) $f(x) = SIN(x)$ ; $x \to x \to 0$ )<br>ENTER | F1700       F2       F3       F4       F5       F6         • Define $f(x) = \frac{\sin(x)}{x}$ Done         • f(.2)       .993347         • f(.1)       .998334         • f(.05)       .999583         • f(.01)       .999983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| If we change the value of x, taking steps<br>closer to 0 then the value of $f(x)$ gets<br>closer to 1.<br>F3 (3) $f(x) = SIN x$ F3 (3) $f(x)$ , x,<br>$) \div x$ , x, 0 (0) ENTER<br>) ENTER                                                     | F1700       F2×       F3×       F4×       F5×       F6×       F6× <td< td=""></td<> |
| Looking at the graph can help with what<br>the limit might be.                                                                                                                                                                                   | F1700     F2+     F3     F4     F5+     F7     €     €       Y     1       Y     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1       V     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| XX7 4 1 1                |                                                   |
|--------------------------|---------------------------------------------------|
| We can use a table       | 👻 🚰 Setup Calt Baseda - Dal Pow Ins Pow           |
|                          | x y1                                              |
|                          | B. undef                                          |
|                          | 4 97355                                           |
|                          | .6 .94107                                         |
|                          | .8 .8967                                          |
|                          | 184147                                            |
|                          | 1.2 .7767                                         |
|                          | 1.4 .70387                                        |
|                          |                                                   |
|                          |                                                   |
|                          | 👻 🚰 Setup Calt Haskes Del Postre Inc Post         |
|                          | x y1                                              |
|                          | 8. undef                                          |
|                          | .2 .99335                                         |
|                          | .3 .98507                                         |
|                          | .4 .97355                                         |
|                          | .5 .95885                                         |
|                          | .6 .94107                                         |
|                          | .7 .92031                                         |
|                          |                                                   |
|                          | ELTERNY EL Y EL     |
|                          | 👻 🚰 Setup (si) ( Hisbidge ( Deli Pow ( Ins. ( Pow |
|                          | x y1                                              |
|                          | 0.1 Laggage                                       |
|                          | .02 .99993                                        |
|                          | .03 .99985                                        |
|                          | .04 .99973                                        |
|                          | .05 .99958                                        |
|                          | 07 99919                                          |
|                          | x=0                                               |
|                          | MAIN RAD AUTO FUNC                                |
| We find that:            |                                                   |
| we mu mat.               | ✓ == Setup[Cell[Header [Del Pow]Ine Pow]          |
| $\sin x$                 |                                                   |
| $\lim - 1$               |                                                   |
| $x \rightarrow 0$ $\chi$ | .002 1.                                           |
|                          | .003 1.                                           |
|                          |                                                   |
|                          |                                                   |
|                          | .007 .99999                                       |
|                          | v=0                                               |
|                          | MAIN RAD AUTO FUNC                                |

### **1.3 Continuity**

| Instructions                                   | Screen Shot                                                    |
|------------------------------------------------|----------------------------------------------------------------|
| The function g used in 0.3 is                  | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAl9ebraCalcather Pr9mlaClean Up |
| discontinuous at $x=0$ and $x=4$ . The limits  |                                                                |
| at <i>x</i> =4 were calculated in Example 1.1. | <i>(</i> (), (),                                               |
|                                                | { 1,×<0,×<4                                                    |
|                                                | • $fine g(x) = [x - 3, else]$                                  |
|                                                | Done<br>n(x(4.when(x(0.1.x).x=3)                               |
|                                                | MAIN BAD EXACT FUNC 1/30                                       |
|                                                | Tools Zoom Trace Regraph Math Draw Pen :C                      |
|                                                |                                                                |
|                                                |                                                                |
|                                                |                                                                |
|                                                |                                                                |
|                                                |                                                                |
|                                                | MAIN BAD EXACT FUNC                                            |

| To be continuous at $x=4$ we would need<br>the right limit to equal the left. | F1+ F2+ F3+ F4+ F5<br>Tools A19ebra Calc Other Pr9ml0 Clean Up<br>■ lim g(x) undef<br>x → 4 |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                               | ■ lim g(x) 4<br>x→4 <sup>-</sup>                                                            |
|                                                                               | ■ lim g(x) 1<br>_x→4*                                                                       |
|                                                                               | limit(g(x),x,4,1)<br>MAIN RADEXACT FUNC 4/30                                                |

### **1.3.2** The intermediate value theorem

| Instructions                                         | Saraan Shat                                                        |
|------------------------------------------------------|--------------------------------------------------------------------|
|                                                      |                                                                    |
| This is very useful for showing that there           | Tóo1s Zóom Trace ReGraph Math Draw Pén :C                          |
| is a root of $f(x)=0$ between two domain             |                                                                    |
| values. If $f(a) < 0$ and $f(b) > 0$ (or vice versa) |                                                                    |
| then there is a zero of $f$ between $a$ and $b$ .    |                                                                    |
| Using the table of values in a graph we can          |                                                                    |
| then zoom in on the root.                            |                                                                    |
|                                                      | MAIN BAD EXACT FUNC                                                |
| For the function below we see from the               | F1+ F2 F3 F3 F5 F5 F5 F5                                           |
| table that $f(4) < 0$ and $f(5) > 0$ , so we zoom    | X JA2                                                              |
| in to find the root using the Intermediate           | 38161                                                              |
| Value Theorem                                        | 535914                                                             |
|                                                      | 6. 1.0778                                                          |
|                                                      | 7. 1.8086                                                          |
|                                                      | x=3                                                                |
| This table shows it is between 4.6 and 4.8           |                                                                    |
|                                                      |                                                                    |
|                                                      | 4.44381                                                            |
|                                                      | 4.61308                                                            |
|                                                      | 535914                                                             |
|                                                      | 5.2 .54103                                                         |
|                                                      | x=5.2                                                              |
|                                                      | MAIN BAD EXACT FUNC                                                |
| This table shows it is between 4.65 and              | Tools Setup Coloradar (Colorados Cons                              |
| 4.7. This can be continued to the required           | X 93<br>4 55 - 2048                                                |
| accuracy.                                            | 4.61308                                                            |
|                                                      | 4.650594                                                           |
|                                                      | 4.75 .00923                                                        |
|                                                      |                                                                    |
|                                                      | X=4.55<br>Main Bad Exact Func                                      |
| We could of course get the TI-89 to find             | F1+ F2+ F3 F4 F5+ F6+ F7+811<br>Too1sZoomTraceReGraphMathDrawPen(< |
| the root directly from the [Graph] or                |                                                                    |
| [Home] screens, but we need to                       |                                                                    |
| understand that this theorem is one basis            |                                                                    |
| for finding it. For the graph use F5 Math            |                                                                    |
| 2. Zero enter the lower and upper bounds             | Zero I 💛                                                           |
| (4 and 5 from the theorem) and we get                | xc:4.69315 yc:6.755e-14                                            |
| 1.60315 for the root of $f(r) = 0$ or the zero       |                                                                    |
| f                                                    |                                                                    |
| 01                                                   |                                                                    |
|                                                      |                                                                    |

| In the [Home] screen we use F2 1: Solve          | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCa1cOtherPr9miDClean UP |
|--------------------------------------------------|-----------------------------------------------------------|
| ( and enter $f(x)=0, x$ ). We need               |                                                           |
| approximate mode (holding down •)                | <pre>solve(f(x) = 0, x)</pre>                             |
| when pressing <u>(LWLII</u> ) to get the decimal | $x = \ln(2) + 4$                                          |
| answer.                                          | <pre>solve(f(x) = 0, x)</pre>                             |
|                                                  | × = 4.69315                                               |
|                                                  | solve(f(x)=0,x)                                           |
|                                                  | MOIN DOD EVOLT FILME 2/20                                 |

### **1.4** Limits involving infinity

| Instructions                                                             | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limits involving infinity are entered as                                 | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAl9ebraCalcOtherPr9mIOClean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| before but using [∞] key ( ● [CATALOG])as if it is the value approached. | $= \lim_{\substack{x \to \infty}} \left( \frac{1-2 \cdot x}{3 \cdot x + 5} \right) - 2/3$ $= \lim_{\substack{x \to -\infty}} \left( \frac{1-2 \cdot x}{3 \cdot x + 5} \right) - 2/3$ $\frac{\lim_{\substack{x \to -\infty}} \left( \frac{1-2 \cdot x}{3 \cdot x + 5} \right) - 2/3}{\lim_{\substack{x \to -\infty}} \left( \frac{1-2 \cdot x}{3 \cdot x + 5} \right) - 2/3}$ $\frac{\lim_{\substack{x \to -\infty}} \left( \frac{1-2 \cdot x}{3 \cdot x + 5} \right) - 2/3}{\lim_{\substack{x \to -\infty}} \left( \frac{1-2 \cdot x}{3 \cdot x + 5} \right) - 2/3}$ |

### 1.4.3 Asymptotes

| Instructions                                                                                                                                                                                                                                                                                                                                  | Screen Shot                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use the limits to find the horizontal                                                                                                                                                                                                                                                                                                         | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCa1cOtherPr9mIOClean Up                                                                                                                                 |
| asymptotes. For sloping asymptotes we<br>can use the TI-89 to divide the numerator<br>of a function by its denominator, using<br>F2, 3: Expand (the function F2, 7:<br>propFrac( will give the same result here).<br>The asymptote here is $y=-x/3 + 10/9$<br>since as $x \rightarrow \infty$ the remainder of the<br>expansion approaches 0. | • expand $\left(\frac{3 \cdot x - x^2}{3 \cdot x + 1}\right)$<br>$\frac{-10}{9 \cdot (3 \cdot x + 1)} - \frac{x}{3} + 10/9$<br><u>expand((3x-x^2)/(3x+1))</u><br>MAIN RAD EXACT FUNC 1/30 |
| The answer can be checked by drawing both graphs.                                                                                                                                                                                                                                                                                             | F1+     F2+     F3     F4     F5+     F6+     F7+     F3       Tools/Zoom/Trace/ReGraph/Math/Draw/Penic                                                                                   |

### 2.1 Tangents and rate of change

| Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consider the function $y=x^2$ . We can<br>define a rate of change function $r$ to be<br>the gradient of a chord of length $h$ . That<br>is: $r(h) = \frac{f(x+h) - f(x)}{h}$ (NB there is a<br>built-in numeric derivative function at F3<br>A: nDeriv which could be used but looks<br>rather different). We can then use this<br>function $r$ at a point, for example, $x = 2$ .<br>Whenever we change $h$ taking steps of $h$<br>closer to 0 then the value of $r$ is getting<br>closer to 4. | $ \begin{array}{c} f_{1} \underbrace{\texttt{TM}}_{\textbf{r}} \left[ f_{2} \underbrace{\texttt{F}_{2}}_{\textbf{r}} \underbrace{\texttt{F}_{3}}_{\textbf{r}} \underbrace{\texttt{F}_{4}}_{\textbf{r}} \underbrace{\texttt{F}_{5}}_{\textbf{r}} \underbrace{\texttt{F}_{6}}_{\textbf{r}} \underbrace{\texttt{Up}}_{\textbf{r}} \right] \\ \bullet \text{ Define } f(x) = x^2 & \text{ Done } \\ \bullet \text{ Define } r(h) = \underbrace{\frac{\texttt{f}(x+h) - f(x)}{h}}_{\textbf{h}} & \text{ Done } \\ \bullet \text{ Define } x = 2 & \text{ Done } \\ \bullet r(.1) & 4.1 \\ \bullet r(.01) & 4.01 \\ \bullet r(.001) & 4.001 \\ \hline \textbf{R(0,001)} & \\ \hline \textbf{R(0,01)} & \\ \hline R$ |
| We can confirm this by asking for the limit of <i>r</i> as <i>h</i> approaches 0.                                                                                                                                                                                                                                                                                                                                                                                                                | F17000 F2v     F3v     F4v     F5     F6v       ■ Define x = 2     Done       ■ r(.1)     4.1       ■ r(.01)     4.01       ■ r(.061)     4.001       ■ lim r(h)     4       ■ d/dx(f(x))     4       ■ d/dx(f(x))     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Note: 
$$f'(x) = \lim_{h \to 0} r(h) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (where the limits exist). Thus here the rate of change at  $x = 2$ :  $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = f'(2) = 4$ .

### 2.2 The derivative as a function

| Instructions                                              | Screen Shot                                                                  |
|-----------------------------------------------------------|------------------------------------------------------------------------------|
| To differentiate on the TI-89 we use the                  | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCa1cOtherPr9mIOClean Up                    |
| F3 Calc, 1: d( differentiate command,                     |                                                                              |
| which is also found at 2nd 8. The format                  |                                                                              |
| is d(function, variable to differentiate with respect to) | $= \frac{d}{d\times} \left( 3 \cdot \times^3 - 7 \cdot \times^2 + 6 \right)$ |
|                                                           | 9·× <sup>2</sup> - 14·×                                                      |
|                                                           | $\frac{d(3\times^{3}-7\times^{2}+6,\times)}{\text{Main}}$                    |
| In the second example we can use the                      | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebraCalcOtherPr9mIOClean Up                |
| function Trig collect, found in F2, 9:                    |                                                                              |
| Trig, 2: tCollect to simplify the answer.                 | $= \frac{d}{dx} \left( (\sin(x))^2 - \cos(x) \right)$                        |
| Use 2nd (-) for ANS, the previous answer.                 | $2 \cdot \sin(x) \cdot \cos(x) + \sin(x)$                                    |
|                                                           | <pre>tCollect(2 sin(x) cos(x) +)</pre>                                       |
|                                                           | $\frac{\sin(2 \cdot x) + \sin(x)}{\text{tCollect}(ans(1))}$                  |

### Example 2.1

| Instructions                                                                                                          | Screen Shot                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Find out whether the                                                                                                  |                                                                                                                              |
| function $f(x) = \begin{cases} x^2 & \text{for } x < 2\\ 6 - x & \text{for } x \ge 2 \end{cases}$ is                  | F1+ F2+ F3<br>Too1sZoomTraceReGraphMathDrawPen=C                                                                             |
| differentiable at $x=2$ .                                                                                             |                                                                                                                              |
| Define the piecewise functions by using                                                                               |                                                                                                                              |
| the following instructions.<br>$F_4 = f(x) = when (1 \times 0 \text{ and } [x]) = x$                                  | <u>\</u> Z                                                                                                                   |
| $\begin{array}{c} r \neq \prod f(x) = \text{when } (f(x) \neq 0) \\ 2 \prod 6 \prod r \prod \text{ENTER} \end{array}$ |                                                                                                                              |
| Then we graph the function $f$ We can                                                                                 | MAIN RAD EXACT FUNC                                                                                                          |
| define a function <i>Df</i> as its derivative                                                                         |                                                                                                                              |
| $\frac{d(f(x))}{dx}$ (use F6 2: Dot in [Y=] to plot                                                                   |                                                                                                                              |
| the derivative). Note that this may not be                                                                            |                                                                                                                              |
| defined on the whole domain.                                                                                          |                                                                                                                              |
| We can see the discontinuity in the                                                                                   |                                                                                                                              |
| derived function's graph, but must check                                                                              |                                                                                                                              |
| the limits on the [HOME] screen.                                                                                      |                                                                                                                              |
| Right limit is: F3 $\exists df(x) , x , 2 , 1$                                                                        | F1+ F2+ F3+ F4+ F5<br>Too1sA13ebra[Ca1c Other Pr3ml0]C1ean Up                                                                |
| Left limit is: F3 $\exists df(x) , x , 2 , (-)1$                                                                      |                                                                                                                              |
| ) ENTER                                                                                                               | ■ lim df(x) -1<br>x+2*                                                                                                       |
|                                                                                                                       | lim df(x) 4                                                                                                                  |
|                                                                                                                       | $\frac{x \neq 2^{-1}}{\text{limit}(df(x), x, 2, -1)}$                                                                        |
| Since the limits are not the same the                                                                                 | MAIN         BAD EXACT         FUNC         2/30           (F1+)         F2+         (F3+)         F5+         F6+         ) |
| function is not differentiable at $r=2$ and                                                                           | Too1s A19ebra Ca1c Other Pr9m10 Clean Up                                                                                     |
| df(2) is undefined.                                                                                                   | <pre>lim df(x) -1 x→2*</pre>                                                                                                 |
|                                                                                                                       | ■ lim df(x) 4<br>×+2 <sup>-</sup>                                                                                            |
|                                                                                                                       | ■ df(2) undef                                                                                                                |
|                                                                                                                       | df (2)<br>Main Bad Exact Func 3/30                                                                                           |

#### Example 2.2

| Instructions                                                                                                                                                                                                                         | Screen Shot                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example. Find the derivative of $f(x) = x^n$<br>Define the function $f(x) = x^n$ . When we<br>define the value of power, $n = 1, 2, 3, 4$ ,<br>10 the functions are changed to the actual<br>functions, $x, x^2, x^3, x^4, x^{10}$ . | $\begin{array}{c} \begin{array}{c} F_{1*} & F_{2*} \\ \hline Tools & F_{2*} & F_{3*} & F_{4*} & F_{5} \\ \hline Tools & F_{2*} & F_{3*} & F_{4*} & F_{5} \\ \hline \hline Tools & F_{3*} & F_{3*} & F_{4*} & F_{5} \\ \hline \hline \\ \bullet & Define & f(x) & \\ \bullet & Done \\ \bullet & f(x) & \\ \hline & & & \\ \hline \\ \hline & & & \\ \hline \\ \hline \\ \hline \\$ |

| If we define the slope function <i>r</i> as the average rate of change                  | F1+ F2+ F3+ F4+ F5<br>ToolsAl9ebraCalcletherPr3ml0Clean UP                       |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| average rate of change,                                                                 | • Define $r(x, h) = \frac{f(x + h) - f}{h}$                                      |
|                                                                                         | Bone                                                                             |
|                                                                                         | $(1 \ 2 \cdot x + h \ 3 \cdot x^2 + 3 \cdot h \cdot x)$                          |
|                                                                                         | r(x,h)<br>MAIN RAD AUTO FUNC 5/40                                                |
|                                                                                         | F1+ 5: 1:3* 1:** F5<br>Tools 8: 8: 8: 8: 8: 8: 8: 8:-                            |
|                                                                                         | ■r(x,h)                                                                          |
|                                                                                         | $\P + h^2 + 4 \cdot x^3 + 6 \cdot h \cdot x^2 + 4 \cdot I^2$                     |
|                                                                                         | h+0                                                                              |
|                                                                                         | $\frac{(1  2 \cdot x  3 \cdot x^2  4 \cdot x^3  10)}{d(f(x), x)}$                |
|                                                                                         | MAIN RAD AUTO FUNC 1/6                                                           |
| then we can see that the derivative of the functions are $1 - 2x - 2x^2 - 4x^3 - 10x^9$ | ToolsAnJeen F3+ F4+ F5<br>ToolsAnJeenaCalclotherPr9miD(Clean Up<br>= 110 F(X, T) |
| Tunctions are $1, 2x, 5x, 4x, 10x$ .                                                    | h+0                                                                              |
|                                                                                         | $(1 2 \times 3 \times 4 \times 10)$                                              |
|                                                                                         | $\frac{1}{4x}(\tau(x))$                                                          |
|                                                                                         | CT 2/4 3/4 4/4 10/<br>C(T(x),x)<br>Main Rep auto FUNC 2/40                       |
| Using the rate of function <i>r</i> , we can                                            | f17mm) F2▼ ∫F3▼ ∫F4▼ ↓F5<br>▼ ← AlgebraCalc OtherPrgmIO Clean Up                 |
| get that the general derivative of $x^n$ is                                             | ■ Define f(x)=x <sup>n</sup> Done                                                |
| $nx^{n-1}$                                                                              | ■Define r(h)= <del>f(x+n)-f(x)</del> Done                                        |
|                                                                                         | • expand(r(h)) $\frac{(x+h)^n}{h} - \frac{x^n}{h}$                               |
|                                                                                         | ■ lim r(h) n·x <sup>n = 1</sup><br>h≠0                                           |
|                                                                                         | limit(r(h),h,0)<br>MAIN RAD AUTO FUNC 4/30                                       |
| Thus $\frac{dy}{dt} = f'(x) = \lim \frac{(x+h)^n - x^n}{dt} = nx^{n-1}$                 | fi]7700 F2▼ \F3▼ \F4▼ \F5<br>▼                                                   |
| $dx \qquad h \rightarrow 0 \qquad h$                                                    | • expand(r(h)) $\frac{(x+h)^n}{h} - \frac{x^n}{h}$                               |
|                                                                                         | • lim r(h) n x <sup>n</sup> - 1                                                  |
|                                                                                         | $\bullet \frac{d}{dx}(f(x)) \qquad n \cdot x^{n-1}$                              |
|                                                                                         |                                                                                  |

### 2.2.1 Second and higher derivatives

| Instructions                                                                                                                                                                                                                                                                                                        | Screen Shot                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| These can be accomplished by using<br>repeated applications of the CAS function<br><i>d</i> . Here functions $y4(x)$ and $y40(x)$ from<br>the [Y=] list have been used. Note the<br>inclusion of the variable each time and<br>the option of finding the value of a<br>derivative at a specific value of <i>x</i> . | $= y4(x) \qquad 4 \cdot x \cdot (x^{2} + 3)$ $= \frac{d}{dx} \left[ \frac{d}{dx} (y4(x)) \right] \qquad 24 \cdot x$ $\frac{d}{d(d(y4(x), x), x)}$ |
| derivative at a specific value of x.                                                                                                                                                                                                                                                                                | MAIN RAD EXACT FUNC 2/30                                                                                                                          |

|                                                                | F1+ F2+ F3+ F4+ F5<br>Too1sA13ebra[Ca1c Other Pr3ml0 Clean Up                                                                   |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                | $= \frac{d}{d\times} \left( \frac{d}{d\times} (940(\times)) \right)$                                                            |
|                                                                | $\frac{-1}{\sqrt{25-x^2}} - \frac{x^2}{(25-x^2)^{3/2}}$                                                                         |
|                                                                | $\frac{d(d(y40(x), x), x)}{Main \qquad \text{Rad Exact Func } 1/30}$                                                            |
|                                                                | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAlgebra(CalcOther)PrgmlD(Clean Up)                                                               |
|                                                                | $(25 - x^2)^{-1}$                                                                                                               |
|                                                                | $= \frac{\alpha}{d\times} \left[ \frac{\alpha}{d\times} \left( \frac{\alpha}{d\times} (940(\times)) \right) \right] \times = 3$ |
|                                                                | - <u>225</u><br>1024                                                                                                            |
|                                                                | 2(d(d(y40(x),x),x),x) x=3<br>MainBAD EXACTFUNC2/30                                                                              |
| Alternatively we can specify the <i>n</i> th                   | (F1+) F2+ [F3+]F4+]F5 F6+<br>Too1sA19ebra[Ca1C Other Pr9ml0[C1ean Up                                                            |
| derivative with F3 1: $d$ (differentiate function, $x$ , $n$ ) | $= \frac{a^3}{a^{\times 3}} \left( 4 \cdot \times \cdot \sqrt{x^2 + 3} \right)$                                                 |
|                                                                | 5/2                                                                                                                             |
|                                                                | (x <sup>2</sup> + 3) <sup>3/2</sup>                                                                                             |
|                                                                | <u>d(4×√(×^2+3),×,3)</u><br>Main rad Exact 30 1/30                                                                              |

#### 2.3 Differentiation rules

| Instructions                                                                    | Screen Shot                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The TI-89 can act on functions that are<br>unknown, to give the differentiation | (f1770)<br>↓ ↓ Algebra Calc Other PrgmIO Clean Up                                                                                                                                                                                   |
| formulas.                                                                       |                                                                                                                                                                                                                                     |
|                                                                                 | $\bullet \frac{d}{dx} (f(x) \cdot g(x))$                                                                                                                                                                                            |
|                                                                                 | $\frac{d}{dx}(f(x)) \cdot g(x) + \frac{d}{dx}(g(x)) \cdot f(x)$                                                                                                                                                                     |
|                                                                                 | RC 1 (X) + 9 (X) , X)<br>MAIN RAD RUTO FUNC 1/30                                                                                                                                                                                    |
|                                                                                 | (1770)<br>↓ ↓ Algebra Calc Other PrgwIO Clean Up                                                                                                                                                                                    |
|                                                                                 |                                                                                                                                                                                                                                     |
|                                                                                 | den a de comercia                                                                                                                                                                                                                   |
|                                                                                 | $= \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) \qquad \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) - \frac{d}{dx} \left( \frac{g(x)}{g(x)} \right)^{-1} \left( \frac{d}{dx} \left( \frac{g(x)}{g(x)} \right)^{-1} \right)^{-1} $ |
|                                                                                 | d(f(x)/g(x),x)           Main         BAD AUTO           FUNC 1/20                                                                                                                                                                  |
| The common denominator function F2 6:                                           | (f17m0)<br>+ ← (F1gebra Calc)Other Prgm10(Clean Up)<br>(XX   4X) = 4(X) = 4(X)                                                                                                                                                      |
| comDenom( has been used to simplify an                                          | $\begin{bmatrix} \frac{d}{dx}(f(x)) & \frac{d}{dx}(g(x)) \cdot f(x) \end{bmatrix}$                                                                                                                                                  |
| common denominator.                                                             | • comDenom $\left[\frac{\alpha \times \cdots \times \alpha}{g(x)} - \frac{\alpha \times \cdots \times \alpha}{(g(x))^2}\right]$                                                                                                     |
|                                                                                 | $\frac{d}{dx}(f(x)) \cdot g(x) - \frac{d}{dx}(g(x)) \cdot f(x)$                                                                                                                                                                     |
|                                                                                 | $(g(x))^2$                                                                                                                                                                                                                          |
|                                                                                 | MAIN RAD AUTO FUNC 2/30                                                                                                                                                                                                             |

| Otherwise the TI-89 can be used to check differentiation of these functions by | F1+ F2+ F3+ F4+ F5<br>Too1sA19ebraCa1clotherPr9ml0Clean Up                                                               |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| direct entry as here                                                           |                                                                                                                          |
| uncer entry, as here.                                                          |                                                                                                                          |
|                                                                                | $= \frac{\alpha}{d \times} \left[ \left( 2 \cdot \times^2 - 5 \right) \cdot \left( 3 - 7 \cdot \times^3 \right) \right]$ |
|                                                                                | -×·(70·× <sup>3</sup> - 105·× - 12)                                                                                      |
|                                                                                | $\frac{2((2\times^2-5)(3-7\times^3), x)}{4}$ MAIN RAD EXACT FUNC 1/30                                                    |
|                                                                                | F1+ F2+ F3+ F4+ F5<br>Too1s A19ebra Ca1c Dther Pr3mi0 C1ean Up                                                           |
|                                                                                |                                                                                                                          |
|                                                                                | $= \frac{d}{dx} \left( \tan(x) \cdot (\sin(x))^2 \right)$                                                                |
|                                                                                | $(\tan(x))^2 \cdot \left(2 \cdot (\cos(x))^2 + 1\right)$                                                                 |
|                                                                                | N(tan(x)*(sin(x))^2,x)                                                                                                   |
|                                                                                | F1+ F2+ F3+ F4+ F5<br>ToolsAl3ebraCalcOtherPr3mIDClean Up                                                                |
|                                                                                | $= \frac{d}{d\times} \left( \frac{2 \cdot x^2 - 5}{3 - 7 \cdot x^3} \right)$                                             |
|                                                                                | $\times (14 \cdot \times^3 - 105 \cdot \times + 12)$                                                                     |
|                                                                                | $(7 \cdot \times^3 - 3)^2$                                                                                               |
|                                                                                | d((2×^2-5)/(3-7×^3),×)<br>MAIN RAD EXACT FUNC 1/30                                                                       |

### 2.4 The Chain Rule

| Instructions                                                                    | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The rule for this can be seen similarly for $f(x)$ raised to the power of $n$ . | (f1770) F2▼<br>↓ F3▼ Algebra Calc Other PrgmIOClean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                 | $ \begin{array}{c} \bullet \frac{d}{dx} \Big[ (f(x))^n \Big] & (f(x))^{n-1} \cdot \frac{d}{dx} (f(x)) \cdot n \\ \hline \frac{d\zeta(f(x))^n, x)}{d\zeta(f(x))^n, x} & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Again functions are entered directly, although we can define them separately.   | F17700 F2▼<br>F17700 F2▼<br>F17700 F12▼<br>F17700 F12<br>F17700 F12<br>F177 |
|                                                                                 | ■ Define f(x) = x <sup>3</sup> Done<br>■ Define g(x) = 3 · x + 2 Done<br>■ f(a(x)) (3 · x + 2) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                 | $= \frac{d}{d_{X}} (f(g(x))) \qquad 9 \cdot (3 \cdot x + 2)^{2}$ $\frac{d \langle f(g(x)), x \rangle}{M \text{HIN}} \qquad \text{EAD AUTO} \qquad \text{FUNC 4/30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                 | F1+ F2+ F3+ F4+ F5<br>Too1s A19ebra Ca1c Other Pr9mi0 C1ean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                 | $= \frac{d}{dx} \left( \left( \sin(e^{3 \cdot x}) \right)^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                 | 6·e <sup>3·×</sup> ·sin(e <sup>3·×</sup> )·cos(e <sup>3·</sup> )<br>2(sin(e^(3×))^2,×)<br>MAIN BAD EXACT FUNC 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| F1+ F2+ F3+ F4+ F5 F6+<br>Too1sA19ebraCa1cOtherPr9mIOCTean UP                                              |
|------------------------------------------------------------------------------------------------------------|
|                                                                                                            |
| $= \frac{d}{d \times} \left( \left( \cos(3 \cdot \times + 1) \right)^4 \right)$                            |
| $\frac{-12 \cdot \sin(3 \cdot x + 1) \cdot (\cos(3 \cdot x + 1))}{\pi^2 (\cos(3 \cdot x + 1))}$            |
| a(COS(3x+1)'4, x)           Main         Rad Exact           Finc         1/30           Finc         1/20 |
| Tóðis Atjébra Caic Other Primil Cléan Up                                                                   |
|                                                                                                            |
| $= \frac{d}{d\times} \left( \left( \cos(3 \cdot \times + 1) \right)^4 \right)$                             |
| $\frac{4\sin(3\cdot x+1)\cdot(\cos(3\cdot x+1))^3}{d(\cos(3\cdot x+1))^{4\cdot x}}$                        |
| MAIN RAD EXACT FUNC 1/30                                                                                   |

### 2.5 Implicit differentiation

| Instructions                                 | Screen Shots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This can be accomplished by defining y       | [F1+] F2+ [F3+] F4+] F5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| to be some function of x here a              | Tools H19ebra Ca1C Other Pr9MID Clean UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| to be some function of $x$ , here $c$ .      | ■Define y=c(x) Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                              | $= \frac{d}{d\times} (5 \cdot \times^3 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | $2 \cdot c(x) \cdot \frac{d}{dx} (c(x)) + 15 \cdot x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              | $\frac{d(5\times^{3}+y^{2},x)}{d(5\times^{3}+y^{2},x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              | THIN BAD EXACT FUNC 2730<br>F1+ F2+ F3+ F4+ F5 F6+<br>Too1s A19ebra Ca1c Other Pr9m10 Clean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | ■y c(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              | $= \frac{d}{d\times} \left( \times^2 + y^2 = 1 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              | $\frac{2 \cdot c(x) \cdot \frac{d}{dx}(c(x)) + 2 \cdot x = 0}{1 + 2 \cdot x = 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | <u>d(x^2+y^2=1,x)</u><br>MAIN RAD EXACT FUNC 2/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Inverse trig functions are entered directly. | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebra[Calc Other Pr9m10 Clean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | 41 - x - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              | $\frac{u}{d\times}(\cos^4(\times)) \qquad \frac{1}{\sqrt{1-x^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | $= \frac{d}{dx}(\tan^4(x)) \qquad \frac{1}{x^2 + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | $\frac{\alpha}{d(\tan^4(x),x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The TL 80 confirms the value of the limit    | MAIN RAD EXACT FUNC 3/30<br>(F1+) F2+ (F3+) F4+ (F5 ) F6+ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| giving <i>e</i> .                            | Too1s A19ebra Ca1c Other Pr3mlO C1ean UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | ( 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | $= \lim_{x \to 0} \left[ (1+x)^{\times} \right] e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | limit((1+x)^(1/x),x,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                              | MAIN         RAD EXACT         FUNC         1/30           (F1, F2, F3, F3, F4, F5, F6, F6, F7, F7, F6, F7, F7, F7, F7, F7, F7, F7, F7, F7, F7 |
| Note the asymptote at $r=-1$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | MAIN BAD EXACT FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### 3.1 Maximum and minimum values and

### **3.2 Derivatives and the shapes of curves**

| Instructions                                                                                      | Saraan Shata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relative Extrema: Find all relative                                                               | (f1770)<br>→ f2→ F2→ F3→ F4→ F5<br>→ f→ Algebra Calc Other PrgmIO Clean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $g(x)=x^3-9x^2+24x-7$ and confirm your<br>result by sketching the graph The TI-89                 | • Define $g(x) = x^3 - 9 \cdot x^2 + 24 \cdot x - 7$ Done<br>• $\frac{g}{2}(-x \cdot x)$ = 7 $x^2 + 24 \cdot x - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| method combines use of the differentiation command, the solve                                     | $= \frac{1}{dx}(9(x)) \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| command for $\frac{dy}{dx} = 0$ ,                                                                 | SOLVE(ans(1)=0,x)<br>Main Rad Reprox func 3/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| graphs of the function and its derivative<br>to relate the algebraic solution to the<br>pictures, | Ham Bad AFFED: FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                   | Image: State of the state o |
| and a table of values to get coordinates of points, check limits, etc.                            | 17     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### Example 3.1

| Instructions                              | Screen Shot          |
|-------------------------------------------|----------------------|
| Find the relative maximum and             | (F17700) F2▼ F3<br>▼ |
| minimum values of the function            |                      |
| $f(x) = x^3 - x.$                         |                      |
| First we can get an idea of the solutions |                      |
| by sketching the graphs of the function   |                      |
| and its derivative                        | <u>99=</u> //        |



#### Example 3.2

| The derivative can be zero without there | F17700 F2▼ F3 F4 F5▼ F6▼ 50 50 50 50 50 50 50 50 50 50 50 50 50 |  |
|------------------------------------------|-----------------------------------------------------------------|--|
| being a relative maximum or relative     | ▲PLOTS<br>✓41=× <sup>3</sup> - 3·× <sup>2</sup> + 3·× - 1       |  |
| minimum.                                 | √y2 <u>d</u> (y1(x))                                            |  |
| Example. $f(x) = x^3 - 3x^2 + 3x - 1$    | y3=<br>y <u>4</u> =                                             |  |
|                                          | 95=<br>96=<br>92=                                               |  |
|                                          | 9/=<br>                                                         |  |
|                                          | <u>y2(x)=a(y1(x),x)</u><br>Main rad approx func                 |  |



#### 3.3 Optimisation problems

#### Instructions

Often in these questions we have to find the optimum value of a function of two or more variables by first substituting for one of the variables a function previously formed. This can be done in a relatively easy way on the TI-89. Taking example 2 on the manual in section 3.3, we have to minimise the cost,  $C = 2(2\pi r^2) + 2\pi rh$ subject to  $\pi r^2 h = 300$ . Note that the form of the condition (using |) means that the answer comes out well or does not come

Screen Shot  

$$\begin{bmatrix}
F_{1} + F_{2} + F_{3} + F_{3$$

| [F1+] F2+ [F3+] F5 [ F6+ ] ]                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Too1s A19ebra Ca1c Other Pr9mI0 Clean UP                                                                                                                  |
| ■Define c=4·π·r <sup>2</sup> +2·π·r·h                                                                                                                     |
| Done                                                                                                                                                      |
| $\bullet \left( \pi \cdot \mathbf{r} \cdot \mathbf{h} \right) = 0, \mathbf{r} \left( \pi \cdot \mathbf{r}^2 \cdot \mathbf{h} = 300 \right)$               |
| $r = \frac{-h}{4}$                                                                                                                                        |
| π*r*h, r)=0, r) πr^2*h=300<br>MAIN RAD EXACT FUNC 2/30                                                                                                    |
| F1+ F2+ F3+ F4+ F5<br>Too1s A19ebra Ca1c Other Pr3mi0 C1ean Up<br>T = 4                                                                                   |
| • solve $\left(\frac{d}{dr}\left(4\cdot\pi\cdot r^2+2\cdot\pi\cdot r\cdot r\right)\right)$                                                                |
| $r = \frac{5^{2/3} \cdot 3^{1/3}}{\pi^{1/3}}$                                                                                                             |
| 501ve(d(4*π*r^2+2*π*r*h,r<br>MAIN RAD EXACT FUNC 3/30                                                                                                     |
| ToolsAlgebra[Calc Other Prgmi0]Clean UP<br>ToolsAlgebra[Calc Other Prgmi0]Clean UP<br>4                                                                   |
| $= \left( + 2 \cdot \pi \cdot \mathbf{r} \cdot \mathbf{h} \right) = 0, \mathbf{r} \right) \left  \mathbf{h} = \frac{300}{\pi \cdot \mathbf{r}^2} \right $ |
| $r = \frac{5^{2/3} \cdot 3^{1/3}}{\pi^{1/3}}$                                                                                                             |
| r*h,r)=0,r) h=300/(πr^2)<br>MAIN BAD EXACT FUNC 3/30                                                                                                      |

#### 3.4 Antidifferentiation

| Instructions                                                                                                                                                                                                                                                                       | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use the symbol $\int$ found at 2nd $\boxed{7}$ for the antiderivative. We can enter on the [Y=] screen the function $y1(x) = 2nd$ $\boxed{7}$ function, $x$ ) + $c$ when $c$ ={list of values separated by commas}. This will give us a number of antiderivatives of the function. | $\begin{array}{c} \begin{array}{c} F_{1+} F_{2+} F_{3} F_{4} F_{5} F_{6+} F_{5+} F_{5+} \\ \hline Tools Zoom[Edit] &  [All Style St$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| y1 is then the function $F(x)$ .                                                                                                                                                                                                                                                   | $\begin{array}{c c} F_{4}^{F_{4}} \left[ F_{2}^{F_{4}} \right] & \begin{array}{c} F_{4}^{F_{4}} \left[ F_{4}^{F_{4}} \left[ F_{4}^{F_{4}} \right] & \begin{array}{c} F_{4}^{F_{4}} \left[ F_{4}^{F_{4}} \left[ F_{4}^{F_{4}} \right] & \end{array} & \begin{array}{c} F_{4}^{F_{4}} \left[ F_{4}^{F_{4}} \left[ F_{4}^{F_{4}} \right] & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} \\ \end{array} \right] \end{array}$ |
| Graphing the function will show what<br>these functions look like and the<br>relationship between them.                                                                                                                                                                            | F4- F2- F3 F4 F5- F6- F7-51<br>TootsZoomTraceReGraphMathDrawPenI-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### Displacement, velocity and acceleration

| Instructions                                           | Screen Shot                                             |
|--------------------------------------------------------|---------------------------------------------------------|
| Set the graph drawing mode to                          | F1+ F2+F3 F4 F5+ F6+ S<br>ToolsZoomEdit / AllStyleskaal |
| differential equations using MODE                      | +PLOTS<br>t0=-3.                                        |
| Graph 6: DIFF EQUATIONS. In the Y=                     | √y1'= <mark>t + y1<sup>2</sup></mark>                   |
| mode the DEs are then set up ready for                 |                                                         |
| you to enter. The 11-89 uses $t$ not $x$ .             | 914-                                                    |
| The variable $t$ is given a key of its own on          | <u>y1'(t)=t+y1^2</u>                                    |
| the 11-89, like $x$ , $y$ , and $z$ namely $\langle .$ | MAIN DEGEXACT DE                                        |
| To draw a direction field using the $TL_{89}$          | [F1+]F2+ [F3+].F4+]. F5]F6+]                            |
| To draw a direction field using the 11-69.             | Tools Algebra calc Other PrgmIO Clean Up                |
|                                                        |                                                         |
|                                                        |                                                         |
|                                                        | ■Define y1'(t)=t+y1 <sup>2</sup>                        |
|                                                        | Done<br>Define_u1'(t)=t+u1^2                            |
|                                                        | MAIN DEGEXACT DE 1/30                                   |
|                                                        | TootsZoomTraceReGraphMathDrawPénIC                      |
|                                                        | ///////////////////////////////////////                 |
|                                                        | <u>}}}<!--2/16/11/11</u--></u>                          |
|                                                        |                                                         |
|                                                        | 1                                                       |
|                                                        |                                                         |

| Select the $[Y=]$ screen and enter the<br>differential equation using <i>t</i> (and <i>Y</i> 1—or<br><i>Y</i> n—if needed). There is no use of <i>x</i> .<br>Use $\bullet$ [Window] (F2) to set the window<br>dimensions to an appropriate <i>t</i> and <i>Y</i> size.<br>Choose 'GRAPH' and it will put in the<br>direction field. | F1+       F2+       F3       F4       F5+       F6+       F7+       F8         Tools       Tools <td< th=""></td<> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selecting F8 IC enables a particular<br>antiderivative solution to be drawn: IC<br>stands for Initial Conditions, meaning a<br>point (or points) known to be on the<br>graph of the antiderivative required. Enter<br>the co-ordinates or move the cursor to a<br>chosen point and press ENTER.                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The solution curves for the antiderivative through the given point(s) is drawn.                                                                                                                                                                                                                                                     | F1:     F2:     F3:     F3:     F3:     F5:     F6:     F7:     F8:       ToolsZoom     TraceReGraph     F1:     F6:     F7:     F8:       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       I     I     I     I     I     I       MAIN     DEGESACT     DE     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| To solve a DE algebraically we use the<br>command F3 C: deSolve(<br>Use 2nd = for the y'.<br>Example 189 use<br>F3 C: deSolve( $y$ 2nd = = $2t(y+3)$ and<br>y(0)=4, t, y)                                                                                                                                                           | Fire F2+ F3+ F4+ F5<br>Tools Algebra Calc atter Promin Clean up<br>• deSolve(y' = 2 · t · (y + 3) ar)<br>$y = 7 \cdot e^{t^2} - 3$<br>deSolve(y'=2t*(y+3) and y)<br>Main Bab EXACT FF 1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     | ■ $t \cdot (y + 3)$ and $y(0) = 4, t, y$<br>$y = 7 \cdot e^{t^2} - 3$<br>$\frac{2t \cdot (y + 3)}{2}$ and $y(0) = 4, t, y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### 4. Integration

#### 4.1 The area problem

To find the area under the curve  $f(x) = x^2 + 2$ , from x = -1 to x = 2. using rightsum we have  $x_0 = -1$ ,  $x_1 = -1 + 3/n$ ,  $x_2 = -1 + 2 \cdot 3/n$ , ...  $x_i = -1 + 3i/n$ , ...  $x_n = -1 + 3n/n = -1 + 3=2$ .

So the area can be obtained by taking the limit (if it exists) of the Riemann sum as  $n \rightarrow \infty$ .

Area = 
$$\lim_{n \to \infty} \left( \sum_{i=1}^{n} \frac{3}{n} (f(x_i)) \right) = \lim_{n \to \infty} \left( \sum_{i=1}^{n} \frac{3}{n} \left( \left( -1 + \frac{3i}{n} \right)^2 + 2 \right) \right).$$

| Instructions                                                       | Screen Shots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On the TI-89 this is entered as:                                   | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCa1cOtherPr9mIDClean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| F3 3: limit( F3 4: $\Sigma$ ( sum expression), <i>x</i> ,          | $\frac{n}{2}\left[x\left((-x_{ij})^2\right)\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $n, 1, \infty$ ), or enter the sum first and then                  | $\sum_{i=1}^{n} \left[ \frac{3}{n} \cdot \left[ \left[ -1 + \frac{3}{n} \right] + 2 \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| take the limit. The , $x$ tells the calculator                     | $9 \cdot (2 \cdot n^2 + n + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to sum with respect to <i>x</i> , and the <i>n</i> , 1, $\infty$ ) | 2·n <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| is part of the limit (from $n=1$ to $\infty$ ). Don't              | $\sum(3/n*((-1+3*i/n)^{2}+2), i,)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| forget to make sure that $n$ , and $i$ do not                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| have values in them (use F4 4: Delvar ii<br>they do)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| they do).                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    | F1+ F2+ F3+ F4+ F5<br>Too1sA19ebra[Ca1c Other Pr9m10 C1ean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                    | $\frac{5(2\pi)^{-1}(1+1)}{2\cdot n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                    | $= \lim_{n \to \infty} \sum_{i=1}^{n} \left( \frac{3}{n} \cdot \left( \left( -1 + \frac{3 \cdot i}{n} \right)^2 + \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                    | $\frac{1}{1} \frac{1}{1} \frac{1}$ |
|                                                                    | First         First <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    | 2·n <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                    | $\bullet \P_{m} \sum_{i=1}^{n} \left[ \frac{3}{n} \cdot \left[ \left( -1 + \frac{3 \cdot i}{n} \right)^2 + 2 \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                    | 9<br>+3*i/n)^2+2),i,1,n),n,∞)<br>MANN RAD EXACT FUNC 2/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The summation function F3 4: $\Sigma$ ( sum                        | F1+ F2+ F3+ F4+ F5<br>Too1sA19ebraCa1c@therPr9mIDClean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| will also give the general summation                               | n /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| results in Theorem 4.2.1.                                          | $= \sum_{i=1}^{n} [i^2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    | $n \cdot (n+1) \cdot (2 \cdot n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                    | $\frac{6}{\Sigma(i^2, i, 1, n)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                    | MAIN RAD EXACT FUNC 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    | Too1s A13ebra Ca1c Other Pr9mlO C1ean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    | • $\sum_{i=1}^{n} (i^3)$ $\frac{n^2 \cdot (n+1)^2}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                    | $\frac{1-1}{\Sigma(1^{3}, 1, 1, n)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### 4.4 Fundamental Theorem of the Calculus

| Instructions                                                                                                                                                                                                         | Screen Shots                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The derivatives of the integral functions<br>can be found on the TI-89 by defining the<br>function first using F4 1: Define and then                                                                                 | $\begin{bmatrix} F_{1+} & F_{2+} & F_{3+} & F_{4+} & F_{5} \\ \hline Toots   a T sebra   Calc  D ther   Fr Smill  Clean Up \\ \end{bmatrix}$ $\square Define f(x) = \begin{bmatrix} \times (1 + t^2) dt \end{bmatrix}$                                                                                                                                                   |
| finding its derivative with respect to r (or                                                                                                                                                                         | Benne ((x)-jo(1 to juto                                                                                                                                                                                                                                                                                                                                                  |
| these two steps can be done together)                                                                                                                                                                                | Done 2.4                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                      | $ \frac{\mathbf{a}_{\mathbf{x}}(\mathbf{r}(\mathbf{x}))}{\mathbf{a}_{\mathbf{x}}(\mathbf{r}(\mathbf{x}))} \times \mathbf{r} + 1 $                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                      | <u>d(f(x),x)</u><br>MAIN BAD EXACT FUNC 2/30                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                      | F1+ F2+ F3+ F4+ F5<br>Too1sA13ebra[Ca1c Other Pr3ml0 Clean Up                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                      | • Define $f(x) = \int_{0}^{\sqrt{x}} \left(\frac{\cos(t)}{t}\right) dt$<br>Done                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                      | $= \frac{d}{d\times}(f(x)) \qquad \frac{\cos(\sqrt{x})}{2 \cdot x}$                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                      | d(f(x),x)<br>MAIN RAD EXACT FUNC 2/30                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                      | F1+ F2+ F3+ F4+ F5<br>Too1sA19ebraCatcluther Pr9mIDC1ean Up                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                      | • Define $f(x) = \int_{1}^{x} \left(\frac{1}{t}\right) dt$                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                      | $= \frac{d}{dx}(f(x)) \qquad \qquad \frac{1}{x}$                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |
| Using CAS with the theorem can help us with antiderivatives for functions such as                                                                                                                                    | FINN BUD BALL FUNC 2/30<br>F1+ F2+ F3+ F4+ F5 F6+<br>Too1s A19ebra Ca1c Other Pr9m10 Clean Up                                                                                                                                                                                                                                                                            |
| $\frac{1}{x}$ .                                                                                                                                                                                                      | • Define $f(x) = \int_{1}^{x} \left(\frac{1}{t}\right) dt$                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                      | Done                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      | $\frac{\bullet f(2)}{f(2)} = \frac{\ln(2)}{\ln(2)}$                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                      | MAIN RAD EXACT FUNC 2/30                                                                                                                                                                                                                                                                                                                                                 |
| Areas under curves are best calculated by<br>evaluating the correct definite integral.<br>This can be done numerically on the<br>graph screen, or on the [HOME] screen. For<br>example to find the definite integral | P1790     P2*     P3     P4     P5*     P6*     P4*       ×     ✓     ✓     Allistyle     >     >       ×     ✓     Ø     >     >       ×     ✓     Ø     >     >       ×     ✓     Ø     >     >       ×     ✓     Ø     >     >       ×     ✓     Ø     >     >       ×     ✓     Ø     >     >       y3=     y4=     y5=     y6=     y7=       y9=      Ø     >     > |
| $\int_{2}^{3} (x+2) dx$ we can use the graph of $f(x)$                                                                                                                                                               | <u>919=</u><br><u>92(x)=</u><br>MAIN BED BUTD FUNC                                                                                                                                                                                                                                                                                                                       |
| on the TI-89 to see the area represented                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |
| by the integral and numeric integration to                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |
| calculate it.                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |
| • $[Y=] x + 2$ ENTER • [GRAPH] F5 7 2<br>ENTER 5 ENTER                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |



Area =  $\int_{a}^{b} \{f(x) - g(x)\} dx$ , where x=a and x=b are the x-values of the two points of intersection (if they exist).

We can also use the formula  $\int_{a}^{b} |f(x)| dx$  to find the area between the graph of *f* and the *x*-axis, and then we do not have to worry about where the function intersects the axis or the signs of the integrals. This works well on the TI-89 since we have the function abs.

For example calculate the area between f(x)=x(x+1)(x-2) and the x-axis from x=-1 to x=2. It is always good to look at the graph of the function to see what is going on.



# 5. Integration techniques

| Instructions                                                      | Screen Shot                                                                                             |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Specific techniques for integration are not                       | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebra[Calc OtherPr9mi0 Clean UP                                            |
| required when using the TI-89 since it                            |                                                                                                         |
| will integrate all integrable functions,                          |                                                                                                         |
| using the J function. However, we can                             | ■∫tan(a·x)dx                                                                                            |
| verify some of the formulas for general                           |                                                                                                         |
| functions                                                         | ∫(tan(a*x),x)                                                                                           |
| runonons.                                                         |                                                                                                         |
| Note how functions such as $\sec^2(ax)$ are                       | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAl9ebra[Calc Other Pr9ml0[Clean Up                                       |
| entered, and the need for () around the                           |                                                                                                         |
| whole of a numerator and/or a                                     | $\left[\left(\frac{1}{2}\right)d\times\right]$                                                          |
| denominator in $\frac{1}{x^2 + 2}$ and $\frac{3x + 2}{x^2 + 2}$ . | $\int \left[ \left( \cos(\mathbf{a} \cdot \mathbf{x}) \right)^2 \right] $                               |
| $a^2 + x^2$ $x(x^2 + 1)$                                          |                                                                                                         |
|                                                                   | $\frac{\int (1/(\cos(a*x)^2), x)}{\text{Main}_{\text{BAD}} \text{ Exact}_{\text{FUNC}} \frac{2/30}{2}}$ |
| Integrating a rational function                                   | (F1+) F2+ (F3+) F4+ F5 F6+<br>Too1sA13ebraCa1c Other Pr3ml0 C1ean Up                                    |
|                                                                   | $\int \left( \frac{3 \cdot x + 2}{2} \right)_{d \times d}$                                              |
|                                                                   | $\left[ \int \left[ \frac{1}{x \cdot (x^2 + 1)} \right]^{\alpha \times \alpha} \right]$                 |
|                                                                   | $\ln\left(\frac{x^2}{2}\right) + 3 \cdot \tan^4(x)$                                                     |
|                                                                   | $\frac{(x^2+1)}{(((3y+2))((y_1(y_2(y_1(y_2(y_1(y_1(y_1(y_1(y_1(y_1(y_1(y_1(y_1(y_1$                     |
|                                                                   | MAIN RAD EXACT FUNC 1/20                                                                                |
| An inverse trig function.                                         | ToolsA19ebraCalcatePr9mIDClean UP                                                                       |
|                                                                   |                                                                                                         |
|                                                                   | $t_{an4}(\times)$                                                                                       |
|                                                                   | $\left[ \left( \frac{1}{a^2 + a^2} \right) dx - \frac{dan(a)}{a} \right]$                               |
|                                                                   | J(a <sup>-</sup> + x <sup>-</sup> )<br>J(1/(a <sup>2</sup> +x <sup>2</sup> ),x)                         |
| Integrating a rational function                                   | MAIN BAD EXACT FUNC 1/30                                                                                |
| integrating a rational failetion                                  | $\frac{100 \text{ spectral process process}}{\sqrt{2 - y - 2}}$                                         |
|                                                                   | $\left\  \frac{1}{\left(x-1\right)^3 \cdot \left(x^2+x+1\right)} \right\ ^{dx}$                         |
|                                                                   | $( x^2 + x + 1 )$                                                                                       |
|                                                                   | $2 \cdot \ln \frac{1}{(x-1)^2} = 2 \cdot \sqrt{3} \cdot t^{1/2}$                                        |
|                                                                   | $\frac{\int ((x^2 - x - 2)/((x - 1))^3 * (x^2 - x - 2)}{Main}$                                          |
|                                                                   | F1+ F2+ F3+ F4+ F5<br>Too1s A19ebra Ca1C Other Pr9milD C1ean Up                                         |
|                                                                   | $\int \left[ (x-1)^3 \cdot \left[ x^2 + x + 1 \right] \right]^{1/2}$                                    |
|                                                                   | $2 \cdot 10 \frac{ x^2 + x + 1 }{2}$                                                                    |
|                                                                   | $\frac{-1}{(x-1)^2} - \frac{2\sqrt{3}}{1}$                                                              |
|                                                                   | Y                                                                                                       |
|                                                                   | <u>J((x^2-x-2)/((x-1)^3*(x^2</u><br>Main rad exact func 1/30                                            |

| $\frac{\left[ F_{1}^{F_{1}} \right] F_{2}^{F_{2}} + \left[ F_{3}^{F_{3}} \right] F_{4}^{F_{4}} + \left[ F_{3}^{F_{3}} \right] \left[ F_{6}^{F_{4}} \right] U_{2}^{F_{3}} \\ \int \left[ \left( \times -1 \right)^{3} \left( \times^{2} + \times +1 \right) \right] $ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4\frac{4\left(\frac{\sqrt{3}\cdot(2\cdot x+1)}{3}\right)}{9} - \frac{3\cdot x-4}{3\cdot(x-1)^2}$                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                      |
| F1+ F2+ F3+ F4+ F5<br>Too1sfA19ebraCa1cl0ther/Pr9milClean Up                                                                                                                                                                                                         |
| $= \int (\times \cdot \sqrt{x-1}) dx$                                                                                                                                                                                                                                |
| $\frac{2\cdot(\times-1)^{3/2}\cdot(3\cdot\times+2)}{15}$                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                      |
| $\frac{\int (x-1), x, 1, 2}{\text{MAIN}}$                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                      |

### Functions of Two Variables

| Instructions                                     | Screen Shot                                                        |
|--------------------------------------------------|--------------------------------------------------------------------|
| Set the graph drawing mode to 3D using           | F1+ F2+ F3 F4 F5+ E3 F4 F5+<br>ToolsZoomEdit / A11 (1/5) (2001)    |
| MODE Graph 5: 3D. In the $\checkmark$ Y= mode    | -PLOTS 50                                                          |
| the DEs are then set up ready for you to         | $\sqrt{21} = \frac{1}{1 + x^2 + y^2}$                              |
| enter $z1$ = etc. The TI-89 uses $y$ and $x$ for | z2=                                                                |
| these functions.                                 | z4=<br>z5=                                                         |
|                                                  |                                                                    |
|                                                  | MAIN RAD EXACT 3D                                                  |
| Use $\bullet$ [GRAPH] to draw the graph (this    | F1+ F2+ F3 F4 F5+ F6+ F7+5::<br>Too1sZoomTraceReGraphMathDrawPen:C |
| may take a few seconds)                          |                                                                    |
|                                                  | /ħ                                                                 |
| You may need to resize the window using          | AT 35.                                                             |
| • [WINDOW] where you can set all                 |                                                                    |
| three variables. The viewing angle can           |                                                                    |
| also be changed using the eye variables or       | MAIN RAD EXACT 3D                                                  |
|                                                  |                                                                    |
| by using the 🗢 keys.                             |                                                                    |
| Pressing [ENTER] will rotate the graph           | F1+ F2+ F3 F4 F5+ F6+ F7+5::<br>Too1sZoomTraceReGraphMathDrawPen:C |
| dynamically.                                     |                                                                    |
|                                                  | \$ ~ <b>*</b>                                                      |
|                                                  | i i i i i i i i i i i i i i i i i i i                              |
|                                                  |                                                                    |
|                                                  |                                                                    |
|                                                  | MAIN RAD EXACT 3D                                                  |

| We can draw contours too.                          | F1+ F2+ F3 F4 F5+ F6+ F7+8::<br>Too1s/Zoom/Trace/ReGraph/Math/Draw/Pen::C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select the Y = mode and press                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONTOUR LEVELS and press FNTFR                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Use $\bullet$ [GRAPH] and then E6 Draw 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Draw Contour command in the graph                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mode to enter the $x$ and $y$ values (here         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| each 0). This can also be rotated                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Here is the graph of $y = \sqrt{16 - r^2 - y^2}$   | F1+ F2+ F3 F4 F5+ F6+ F7+8:)<br>Toots/Zoom/Trace/ReGraph/Math/Draw/Pen::C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| There is the graph of $y = \sqrt{10 - x} - y$ .    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| For partial derivatives, the TI-89 assumes         | F1+F2+F2+F4+F4+F5+F5+F6+<br>Too1s A13ebra Ca1c Other Pr3m10 C1ean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| letters to be constants unless told they are       | _ a ( 50 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F3 1: $d($ differentiate                           | $\frac{d \times \left[1 + x^2 + y^2\right]}{1 + x^2 + y^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Here with respect to x                             | $\frac{-1000 \times}{(\sqrt{2} + \sqrt{2} + 1)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                    | <u>(x + y + 1)</u><br><u>d(50/(1+x^2+y^2),x)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | Tools A13ebra[Ca1c Other Pr3ml0 Clean Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Here differentiate with respect to <i>x</i>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    | $= \frac{\alpha}{d \times} [\times \ln(\times^2 + y^2)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | $\ln(x^2 + y^2) + \frac{2 \cdot x^2}{x^2 + x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | $x^{-} + y^{-}$<br><u>d(x*ln(x^2+y^2),x)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                    | First         First <t< td=""></t<> |
| $\dots$ and here with respect to $y$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Remember that these are the partial                | $= \frac{d}{dy} \left( \times \ln(\times^2 + y^2) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| derivatives $f_x(x,y)$ and $f_y(x,y)$ not what the | <u>2·y·x</u><br>2 · 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CAS notation implies.                              | $\frac{g^2 + x^2}{d(x*\ln(x^2+y^2),y)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| We can use the F4 1: Define to define a            | MIN         BRD EXACT         20         1720           F1+         F2+         F3+         F4+         F5         F6+           Too1s         A13ebra         Catc         Dther         Pr3mid         Clean         Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| function in two variables and hence find           | • Define $f(x, y) = x^4 - y^3 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| the value of the function.                         | Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | • $f(1.1, .9) = \frac{27331}{10000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | f(1.1,.9) 2.7351<br>f(1.1,.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | MAIN RAD EXACT 3D 3/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| We can get $f_{xx}$ by differentiating twice           | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebraCalclotherPr9ml0Clean Up                |
|--------------------------------------------------------|-------------------------------------------------------------------------------|
| with respect to x                                      |                                                                               |
|                                                        | Define f(x,y) = x <sup>3</sup> + y <sup>3</sup>                               |
|                                                        | Done                                                                          |
|                                                        | $= \frac{d^2}{2} (f(x, y)) \qquad 6 \cdot x$                                  |
|                                                        | dx <sup>2</sup>                                                               |
|                                                        | <u>((+(x,y),x,2)</u><br>MAINRAD EXACT3D 2/30                                  |
| and $f_{yy}$ by differentiating twice with             | F1+ F2+ F3+ F4+ F5 F6+<br>Too1sA13ebraCa1clotherPr3ml0Clean Up                |
| respect to y                                           |                                                                               |
|                                                        | ■Define f(x,y)=x <sup>3</sup> +y <sup>3</sup>                                 |
|                                                        | Done                                                                          |
|                                                        | $= \frac{d^2}{c} (f(x, y)) \qquad 6 \cdot y$                                  |
|                                                        | dy <sup>2</sup>                                                               |
|                                                        | <u>d(f(x,y),y,2)</u><br>MAIN RADEXACT 30 2/30                                 |
| For $f_{vx}$ and $f_{xv}$ we differentiate twice, once | F1+ F2+ F3+ F4+ F5 F6+<br>Too1sA13ebraCa1cOther Pr3mlOClean Up                |
| for each variable.                                     |                                                                               |
|                                                        | $= \operatorname{Define}_{\mathcal{L}} \mathcal{L}(x_1, y_1) = x_1^3 + y_2^3$ |
|                                                        | Done                                                                          |
|                                                        | $-\frac{d}{d}\left(\frac{d}{d}\left(c(x_{1},y_{2})\right)\right) = 0$         |
|                                                        |                                                                               |
|                                                        | <u>a(a(f(x,y),x),y)</u><br>Main rad exact 30 2/30                             |
|                                                        | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsAl3ebraCalcather Pr3ml0Clean Up                |
|                                                        |                                                                               |
|                                                        |                                                                               |
|                                                        | Done                                                                          |
|                                                        | $= \frac{d}{d} \left( \frac{d}{d} \left( f(x, y) \right) \right) = 0$         |
|                                                        |                                                                               |
|                                                        | <u>a(a(f(x,y),y),x)</u><br>Main Rad Exact 30 2/30                             |
| Example 207                                            | F1+ F2+ F3+ F4+ F5 F6+<br>Too1sA13ebraCa1clather Pr3ml0Clean Up               |
|                                                        |                                                                               |
|                                                        | • Define $f(x, y) = -3 \cdot x^4 + 6 \cdot$                                   |
|                                                        | Done                                                                          |
|                                                        | $= \text{solve}\left[\frac{\alpha}{d\times}(f(x, y)) = 0, x\right]$           |
|                                                        | $\times = 1$ or $\times = 0$ or $\times = -1$                                 |
|                                                        | SOTUE(@(f(X, y), X)=0, X)<br>MAIN RAD EXACT 3D 2/30                           |
|                                                        |                                                                               |
| Then use the Hessian obtained as above                 | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCa1cOtherPr3miDClean Up                     |
| to test each point.                                    | $= \operatorname{solve}\left(\frac{d}{d}(f(x,y)) = 0, y\right)$               |
|                                                        | x = 1  on  y = 0  on  y = -1                                                  |
|                                                        | x = 1 or $x = 0$ or $x = 1$                                                   |
|                                                        | • solve $\left[\frac{1}{dy}(f(x,y)) = 0, y\right]$                            |
|                                                        | y = 0                                                                         |
|                                                        | SOIVE(@(†(X, y), y)=0, y)<br>Main Pan Evert on 2/20                           |

### 7 Linear Systems

# 7.1 Gaussian Elimination Matrix notation

When there are 3 equations - in x, y, and z - we start by eliminating the first variable (x) in the last 2 equations and then eliminate the second variable (y) in the last equation. This leaves us with a set of equations in *echelon form*. Once the equations are in *echelon form*, they can be solved by **back substitution**.

This can be done using the row operations on the TI–89, or using functions which give echelon form and reduced echelon form. First, we need to know how to enter a matrix into the Data/matrix Editor or into the Home screen.

References: TI-89 Guidebook 229-233

#### Entering a matrix into the Data/matrix editor:

| Instructions                                                                                                                                                                                            | Screen Shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Press APPS 6, open the Data/matrix editor<br>and then select 3. New                                                                                                                                     | F1-     APPLICATIONS       T>012     1: Home       2: Y= Editor       3: Window Editor       4: Graph       5: Table       1: Current       1: Current       am Editor       2: Open       am Editor       5: New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| For <i>Type</i> , select Matrix, as following.                                                                                                                                                          | F1         F2         F3         F4         F6         F7           Tool         NEW         F1         F6         F7         F7         F6         F7           Tool         NEW         F1         F6         F7         F7         F6         F7           Tool         NEW         Type:         Data +         Folder:         main +         Variable:         S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Press B and select 2: Matrix.                                                                                                                                                                           | Image: Provide and Provid |
| Press D D and enter the variable name M1.<br>(Some names are reserved, if you try to use a<br>reserved name you will get an ERROR<br>message).<br>Enter the row and column dimensions of the<br>matrix. | NEW       Type:     Matrix +       Folder:     main +       Variable:     m1       Row dimension:     3       Col dimension:     3       Enter=0K     ESC=CANCEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Type in the first three rows and columns of the matrix. You will need to use the arrow keys to move around. Press ENTER to register each entry. You can use fractions and operations when you enter values. | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Press the "key and enter M1 return. You should now see the matrix in this standard form.                                                                                                                    | F1+ F2+ F3+ F3+ F5<br>Tools Algebra Calcather Pright Clean Up<br>M1<br>MAIN RAD AUTO FUNC 1/30 |

### Entering a matrix into the Home Screen

| Instructions                                                                                                                                                                                                                                                                                                                                                      | Screen Shot                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method 1:<br>From the Home screen, enter a matrix by using<br><b>Define</b> (which can be accessed by F4 1 or could<br>be typed in). Use the square bracket [] to<br>enclose the matrix. We enter the matrix by<br>typing the first row and then the second and so<br>on. Use commas to separate entries and                                                      | Fit F2+ F3+ F3+ F5 F6+<br>ToolsA13ebra[Calc]ather[Pr3ml0]Clean UP<br>Define $a = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \end{bmatrix}$ Done<br>Define $a=[2,3,0;1,2,3]$<br>MAIN A RAD AUTO FUNC 1/30                |
| semicolons to separate rows.<br>Method 2:                                                                                                                                                                                                                                                                                                                         | F1+ F2+ F3+ F4+ F5<br>Toolsh19ebralCa1clDtherPr3mlDCtean UP                                                                                                                                                         |
| To enter a matrix into the Home screen, use<br>one set of brackets around the entire matrix<br>and one set of brackets around each row. Use<br>commas to separate the entries in a row. Then<br>press <b>STO</b> $\rightarrow$ , type a name for the matrix, and<br>press <b>ENTER</b> .<br>Example:<br>[[1,2,3][-1,3,4]] <b>STO</b> $\rightarrow$ r <b>ENTER</b> | $ \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 4 \end{bmatrix}  + r \\ \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 4 \end{bmatrix} $ $ \begin{bmatrix} (1,2,3)[-1,3,4]]  + r \\ MAIN \\ RAD AUTO \\ FUNC \\ 1/30 \end{bmatrix} $ |

### 7.2 Matrix Row Operations

| Instructions                                                                                  | Screen Shot                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To swap two rows in one matrix, use 2nd                                                       | F1+1 F2+ 1F3+1 F4+1 F5 F6+<br>To MATH DC1ean Up                                                                                                                                      |
| [MATH] 4:Matrix J:Row ops 1:rowSwap(.                                                         | 1:Number       EfrandMat(       F:newMat(       G:subMat(       H:Norms       1:nowSwap(       5:rowRdd(       >:nRow(       >:nRow(       >:nRow(       >:nRowAdd(       >:nRowAdd( |
| <b>Example</b> : We can change rows 1 and 2 of                                                | F1+ F2+ F3+ F4+ F5<br>ToolsA19ebraCalcOtherPr9mIOClean UP                                                                                                                            |
| matrix r with the command $rowSwap(r, 1, 2)$ .                                                |                                                                                                                                                                                      |
|                                                                                               | $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 7 & 4 \end{bmatrix} \rightarrow r \begin{bmatrix} 1 & 2 & 3 \\ -1 & 7 & 4 \end{bmatrix}$                                                          |
|                                                                                               |                                                                                                                                                                                      |
|                                                                                               | ■rowSwap(r,1,2) [1 2 3]                                                                                                                                                              |
|                                                                                               | rowSwap(r,1,2)<br>Main Radiauto Func 2/30                                                                                                                                            |
| To add the entries of one to those of another                                                 | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebraCa1clOtherPr3mlOClean Up                                                                                                                       |
| row, use 2nd [MATH] 4:Matrix J:Row ops                                                        |                                                                                                                                                                                      |
| 2:rowadd(.                                                                                    | $\begin{bmatrix} 1 & 2 & 3 \\ -4 & 7 & 4 \end{bmatrix} \neq r \begin{bmatrix} 1 & 2 & 3 \\ -4 & 7 & 4 \end{bmatrix}$                                                                 |
| <b>Example:</b> Add the entries of row 1 to those of row 2 and store them into row 2 with the |                                                                                                                                                                                      |
| command rowAdd(r 1 2)                                                                         | •rowHdd(r,1,2) [0 5 7]                                                                                                                                                               |
| communa / o what (1,1,2).                                                                     | rowAdd(r,1,2)<br>MainRAD_AUTOFUNC2/30                                                                                                                                                |
| To multiply the entries of one row by a value,<br>use 2nd [MATH] 4:Matrix J:Row ops           | F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebra[Calc Other Pr9ml0 Clean Up                                                                                                                    |
| 3:mRow(.                                                                                      | $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$                                                                                                                                            |
| <b>Example</b> : Multiply the entries of row 1 by 3                                           |                                                                                                                                                                                      |
| and store them into row 1 with the command $\frac{1}{2}$                                      | • mRow(3,r,1) $-1$ 3 4                                                                                                                                                               |
| mKow(3,r,1).                                                                                  | MRow(3, r, 1)<br>MAIN RAD AUTO FUNC 2/30                                                                                                                                             |
| To multiply the entries of one row by a value                                                 | F1+ F2+ F3+ F4+ F5 F6+                                                                                                                                                               |
| and add the products to another row, use 2nd                                                  |                                                                                                                                                                                      |
| [MATH] 4:Matrix J:Row ops 4:mRowAdd(.                                                         | -1 3 4 $+r$ -1 3 4                                                                                                                                                                   |
| <b>Example:</b> Multiply the elements of row 1 by 3,                                          | ■ mRowAdd(3,r,1,2)                                                                                                                                                                   |
| add the products to row 2, and store them into                                                |                                                                                                                                                                                      |
| row 2 with the command $mRowAdd(3,r,1,2)$ .                                                   | $\frac{[2 7 13]}{\text{mRowAdd}(3, r, 1, 2)}$                                                                                                                                        |
|                                                                                               | rinne hav auto ruev 2730                                                                                                                                                             |

**Example 7.2.1:** Solve the following system:

$$3x - y + 2z = 13$$
$$-x + 4y + 2z = -1$$
$$4y + 3z = 4$$

| Instructions                                    | Screen Shot                                                                 |
|-------------------------------------------------|-----------------------------------------------------------------------------|
| The augmented matrix is:                        | F1770 F27 F37 F47 F5 F67                                                    |
| $\begin{bmatrix} 3 & -1 & 2 & 13 \end{bmatrix}$ |                                                                             |
|                                                 | 3 -1 2 13<br>-1 4 2 -1 + a<br>-1 4 2 -1                                     |
|                                                 |                                                                             |
|                                                 | ■ mRow(3,a,2) -3 12 6 -3                                                    |
| Use the following instructions to row           |                                                                             |
| reduce this matrix.                             | MAIN RAD AUTO FUNC 2/30                                                     |
| [3, -2, 2, 13; -1, 4, 2, -1; 0, 4, 3, 4]        |                                                                             |
| STON a ENTER                                    |                                                                             |
| [2nd] [MATH] 4:Matrix J:Row ops                 |                                                                             |
| 3:mRow (3, a, 2) ENIER                          |                                                                             |
| store them into row 2                           |                                                                             |
| store them into row 2.                          |                                                                             |
| 4:mRowAdd (1, ans(1), 1, 2) [ENTER]             | F17700 . F27 . F37 . F47 . F5                                               |
|                                                 | UICLEAN UP                                                                  |
| multiply the elements of row 1 by 1, add        | $\begin{bmatrix} 3 & -1 & 2 & 13 \\ -3 & 12 & 6 & -3 & 1 & 2 \end{bmatrix}$ |
| the products to row 2 and store them into       |                                                                             |
| row 2.                                          | 3 -1 2 13<br>0 11 8 10                                                      |
|                                                 |                                                                             |
|                                                 | MAIN RAD AUTO FUNC 4/30                                                     |
| Multiply the elements of row 2 by 4.            | F1770<br>F27<br>Algebra Calc Other PrgmIO Clean Up                          |
|                                                 |                                                                             |
|                                                 |                                                                             |
|                                                 |                                                                             |
|                                                 | ■ MRow 4,0 11 8 10,2 0 44 32 40                                             |
|                                                 |                                                                             |
| Multiply row 3 by 11.                           | F17700 F2+<br>→ ← Algebra Calc Other PrgMIO Clean Up                        |
|                                                 |                                                                             |
|                                                 | ■ mRow 11, 0 44 32 40, 3                                                    |
|                                                 |                                                                             |
|                                                 | 0 44 32 40                                                                  |
|                                                 | [0 44 33 44]<br>mRow(11,ans(1),3)                                           |
| Multiply row 2 by $-1$ add the products to      |                                                                             |
| row 3 and store them in row 3                   | <b>→ <u>+</u></b> → Hlgebra Calc Other PrgmIO Clean Up <br>0 44 33 44       |
|                                                 | [ 3 -1 2 13]<br>■ "Poured -1 0 44 32 49 2 7                                 |
|                                                 | 0 44 33 44                                                                  |
|                                                 | 3 -1 2 13<br>0 44 32 40                                                     |
|                                                 |                                                                             |
|                                                 | MAIN BAD AUTO FUNC 6/30                                                     |

| Here is the echelon form.                          | F17780 F2▼ F3▼ F4▼ F5 F6▼<br>▼ ∰ Algebra Calc Other PrgmIO Clean Up                                                                             |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 3x - y + 2z = 13                                   | 0 0 1 4                                                                                                                                         |
| 11y + 8z = -1                                      | ■ mRow 1/4, 0 44 32 40, 2                                                                                                                       |
| z = 4                                              |                                                                                                                                                 |
| By back substitution,                              | 0 11 8 10                                                                                                                                       |
| z = 4,                                             |                                                                                                                                                 |
| 11y + 8(4) = -1, so $y = -2$                       | MAIN RAD AUTO FUNC 7/30                                                                                                                         |
| 3x - (-2) + 2(4) = 13, so $x = 1$                  |                                                                                                                                                 |
| On the TI-89 this is also obtained by:             | F17700 F2▼<br>→ ← Algebra Calc Other PrgmIO Clean Up                                                                                            |
| [3, -2, 2, 13; -1, 4, 2, -1; 0, 4, 3, 4]           | [3 -1 2 13] [3 -1 2 13]                                                                                                                         |
|                                                    |                                                                                                                                                 |
| STO► a ENTER                                       | $\begin{bmatrix} -1 & 4 & 2 & -1 \\ 0 & 4 & 3 & 4 \end{bmatrix} \rightarrow a = \begin{bmatrix} -1 & 4 & 2 & -1 \\ 0 & 4 & 3 & 4 \end{bmatrix}$ |
| STO► a ENTER<br>2nd [MATH] 4:Matrix 3:ref(a) ENTER | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                          |
| STO► a ENTER<br>2nd [MATH] 4:Matrix 3:ref(a) ENTER | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                           |