
5 Brouwer’s Fixed Point Theorem and the Jordan Curve
Theorem

In this section we use the norm |x| = max{|x1|, |x2|} for x = (x1, x2) ∈ R2 and take as the unit
circle the set S1 = {x ∈ R2 / |x| = 1} with the usual topology inherited from R2. Thus S1 is
the boundary of I2, where I = [0, 1] with the usual topology inherited from R, so it is actually
in the shape of a square which is homeomorphic to our usual concept of a circle. For a function
f whose range is in R2 we denote by fi the ith coordinate function of f .

Definition 5.1 A hex board is an array of regular hexagons arranged into a diamond shape in
such a way that there is the same number of hexagons along each side of the board.

The game of hex is played on a hex board in the following manner. Two players alternate
and the aim of the game is to connect pairs of opposite sides. More precisely, if the players are
labelled × and ◦ then one pair of opposite sides is labelled × and the other ◦. In turn each player
labels a previously unlabelled hexagon with her or his symbol. The winner is the player who first
obtains a connected path of adjacent hexagons stretching between the sides of that player’s label.

The picture below gives an example of a hex board in which there are six hexagons along
each side.
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Theorem 5.2 Every game of hex results in a winner.

Proof. Suppose that the hex board has been filled by the symbols × and ◦ as described above.
At each of the four corner hexagons of the board add a line segment from a free corner of the
hexagon away from the board. Note that on either side of each of these line segments, as well as
each of the edges of each hexagon, there is a region labelled × or ◦. Beginning at any one of the
added segments, construct a path following edges according to the following rule: Whenever we
come to a vertex, leave that vertex along an edge chosen to have × on one side and ◦ on the
other. Clearly such a path must end. It cannot pass through the same vertex twice. Thus it
must end at one of the other added segments. Then one side or other of the path will form a
winning set of symbols.

It can be shown that there will be only one winner.
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We can modify the hex board so that the game is played on a square (which is the usual
picture of I2). Subdivide the square as in the picture below. Now each player claims a vertex
and whenever a player has claimed two adjacent vertices the edge joining them belongs to that
player; thus the number of vertices in the subdivision of the square is the number of hexagons
in the original hex board. Again the aim is to connect opposite sides.
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Our proof of the next theorem makes use of Theorem 5.2. Conversely it may be shown that
Theorem 5.2 follows from Theorem 5.3, but this will not be considered here.

Theorem 5.3 (Brouwer’s Fixed Point Theorem) If f : I2 → I2 is any continuous func-
tion then there is x ∈ I2 with f(x) = x.

Proof. Suppose f : I2 → I2 is given. It suffices to show that f has approximate fixed points, i.e.

for each ε > 0 there is x ∈ I2 so that |f(x)− x| < ε. (∗)

To show that (*) leads to a fixed point, note that for each natural number n there is xn ∈ I2
so that |f(xn)−xn| < 1

n . By compactness of I2 the sequence 〈xn〉 has a convergent subsequence,
which must converge to a fixed point of f .

We now verify (*). Suppose ε > 0. By uniform continuity there is δ > 0 so that if x, y ∈ I2
satisfy |x − y| < δ then |f(x) − f(y)| < ε ; we assume δ ≤ ε. Choose an integer k > 2

δ , and
subdivide I2 into a hex board so that each side of I2 is divided into k equal pieces. Denote by
V the vertices of this hex board. Let

H+ = {x ∈ V / f1(x)− x1 ≥ ε}, H− = {x ∈ V / x1 − f1(x) ≥ ε},

V + = {x ∈ V / f2(x)− x2 ≥ ε}, V − = {x ∈ V / x2 − f2(x) ≥ ε},

where x = (x1, x2).
No vertex of H+ is adjacent to a vertex of H−, for if x ∈ H+ and y ∈ H− were vertices of

a common edge in the hex board then |x− y| < δ so |f(x)− f(y)| < ε . However,

x1 − y1 ≥ −ε (because δ ≤ ε)
f1(x)− x1 ≥ ε (because x ∈ H+)
y1 − f1(y) ≥ ε (because y ∈ H−)

f1(x)− f1(y) ≥ ε (on adding),
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so |f(x)− f(y)| ≥ ε , a contradiction. Furthermore, no vertex of H+ has first coordinate equal
to 1, nor does any vertex of H− have first coordinate equal to −1. Thus H+ ∪H− cannot form
a winning set for a hex player wishing to join the sides x1 = −1 and x1 = 1. Similarly, V +∪V −

cannot form a winning set for a hex player wishing to join the sides x2 = −1 and x2 = 1. Thus
by the hex theorem H+ ∪H− ∪ V + ∪ V − cannot cover all of V .

Now choose any x ∈ V − (H+ ∪H− ∪ V + ∪ V −). Then |f(x)− x| < ε.
It is possible to prove the hex theorem from Brouwer’s Fixed Point Theorem. The equiv-

alence of these two theorems together with the modification of the hex board to fit the unit
square suggests a modification of the game of hex based on the n-dimensional Brouwer Fixed
Point Theorem. A hex board of size k will have vertices whose coordinates are all integer
multiples of 2

k (in In) and two vertices x and y will be adjacent provided that |x− y| = 2
k and

either xi ≤ yi for each i or else xi ≥ yi for each i. This will be an n-player game, but there is
a practical problem in trying to construct such a hex ”board” when n > 2. When n = 1 the
game is rather boring!

This proof is based on the paper “The game of hex and the Brouwer fixed-point theorem”
by David Gale, appearing in the American Mathematical Monthly, December 1979, pp 818-827.

Definition 5.4 A Jordan curve in R2 is the image of S1 under an embedding e : S1 → R2.

Sometimes a Jordan curve is called a simple closed curve.

Lemma 5.5 Suppose that h : I → I2 and v : I → I2 are two paths with h1(−1) = −1, h1(1) = 1,
v2(−1) = −1 and v2(1) = 1. Then for some s, t ∈ I , h(s) = v(t).

Proof. Suppose, instead, that h(s) 6= v(t) for all s, t ∈ I. Then for all s, t we have |h(s)−v(t)|) >
0. Define f : I2 → I2 by

f(s, t) =
(

v1(t)− h1(s)
|h(s)− v(t)| ,

h2(s)− v2(t)
|h(s)− v(t)|

)
.

By Theorem 5.3 f has a fixed point, say f(s0, t0) = (s0, t0). Furthermore, f(I2) ⊂ S1 so

either s0 = ±1 or t0 = ±1. However, if s0 = 1 then f1(s0, t0) =
v1(t0)− h1(1)
|h(1)− v(t0)|

is non-positive

so cannot equal s0 = 1. Similar problems arise if s0 = −1 or if t0 = ±1. This contradiction
implies that h(s) = v(t) for some s, t.

Note that in this lemma I2 could be replaced by any rectangle.

Lemma 5.6 Let J be a Jordan curve in R2. If R2 − J is not connected, then each component
of R2 − J has J as its boundary.

Proof. Let U be any component of R2 − J . Then no other component meets Ū , so ∂U =
Ū ∩ (R2 − U) ⊂ J . If ∂U 6= J then there is an arc A in J containing ∂U . As there is at least
one bounded component of R2 − J , we may choose a point p in such a component; if U itself
is bounded then choose p ∈ U . Let D be a large disc centred at p containing J in its interior.
Since A is homeomorphic to I, Tietze’s extension theorem guarantees a map r : D → A with
r|A = 1. Define f : D → D − {p} by

f(x) =
{

r(x) if x ∈ Ū
x if x ∈ R2 − U

or f(x) =
{

x if x ∈ Ū
r(x) if x ∈ R2 − U

,

depending on whether or not U is bounded. As Ū ∩ (R2 − U) ⊂ A and in A the map r is the
identity, it follows that f is well-defined, and hence continuous. Let g : D − {p} → S(= ∂D)
be obtained by outward projection from p and let h : S → S turn S through 180◦. Then
hgf : D → D has no fixed point, contradicting Brouwer’s theorem. Thus ∂U = J .
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Theorem 5.7 (Jordan Curve Theorem) The complement in R2 of a Jordan curve J con-
sists of two components, each of which has J as its boundary. R2−J has exactly one unbounded
component and each component of R2 − J is path connected and open.

Proof. We begin by showing that each component U of R2−J is open and path connected. Let
x ∈ U . As J is compact it is also closed in R2 so R2− J is open and hence there is a small disc
D centred at x which is disjoint from J . Then U ∪D must be connected and hence, since U is
a component of R2−J , we must have D ⊂ U . Thus U is open. As R2 is locally path connected
it follows that every open connected subset, such as U , is path connected.

By compactness of J there are points a, b ∈ J for which the Pythagorean distance is greatest.
Choose coordinates so that a = (−1, 0) and b = (1, 0). Then J lies in the rectangle [−1, 1] ×
[−2, 2] = R, and the only points of J on ∂R are a and b. Let c = (0, 2) and d = (0,−2).
The segment cd meets J by Lemma 5.5; let m be the point of cd ∩ J having maximum second
coordinate. As the points a and b divide J into two arcs, we can denote the arc of J from a to
b through m by Jc and the other arc by Jd. Let l be the point of cd ∩ Jc having least second
coordinate.

The segment ld meets Jd; otherwise the two arcs Jd and cm + m̃l + ld violate Lemma 5.5.
Let k be the point of ld ∩ Jd with greatest second coordinate and j the point of ld ∩ Jd with
least second coordinate. Let x be the mid-point of kl. The picture below illustrates this.
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Firstly the component U of R2−J containing x is bounded, for if it is not then there is a path
in U from x extending outside R; let α denote the portion of this path from x to the first point,
n, where it meets ∂R. If n has negative second coordinate then the paths cm+ m̃l+ lx+α+ n̂d
and Jd violate Lemma 5.5, where n̂d is the shortest path in ∂R from n to d. If n has positive
second coordinate then the paths dx + α + n̂c and Jc violate Lemma 5.5. Thus no such path as
α exists so U is bounded.

There can be no other bounded component, for if there were such a component V then the
path β = cm + m̃l + lk + k̃j + jd does not lie in this component. On the other hand, as β
contains neither a nor b there are circular neighbourhoods A and B of a and b disjoint from β.
By Lemma 5.6, a, b ∈ V̄ so A and B contain points u, v ∈ V . As V is path connected there is
a path ũv in V from u to v. The paths au + ũv + vb and β violate Lemma 5.5.

This proof is based on the paper “The Jordan curve theorem via the Brouwer fixed point
theorem” by Ryuji Maehara, appearing in the American Mathematical Monthly, December
1984, pp 641-643.
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Exercises

1. Prove that each of the following two statements implies the other.

• Every continuous function f : In → In has a fixed point.

• There is no continuous function r : In → Sn−1 such that r(x) = x for each x ∈ Sn−1.

As the first statement is true when n = 1, 2 it follows that the second, the no retract
theorem, also holds for n = 1, 2. Using algebraic topology one can quickly verify the
second statement for all n from which Brouwer’s Fixed Point Theorem for all n follows.

2. Describe a continuous function r : In → Sn−1.

3. Is there a continuous function r : In → Sn−1 such that r(x) = −x for each x ∈ Sn−1?

4. Extend Brouwer’s Fixed Point Theorem to the following: every continuous function
f : In → Rn such that f(Sn−1) ⊂ In has a fixed point.

5. Let Pn = {(x1, . . . , xn) ∈ Rn / xi ≥ 0 for each i} and suppose that f : Pn → Pn is
continuous. Prove that there are x ∈ Pn and λ > 0 such that f(x) = λx.

6. Let A be an n×n matrix all of whose entries are non-negative. Prove that A has at least
one non-negative eigenvalue.
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