To further reduce the amount of computations in solving congruences it is important to realise that if $m = m_1 m_2 \dots m_s$ where the m_i are pairwise coprime, then $a \equiv b \pmod{m}$ if and only if $a \equiv b \pmod{m_i}$ for every $i, 1 \leq i \leq s$. This leads to the question of simultaneous solution of a system of congruences.

Theorem 1 (Chinese Remainder Theorem). Let m_1, m_2, \ldots, m_s be pairwise coprime integers ≥ 2 , and b_1, b_2, \ldots, b_s arbitrary integers. Then, the s congruences $x \equiv b_i \pmod{m_i}$ have a simultaneous solution that is unique modulo $m = m_1 m_2 \ldots m_s$.

Proof. Let $n_i = m/m_i$; note that $(m_i, n_i) = 1$. Every n_i has an inverse $\bar{n}_i \mod m_i$ (lecture 2). We show that $x_0 = \sum_{1 \le j \le s} n_j \bar{n}_j b_j$ is a solution of our system of s congruences. Since m_i divides each n_j except for n_i , we have $x_0 = \sum_{1 \le j \le s} n_j \bar{n}_j b_j \equiv n_i \bar{n}_i b_j \pmod{m_i} \equiv b_i \pmod{m_i}$. Uniqueness: If x is any solution of the system, then $x - x_0 \equiv 0 \pmod{m_i}$ for all i. This implies that $m|(x - x_0)$ i.e. $x \equiv x_0 \pmod{m}$.

Exercise 1. Find all solutions of the system $4x \equiv 2 \pmod{6}$, $3x \equiv 5 \pmod{7}$, $2x \equiv 4 \pmod{11}$.

Exercise 2. Using the Chinese Remainder Theorem (CRT), solve $3x \equiv 11 \pmod{2275}$.

Systems of linear congruences in one variable can often be solved efficiently by combining inspection (I) and Euclid's algorithm (EA) with the Chinese Remainder Theorem (CRT).

Example. Consider the congruence $13x \equiv 71 \pmod{380}$. Using (CRT) we obtain an equivalent system $13x \equiv 71 \pmod{m}$ where m = 4, 5, 19, which, finding multiplicative inverses by (EA) or (I), can be simplified to $x \equiv 3 \pmod{4}$, $x \equiv 2 \pmod{5}$, and $x \equiv 4 \pmod{19}$. All solutions of the 3rd congruence have the form 4+19s for $s \in Z$. By (EA) or by (I) we see that for s = 2 we also obtain a solution 42 of the 2nd congruence, and by (CRT) this solution is unique (mod 95). It remains to look for solutions of the 1st congruence among the integers 42+95t for $t \in Z$; by (EA) or (I) we find that t = -1 works. Invoking (CRT) again, we have a unique solution $x \equiv -53 \pmod{380}$.

An extension of the CRT to arbitrary moduli was described in full detail by Qin Jiushao in the 13th century AD (parts of it were known to Yih-Hing in the 7th century AD).

Theorem 2. Let m_1, m_2, \ldots, m_s be integers ≥ 2 and let b_1, b_2, \ldots, b_s be any integers. Then the s congruences $x \equiv b_i \pmod{m_i}$ have a simultaneous solution if and only if $\gcd(m_i, m_j)$ divides $b_i - b_j$ whenever $i \neq j$. When this is satisfied, the solution is unique mod $\gcd(m_1, m_2, \ldots, m_s)$.

Proof. Necessity and uniqueness are easy. Sufficiency: For each i replace $x_i \equiv b_i \pmod{m_i}$ with an equivalent set of congruences $x_i \equiv b_i \pmod{q}$, where q are the prime power factors in the factorisation of m_i . For a given prime p, let e be the largest integer such that p^e divides some m_i . If now p^k divides an m_j with $j \neq i$, then $k \leq e$ and hence p^k divides $b_i - b_j$ since $\gcd(m_i, m_j)$ does. In this case $x \equiv b_i \pmod{p^e}$ implies $x \equiv b_j \pmod{p^k}$. Thus, from the new set of congruences we may discard, for a given p, all congruences except for the one with the highest power of p. Apply CRT.

Structure of the ring \mathbb{Z}_m . As in Theorem 1, let m_1, m_2, \ldots, m_s be pairwise coprime integers ≥ 2 , and $m = m_1 m_2 \cdots m_s$.

The mapping $f: \mathbb{Z} \to R = \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_s}$ given by

$$n \mapsto (n \mod m_1, n \mod m_2, \dots, n \mod m_s)$$

is a ring homomorphism (easy exercise). Its kernel consists of all multiples of $m = \text{lcm}(m_1, \dots, m_s)$. By the first isomorphism theorem, the image of f is therefore isomorphic to \mathbb{Z}_m . Counting the number of elements in R and in \mathbb{Z}_m (there are m elements in each of them), we see that f is *onto*. This provides an alternative proof of Theorem 1.

The numbers $e_i = n_i \bar{n}_i$ in the proof of Theorem 1 have the property that $e_i \equiv 1 \pmod{m_i}$ and $e_i \equiv 0 \pmod{m_j}$ for $j \neq i$. Moreover, $e_i^2 \equiv e_i \pmod{m}$ for all i and $\sum_i e_i \equiv 1 \pmod{m}$.

Theorem 1 reduces the study of the rings \mathbb{Z}_n for arbitrary $n \in \mathbb{N}$ to the study of the rings \mathbb{Z}_{p^k} where p is a prime number.

GAP Commands:

ChineseRem([55,17],[1,0]); finds an integer $x \in [0, \text{lcm}(55,17))$ which satisfies $x \equiv 1 \pmod{55}$ and $x \equiv 0 \pmod{17}$.

Similarly: ChineseRem([13,101,59,54,77],[1,2,3,4,5]); for 5 simultaneous congruences.

If you say ChineseRem([55,33],[0,1]); GAP will complain, because it is only a computer program and cannot perform the impossible (see Theorem 2).