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Mark McGuinness1 and Stephen Taylor2

We discuss the work done at MISG 2004 on the mathematical mod-
elling of a long, electric radiant furnace used to anneal strips of steel.
The annealing process involves heating the steel, which is passed
continuously through the furnace, to certain temperatures and then
cooling it, resulting in a change in the crystalline structure of the
steel. The furnace settings are often changed to cater for products
with different metallurgical properties and varying dimensions. The
mathematical model is desired to optimise the running of the furnace,
especially during periods of change in furnace operation.

1. Introduction

New Zealand Steel (NZS) use a unique process to convert New Zealand iron-
sand into steel sheet products at its Glenbrook mill near Auckland. Traditional
galvanised steel (GalvsteelTM) and the new product Zincalumer are produced
in a range of dimensions, grades and coating weights.

The steel strip is annealed prior to being coated, by heating to a predeter-
mined temperature for a definite time. Annealing produces desirable changes
in the crystalline structure of the steel, allowing NZS to tailor its strength and
ductility.

Strips of steel sheet are passed through a 150m long, 4.6 MW electric radiant
furnace at speeds of up to 130 metres per minute in order to achieve the strip
temperatures required for annealing, and subsequent coating. The temperature
along the furnace is controlled by varying the power supplied to the heating
elements and by use of cooling tubes. The cooling tubes are located in the
last half of the furnace and consist of steel tubes through which ambient air is
pumped. It is important that steel exit the furnace with the correct temperature
for the coating that is applied at the exit point.

The line speed through the furnace is reduced for strips of large thickness
and width in order to achieve the required temperatures. At the beginning of
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2 New Zealand Steel

the annealing–coating line there is an automatic welding process which welds
the beginning of a new coil of steel sheet to the end of its predecessor, allowing
the line to run continuously.

Figure 1: A Cross-section of the furnace.

In each of the twenty zones of the furnace, there are thermocouples in steel
tubes, which are used to measure furnace temperature. The thermocouple tem-
peratures are compared with desired temperature set-points, and the heating
elements are controlled accordingly. Steel strip temperature is also measured,
using non-contact pyrometers at three positions in the furnace.

If there is no variation in strip dimensions and annealing settings then the
line is able to run in a steady state, with the furnace temperatures remain-
ing steady at the desired thermocouple settings. NZS have already developed a
mathematical model of furnace and strip temperatures for this steady state oper-
ation. Challenges occur when there is variation in strip dimensions or annealing
settings because the furnace–strip system has a large amount of thermal inertia.
Consequently the line is in a transient state for up to 50% of its operation, with
varying effects on quality control of the product.

Two improvements are planned for the line in the very near future; a 3 MW
induction heater and a gas jet cooler. The induction heater is capable of heating
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the strip rapidly. The steel strip will pass directly from the induction heater
into the radiant furnace. The extra heating power should allow the system to
achieve greater line speeds for strips of large thickness and width. Further, with
its more rapid response, the induction heater has the potential to reduce the time
spent in transient modes of operation. In the gas jet cooler, which will replace
part of the existing cooling zone, cooled furnace gas is blown directly onto the
steel strip. The new cooler section is expected to respond more rapidly than the
existing cooling tubes, giving more precise control of dipping temperatures.

NZS set the following tasks for the Study Group:

• Develop a mathematical model for transient furnace conditions.

• Investigate the accuracy of the existing steady state model.

• Predict transient strip temperatures for actual production schedules with
changes in product dimension, steel grade and furnace temperature set-
tings.

• Couple the temperature model to a metallurgical model.

The paper is set out as follows:

We begin in Section 2. with an introduction to radiative heat transfer, which
is the primary mode of heat transfer within the furnace.

In Section 3. we model the temperature of the strip itself as it receives
radiant heat energy from the furnace. We see that the strip’s temperature can
be accurately modelled as a function of time and just one spatial coordinate, the
distance from the entry point of the furnace. Temperatures rapidly equilibrate
across the thickness of the steel and thermal diffusion along the strip is found to
be negligible for the length of time that any part of the strip was in the furnace.

Next, in Section 4., we model the radiation by studying the heat transfer
between surfaces within the furnace. Completing a task of this scale was beyond
the scope of MISG. However, the group at MISG was able to develop a simple
model for the furnace, capturing the main features of the system and identifying
the principles from which a more complex model may be developed.

In Section 4.2 we investigate the time and length scales of the model and find
that while it takes hundreds of hours for the furnace to come to equilibrium, the
inner surface of the furnace responds much more rapidly to changes in furnace
settings.
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Our dynamical model for the strip–furnace system leads, of course, to a
steady state model, and this is discussed in Section 4.3. The model differs from
NZS’s model in that MISG’s model allows for continuous changes in temperature
along the length of the furnace while NZS’s model is discrete, involving one value
of strip temperature and one value of the furnace (wall) temperature for each of
the furnace’s twenty zones.

We consider the temperatures that are measured by the thermocouples in
each section of the furnace in Section 5., and do a premlinary analysis of the
effect of cold steel on the thermocouples. Finally, in Section 6., we discuss our
conclusions and ideas for on–going work.

2. Radiative Heat Transfer

Radiative heat transfer is the primary mode of heat transfer within the
furnace, so here we give a brief summary of the theory that we need. More
details may be found in some of the excellent texts on the subject, including
Sigel and Howell [5], Sparrow and Cess [6], and Modest [2]. We follow Modest
in this description.

Real opaque surfaces emit, absorb and reflect electromagnetic radiation and
these three properties depend on the temperatures of the surfaces. The medium
containing the surfaces may also participate in thermal radiation heat transfer,
but in the case of the NZS furnace the medium, a mixture of nitrogen and
hydrogen, is non-participating.

Surfaces emit a spectrum of thermal radiation when they are heated. The
distribution of wavelengths in the spectrum depends on what material the sur-
face is made from and its temperature. Likewise, the absorption and reflection
of thermal radiation is temperature dependent and it also has a dependence on
a material’s response to different wavelengths. Moreover, there may be a direc-
tional dependence; surfaces may emit, absorb or reflect radiation more in one
direction than another.

It is reassuring to know that most engineering problems involving radiative
heat transfer may be solved with sufficient accuracy under the assumption that
the surfaces have ideal properties. The most common of these assumptions is
that the surfaces are grey, diffuse emitters, absorbers and reflectors. This means
that the net absorption, reflection and emission properties of a surface have no
directional dependence. Such surfaces which do not reflect thermal radiation at
all are said to be black or black bodies. The total emissive power of a black body
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at absolute temperature T is given by

Eb(T ) = σT 4, σ = 5.670 × 10−8 Wm−2K−4, (1)

where σ is called the Stefan–Boltzmann constant.

Properties of a surface are given by three non–dimensional parameters, de-
fined in terms of the energy of the radiation. These are

Reflectance, ρ =
reflected part of incoming radiation

total incoming radiation
,

Absorbtance, α =
absorbed part of incoming radiation

total incoming radiation
,

Emittance, ǫ =
energy emitted by a surface

energy emitted by a black surface at the same temperature
.

Transmittance is another important parameter, but we do not need to con-
sider this because all of the surfaces within the furnace are opaque. These
parameters may vary in value between 0 and 1 and it can be shown that

α = ǫ = 1 − ρ

for diffuse, grey surfaces.

Let x be any point on a surface within an enclosure. Let φx be the heat
flux supplied from inside the surface body to the surface at x, Ex the power
emitted by the surface at x per unit surface area and Hx the irradiation at x,
i.e. the radiant heat power per unit area arriving at x from all other surface
points within the enclosure. The power supplied to the surface is due to the flux
from inside the surface body and the absorbed irradiation and this power must
equal the power emitted from the surface; i.e. Ex = φx + αHx. This equation
must hold for all surface points within the enclosure, so we simply write

E = φ + αH. (2)

In order to calculate H we need the notion of view factors, which are some-
times called shape factors or configuration factors. The view factor between two
infinitesimal surface elements dAi and dAj , located at points xi and xj respec-
tively, is

dFdAi−dAj
=

diffuse energy leaving dAi directly toward and intercepted by dAj

total diffuse energy leaving dAi
.

Since energy leaves the surfaces diffusely, view factors depend only on the ge-
ometry of the enclosure and it is not difficult to derive the formula

dFdAi−dAj
=

cos θi cos θj

πS2
dAj ,
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where S is the distance between xi and xj , θi and θj are the angles between the
line from xi to xj and the outer normal vectors at xi and xj respectively. An
important observation from this equation is the law of reciprocity

dAidFdAi−dAj
= dAjdFdAj−dAi

.

Surfaces within enclosures are often approximated by a finite number of
isothermal surfaces and one needs the view factor between two such surfaces of
areas Ai and Aj. This is given by

FAi−Aj
=

1

Ai

∫

Ai

∫

Aj

cos θi cos θj

πS2
dAjdAi, (3)

and there is a law of reciprocity

AiFAi−Aj
= AjFAj−Ai

.

Consider an enclosure consisting of N isothermal surfaces of areas Ai, i =
1, 2, . . . N with emittances ǫi, reflectances ρi = 1 − ǫi, emissive powers Ei, tem-
peratures Ti, outward surface fluxes φi and irradiations Hi. The contribution
to Hi from Aj is due to the radiation emitted and the irradiation reflected from
Aj , so it is given by

FAj−Ai

Aj

Ai
(Ej + ρjHj) = FAi−Aj

(Ej + ρjHj),

by reciprocity of the view factors. Hence

Hi =

N
∑

j=1

FAi−Aj
(Ej + ρjHj).

But Ei = ǫiEb(Ti) and, by Equation (2), Hi = (Ei − φi)/αi = (Ei − φi)/ǫi.
Hence

Eb(Ti) −
1

ǫi
φi =

N
∑

j=1

FAi−Aj

(

Eb(Tj) −

(

1

ǫj
− 1

)

φj

)

. (4)

This important equation relates the heat fluxes from within the surface bodies
to the surface temperatures. For the case of view factors between infinitesimal
surfaces the relationship between the heat fluxes and surface temperatures is an
integral equation and Equation (4) may be regarded as a discretisation of this
integral equation.
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3. Modelling the strip

If we assume that the sheet is perfectly straight with a rectangular cross
section then the portion of the strip within the furnace occupies a region of space

S = {(x, y, z) : 0 ≤ x ≤ L,−w(x, t)/2 ≤ y ≤ w(x, t)/2, 0 ≤ z ≤ h(x, t)},

where

• L is the length of the furnace,

• x measures distance from the point of entry of the strip into the furnace,

• w(x, t) and h(x, t) are respectively the width and thickness of the strip,

• z is a distance coordinate in the vertical direction and y is a distance
coordinate across the strip.

The strip thickness h and width w are piecewise constant functions of x and t
because the strip is formed by welding together straight sheets that may have
different dimensions.

The temperature u within the strip may be modelled by the heat equation
with an advection term corresponding to the strip’s speed v through the furnace:

ρSCS

(

∂u

∂t
+ v

∂u

∂x

)

= kS

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

, t > 0, (x, y, z) ∈ S.

In this equation ρS and CS are the strip’s density and specific heat capacity
respectively.

We can determine the relative importance of the different terms in the equa-
tion by using dimensionless coordinates x̃ = x/L, ỹ = y/w, z̃ = x/h, t̃ = tv/L,
where h and w are typical values of the thickness and width of the strip. In
terms of the dimensionless variables, the equation takes the form

∂u

∂t̃
+

∂u

∂x̃
=

kSL

vρSCS

(

1

L2

∂2u

∂x̃2
+

1

w2

∂2u

∂ỹ2
+

1

h2

∂2u

∂z̃2

)

.

Taking L = 150 m, v = 2 m s−1, w = 0.5 m, h = 0.5 mm, kS = 50 W m−1 K−1,
CS = 500 J Kg−1 K−1 and ρS = 7854 Kg gives the equation

∂u

∂t̃
+

∂u

∂x̃
= 4.2 × 10−8

∂2u

∂x̃2
+ 3.8 × 10−3

∂2u

∂ỹ2
+ 3.8 × 103

∂2u

∂z̃2
,
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which shows that the heat conduction terms in the x and y directions may be
ignored. Further, the large coefficient of the heat conduction term in the z
direction indicates that the strip responds rapidly to changes in temperature in
this direction.

Returning to the original variables, we find

ρSCS

(

∂u

∂t
+ v

∂u

∂x

)

= kS
∂2u

∂z2
. (5)

Let T (x, y, t) denote the temperature of the strip averaged over the z direction.
Thus

T (x, y, t) =
1

h

∫ h

0

u(x, y, z, t) dz.

The advantage of dealing with T rather than u is that T depends on fewer
variables than u and so it is easier to compute. Moreover, T should be an
excellent approximation for u because heat conduction in the z direction is so
rapid. Integrating each side of (5) with respect to z gives

ρSCS

(

∂T

∂t
+ v

∂T

∂x

)

=
kS

h

(

∂u

∂z

∣

∣

∣

∣

z=h

−
∂u

∂z

∣

∣

∣

∣

z=0

)

=
1

h
(flux in at top surface + flux in at bottom surface).

Assuming that the strip receives only radiation evenly across it in the y direction
and that the total radiation it receives is q(x, t) per unit length in the x direction,
we obtain

ρSCS

(

∂T

∂t
+ v

∂T

∂x

)

=
q

wh
. (6)

We note that there are significant variations in CS , the specific heat capacity
of steel, over the range of temperatures to which the steel is subjected. Tables 1
and 2, taken from Incropera and DeWitt [1], show the temperature dependence
of the thermal properties of steel.

Table 1: Properties of steel at 300 K.

ρ (Kg/m3) Cp (J/Kg.K) k (W/m.K)

7854 434 60.5

Polynomial interpolation of the Cp data for steel yields the interpolation
function

CS(T ) = 345−0.504333T +0.004895T 2−9.06667×10−6 T 3+5.5×10−9 T 4, (7)
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Table 2: Properties of steel at various temperatures.

T (K) 300 400 600 800 1000

k (W/m.K) 60.5 56.7 48.0 39.2 30.0

Cp (J/Kg.K) 434 487 559 685 1169

and we use this expression for CS in Equation (6). The Cp values of steel and
this interpolating function are graphed in Figure 2.

400 500 600 700 800 900 1000
T

600

700

800

900

1000

1100

Cp

Figure 2: Variation of Cp (J/Kg.K) for steel with absolute temperature T in
Kelvin.

4. Simple furnace model

Our aim in this section is to develop a simple model of the furnace–strip
system that is detailed enough to exhibit the main dynamical properties of the
system. NZS’s steady state model is essentially a two surface model in that in
each zone it is assumed that there is surface at temperature Tzone interacting with
the strip’s surface which is at temperature T . Thus there is an assumption that
little net radiation travels from one zone into another. This assumption seems
to work because of the fact that, with one exception, temperatures change very
gradually along the length of the furnace. The exception is at the interface
between the cooling section and the heating section of the furnace. But at this
interface there is a wall of refractory bricks with a narrow opening in it, through
which the strip passes. This wall acts as a radiation shield, reducing thermal
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radiation transfer from the heating section to cooling section of the furnace.
Hence, even at this interface, the assumption of no net radiation transfer from
one zone to another seems to be a reasonable first approximation and we adopt
this approximation for our simple dynamical model. Thus, our assumptions are:

Assumptions

• The inner surface temperature of the furnace walls depends on time t and
distance x along the furnace measured from the entry point of the strip.

• The temperature of a heating element is the same as the temperature of
the inner surface of the wall adjacent to the element.

• Temperature changes within the furnace are so gradual that we can ignore
radiative or convective heat transfer along the length of the furnace.

• At this point, we ignore the cooling tubes. This model applies to the
heating zones of the furnace.

4.1 Model equations

Consider a length ∆x of the furnace. Within this length there are only two
surfaces that interact: walls and strip. Let 2p∆x denote the total area of the
inner surfaces of the walls in this length of furnace and let w∆x denote the total
surface area of one side of the strip in this length of furnace. Thus, w represents
the width of the strip and p is approximately height+width of the inside of the
furnace.

The assumptions of approximate isothermality of these surfaces simplify the
calculation of radiative heat transfer between the surfaces. The relevant view
factor for radiation from the strip to the walls is FSW = 1. By reciprocity,
FWS = w/p and, because the rows of the view factor matrix sum to one, FSS = 0
and FWW = 1 − w/p.

We need to calculate q, the radiation per unit length of the furnace from
the walls to the strip. Instead of using i and j = 1, 2 in Equation (4) we use
subscripts W and S to denote quantities associated with the walls and strip,
respectively. Solving Equation (4) and using q = 2pφW , or equivalently q =
−2wφS , leads to the required expression for q:

q =
2wǫSσ(T 4

W − T 4)

1 +
ǫS(1 − ǫW )

ǫW

w

p

. (8)
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Note that
q ≈ 2wǫSσ(T 4

W − T 4) (9)

because p > w, ǫW ≈ 1 and ǫS is small. Note also that an alternative approach
is to model the strip and walls as parallel planes. If this approach is adopted
then one obtains the formula

2wσ(T 4

W − T 4)
1

ǫS
+

1

ǫW
− 1

for q. This formula is similar to one used by NZS in their steady state model
and it also differs only slightly from the approximation (9).

Next consider the energy balance for the wall surface and heating elements
in the length ∆x of furnace. Let CE denote the specific heat of the element
material and let m(x) denote the mass of heating elements per length of furnace
(m(x) will be a step function). Since the heating elements and the inner wall
surface are treated as being a lumped isothermal object,

mCE
∂TW

∂t
∆x = P∆x − Φ2p∆x − q∆x

where Φ is the heat flux into the walls and P is the power supplied to the
heating elements per unit length of the furnace. Assuming that the heating
elements have little thermal inertia, this simply gives

Φ =
P − q

2p
. (10)

We simplify the modelling of heat flow through the walls by treating each
wall as a separate slab. Thus we obtain a simple one dimensional heat conduction
problem

ρW CW
∂TB

∂t
= kW

∂2TB

∂r2
, 0 < r < d, (11)

TB(x, 0, t) = TW (x, t), (12)

kW
∂TB

∂r

∣

∣

∣

∣

r=0

= −Φ, (13)

kW
∂TB

∂r

∣

∣

∣

∣

r=d

= H(T∞ − TB(x, d, t)), (14)

where d is the thickness of the furnace wall, T∞ is the external ambient tem-
perature, H is a convection coefficient and TB(x, r, t) is the internal wall (brick)
temperature at a distance x along the furnace and a depth r into the wall.

The thermal properties of refractory brick, of which the furnace walls are
made, are summarised in Table 3.
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Table 3: Properties of refractory brick (provided by NZS).

T (K) 478 1145

k (W/m.K) 0.25 0.30

Cp (J/Kg.K) ≈ 900 ≈ 900

ρ (Kg/m3) ≈ 2000 ≈ 2000

4.2 Characteristic time and length scales for furnace wall heating

Dimensional analysis has already played a roll in our analysis; in Section 3.
we used it to simplify the equation modelling the heating of the strip. Here we
use it to gain insight into the furnace’s response to changes in heating.

For bulk changes in the furnace’s temperature, the dimensional parameters
that are relevant are those that appear in the heat equation (11) and the wall
thickness, d. These combine to give a time constant

t1 =
ρW CW d2

kW
≈ 320 hours,

using d = 0.4m (see Fig. 1) and values from Table 3. This gives a measure of
the time it would take for the furnace bricks to effectively come to equilibrium
if exposed to a constant source of heat.

However, heat sources within the furnace change much more rapidly than
this and one would expect that the furnace walls will respond quite rapidly in
the locality of their inner surfaces. To get a measure of such local changes to
furnace temperature, two approaches are presented here. The first approach is
the simpler, and is the method used during the Study Group. In this approach,
the geometry of the oven and the presence of steel strip is ignored. Diffusion
in the oven wall is given by equation (11), but the boundary conditions are
simplified. Radiant heating of the wall by nearby electric heaters is modelled by
the boundary condition

kW
∂TB

∂r
= fσ(T 4

W − T 4

h ), r = 0 (15)

and the wall is taken to be infinitely thick. Taking the heaters to be parallel to
the walls and of the same width gives f = ǫS ≈ 0.2.

We consider the effect of changing from a constant initial state TW = T0

which is in equilibrium with the heaters (Th = T0), by changing the temperature
of the heaters to a new value T0 + ∆T0. We linearise the response of the wall
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temperature about T0 by using TW = T0+θ∆T0 and nondimensionalise to obtain

θt = θrr , r > 0 (16)

θr = θ − 1 , r = 0 (17)

θ = 0 , t = 0 , (18)

with a lengthscale

L =
k

4ǫSσT 3
0

≈ 5mm

and timescale

τ =
L2ρW CW

k
≈ 2mins

That is, the characteristic time for the wall to respond to a change in heater
temperatures is about 2 minutes, and only the first 5 mm of depth needs to
respond. This is shorter than on-site experience suggests.

Numerical solutions of equations (16)–(18), conducted at the Study Group
and graphed in Fig. (3) confirm that, as expected, the rescaled temperature
changes are of order one when time changes are of order one, at the surface of
the oven wall.

Figure 3: Numerical solutions of the simpler wall heating model, after nondi-
mensionalisation.

A second, more sophisticated model (developed subsequently to the Study
Group in the course of writing this report) takes more careful account of the
actual oven geometry and the presence of the steel strip, by using boundary
condition (13). In this model, the power supplied per unit length of heaters
changes from P to P + ∆P . Let θ(r, t) denote the resulting deviation in brick
temperature from its steady value T0, so that we expand TW = T0 + θ. For
simplicity, we only consider the first few heating zones where the strip temper-
ature T is relatively small. In this region we ignore the fourth power of the
strip temperature because it is much less than the fourth power of the wall
temperature.
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Hence, linearising Equations (9)–(13) for small θ gives

ρW CW
∂θ

∂t
= kW

∂2θ

∂r2
, 0 < r < d,

(

kW
∂θ

∂r
− 4T 3

0

w

p
ǫSσθ

)∣

∣

∣

∣

r=0

= −
∆P

2p
,

with initial condition θ = 0 and boundary condition θ → 0 as r becomes large
(but is much smaller than d). These equations may be cast into dimensionless
form by setting

r =
pkW

4T 3
0
wǫSσ

r̃ ≡ R r̃ ,

t =
ρW CW

kW
R2t̃ ,

θ =
∆PRθ̃

2pk
.

The resulting dimensionless equations are the same as for the simpler model:

∂θ̃

∂t̃
=

∂2θ̃

∂r̃2
, r̃ > 0 , (19)

∂θ̃

∂r̃
= θ̃ − 1, r̃ = 0 . (20)

The scaling parameters are different to those for the simpler model. With a strip
width w = 0.938m, oven perimeter p = 3.4m, and a temperature T0 = 1000K,
the scaling factors give a length scale R = 20mm and a time scale of 40 minutes.

The response of the furnace-strip system depends on its settings, but a figure
of 40 minutes is comparable to the actual period of time taken by the furnace
to respond to changes, especially in the front where the steel strip is relatively
cool. The simpler model result of 2 minutes is too short to be realistic.

Since the simpler model calculation at MISG led to time and length scales
that were too short, attention was then shifted to the steel hearth rolls (the
rollers which carry the strip along the furnace), to see if they could be the main
source of thermal inertia within the furnace. Preliminary calculations indicated
that the hearth rolls do indeed respond to temperature changes on the correct
time scale, so that it would be useful to include the hearth rolls in any transient
thermal model of the oven.
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4.3 Steady state solutions

The steady state equations are:

dT

dx
=

q

whρSCSv
, (21)

∂2TB

∂r2
= 0, (22)

TB(x, 0) = TW (x), (23)

kW
∂TB

∂r

∣

∣

∣

∣

r=d

= H(T∞ − TB(x, d)), (24)

which must be solved together with (7) and (8). The last equation (24) gives

TB = TW −
TW − T∞

d + kW /H
r. (25)

This equation allows us to estimate kW /H from temperature measurements.
NZS estimate d = 0.4m and the external furnace temperature, TB(d) = 60◦C.
Taking the internal wall temperature TB(0) = TW = 900◦C and T∞ = 20◦C
gives

kW

H
≈ d/21 = 0.019m.

Equation (25) also gives

Φ = −kW
∂TB

∂r
=

kW

d + kW /H
(TW − T∞).

Inserting this expression for Φ into (10) and using (8) gives an equation of the
form used by NZ Steel to model the steady state:

P = k1(T
4

W − T 4) + k2(TW − T∞),

where

k1 =
2wǫSσ

1 +
ǫS(1 − ǫW )

ǫW

w

p

,

k2 =
2pkW

d + kW /H
.

An approximate solution to (21) is easily obtained by replacing T on the right-
hand-side of (21) by τi, the strip temperature at the start of zone i. Thus the
strip temperature in zone i is given by

T = τi +
2ǫSσ

hvρSCS(τi)

(

T 4

Wi − τ4

i

)

(x − xi), (26)
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where xi is the location of the start of zone i, TWi is the wall temperature of zone
i, and the expression CS(τi) is given by (7). Solving the differential equation in
this manner is essentially implementing NZS’s discrete model.

Figures 4 and 5 were generated by solving the differential equation (21)
using Matlab. There is a small discrepancy between these figures and similar
figures that NZS presented, based on their discrete model, at MISG. NZS’s model
predicts higher strip temperatures in the full anneal. The difference is due to
the fact that here we take into account the increase in heat capacity of the steel
with increasing temperature, which results in a smaller temperature gain per
unit heat energy absorbed by the strip at higher temperatures.
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Figure 4: Steady state solution for recovery anneal (soft iron). Here v =
116.4m/minute, w = 0.940m, h = 0.42mm.

5. Measuring Furnace Temperature

An important measurement used by NZ Steel as an approximation to the tran-
sient furnace temperature is the temperature measured by thermocouples, one
in each section of the furnace. A furnace section is ∼5–6 m long, and each ther-
mocouple is set into a steel tube projecting into the furnace from the ceiling.
These tubes are 0.3m long and have an outer diameter of ∼0.15m.
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Figure 5: Steady state solution for full anneal (hard iron). Here v =
108.2m/minute, w = 0.938m, h = 0.55mm.

Figure 6: A sketch of the geometry of the thermocouple in each section of the
furnace.
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Assuming the thermocouple touches the inside of the steel tube, it measures
the temperature of the steel tube wall. This temperature will be approximately
at equilibrium with its radiation environment, so that the rate at which heat is
radiated from the steel tube will approximately match the rate at which heat is
being absorbed from its surroundings.

A detailed model would account for the different temperatures of the radi-
ating electric heater elements, the hot inner brick walls, the cooler steel, and
reflections from the relatively shiny surface of the steel. As a first approxi-
mation, we consider the cylinder (surface number 2) to be projecting from a
uniformly hot surface (the ceiling of the furnace, surface number 1), and ignore
other radiators in the furnace.

The net heat received from the hot wall by a surface element dA2 on the
cylinder is

q21 = dA2 F21σ(T 4

2 − T 4

1 )

where the shape factor is

dA2 F21 =

∫

cos(θ1) cos(θ2)

πR2
dA1

where R is the variable distance from dA2 to the wall, θ1 and θ2 are the angles
between R and the normals to the surface elements as illustrated in Fig. (6), and
the integral is taken over the surface of the hot ceiling.

If the temperature of the ceiling varies with R, it too would need to be inside
the integral. An examination of the integrand in the shape factor reveals which
parts of the hot ceiling have most effect on the temperature of the thermocouple:

cos(θ1) cos(θ2)

πR2
=

sin(2θ1)

2πR2

where the geometry gives θ1 + θ2 = π/2, so that the area integral looks like

∫

Lmax

0

dL

∫ φmax

φmin

L dφ

(L2 + z2)3/2

where R2 = L2 +z2 and z is the vertical distance from the ceiling to the area
element dA2 (see Fig. (6)). Lmax is the maximum distance we are integrating
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away from the cylinder. For Lmax < 0.85m, φmin = 0 and φmax = 2π. For
larger L, the range of φ is restricted and depends on L, but this effect on the
shape factor is small compared with the factor ∼ L−2 which reduces the effect
of distant parts of the ceiling.

Figure 7: A plot of the kernel of the shape factor integral, for z = 0.3.

The integrand depends mostly on L, and a simple analysis (illustrated in
Fig. (7) for z = 0.3) reveals that it reaches a maximum near L ∼ z, and decays
like L−2 as L increases. Hence the region of ceiling most affecting the tempera-
ture of the thermocouple is that region in a disk of radius approximately 0.8m
around the steel tube, with the dominant effect being from an annulus about
0.3m away.

The effect of cooler steel strip on thermocouple readings can be estimated
roughly, by noting that the thermocouple tube extends down to a distance 0.3m
from the ceiling, which is 0.3m above the steel. Hence the steel, if it is cooler
than the furnace ceiling, will have a small effect on the thermocouple, reducing
its temperature. The effect is more pronounced near the lower end of the tube,
where it is closer to the cooler steel — at the very tip of the thermocouple
tube, the effect of the steel strip is comparable to that of the hot ceiling, and
the recorded thermocouple temperature will be roughly an average of the two
(steel strip and ceiling temperatures). Further up the thermocouple tube, this
balance will shift (varying roughly as z2), so that for example half-way up the
tube the ceiling temperature will have four times as much weight as the steel
strip temperature.
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This suggests that two thermocouples in each steel tube, one set at the
very tip and one rather higher, might be a useful measurement tool, for added
confidence, allowing in principle an estimation of the steel strip temperature,
as well as of furnace temperature. More modelling work, backed by numerical
integration for the geometry of the actual furnace, would be useful here.

6. Conclusions and recommendations

We have developed a simple model of the furnace–strip system which cap-
tures the main features of the system. More importantly, we have laid out
the important mathematical and physical principles from which a more detailed
model may be constructed. Such a model may be developed by approximating
the surfaces within the furnace as a large number of isothermal surfaces which
exchange thermal radiation with each other. Obviously such an undertaking is
not a trivial task because it involves detailed calculations of view factors between
portions of the many different surface types within the furnace–strip system, and
separate calculations have to be done for different strip dimensions. There are
a number of benefits for developing such a model:

1. It would allow accurate calculation of strip temperature in steady and
in changing furnace conditions. This would allow calculation of furnace
settings for the annealing process and it would provide a tool for optimising
the running of the furnace, especially during transient periods of operation.

2. It would provide knowledge of what the furnace thermocouples are mea-
suring. The thermocouples are used to estimate the furnace temperature
in each zone of the furnace. They play a vital role, as they are used to
control the power fed to the heating elements. These thermocouples are
housed in tubes which are exchanging radiation with all of the surfaces
within the furnace and so their temperature readings depend on the tem-
peratures of every surface in the furnace. Thus, only a reasonably detailed
model of the furnace will tell us what these thermocouples are measuring.

3. It would allow accurate calculation of strip temperature across the strip’s

width. In particular, it would allow calculation of temperature along the
edges of the strip. NZS has identified the edges of the strip as being
more susceptible to over–heating, which influences the annealing. Such
overheating can cause a wavy pattern along the product’s edges. Being
able to monitor the temperature of the strip’s edges will allow the company
to reduce waste due to edges overheating.

We should mention here that our simple model assumed that all surfaces
are grey and diffuse. This is a good approximation for refractory brick, but
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perhaps not such a good approximation for the steel strip. At least for radiation
in the visual spectrum, the angle of reflected radiation appears to be randomly
clustered around the angle of incidence of the radiation, i.e. the surface is
partly specular. It is not difficult to model this feature of the steel. Indeed, a
series of papers by Pérez-Grande et al [3], Sauermann et al [4], Teodorczyk and
Januszkiewicz [7], involve an electric furnace model for crystal formation. The
crystal, of course, is highly specular.

This same series of papers seems to be the only modern literature involving
the modelling of a specific electric radiant furnace. While the perfect cylindrical
symmetry of the furnace under study simplifies the problem of modelling the
furnace, the main principles of the work apply to the NZS furnace.

Finally, we have also conducted a preliminary investigation into the mean-
ing of temperatures recorded in thermocouples suspended in steel tubes in each
section of the furnace. These thermocouples are used in practice to set desired
furnace operating temperatures via a feedback control system, and to measure
how far from these desired setpoint temperatures the furnace is operating at
any moment in time. We note that the temperatures recorded by these thermo-
couples may be sensitive to the temperature of cold steel strip passing through
that section of the oven. Further modelling of the thermocouple tube temper-
atures would be very useful, and promises better control of furnace and steel
temperatures.
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