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To further reduce the amount of computations in solving congruences it is important to realise that if m =
m1m2 . . . ms where the mi are pairwise coprime, then a ≡ b (mod m) if and only if a ≡ b (mod mi) for every
i, 1 ≤ i ≤ s. This leads to the question of simultaneous solution of a system of congruences.

Theorem 1 (Chinese Remainder Theorem). Let m1,m2, . . . ,ms be pairwise coprime integers ≥ 2, and

b1, b2, . . . , bs arbitrary integers. Then, the s congruences x ≡ bi (mod mi) have a simultaneous solution that

is unique modulo m = m1m2 . . . ms.

Proof. Let ni = m/mi; note that (mi, ni) = 1. Every ni has an inverse n̄i mod mi (lecture 2). We show that
x0 =

∑
1≤j≤s nj n̄jbj is a solution of our system of s congruences. Since mi divides each nj except for ni, we

have x0 =
∑

1≤j≤s njn̄jbj ≡ nin̄ibj (mod mi) ≡ bi (mod mi). Uniqueness: If x is any solution of the system,

then x − x0 ≡ 0 (mod mi) for all i. This implies that m|(x − x0) i.e. x ≡ x0 (mod m). �

Exercise 1. Find all solutions of the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11).

Exercise 2. Using the Chinese Remainder Theorem (CRT), solve 3x ≡ 11 (mod 2275).

Systems of linear congruences in one variable can often be solved efficiently by combining inspection (I) and
Euclid’s algorithm (EA) with the Chinese Remainder Theorem (CRT).

Example. Consider the congruence 13x ≡ 71 (mod 380). Using (CRT) we obtain an equivalent system
13x ≡ 71 (mod m) where m = 4, 5, 19, which, finding multiplicative inverses by (EA) or (I), can be simplified
to x ≡ 3 (mod 4), x ≡ 2 (mod 5), and x ≡ 4 (mod 19). All solutions of the 3rd congruence have the form
4+19s for s ∈ Z. By (EA) or by (I) we see that for s = 2 we also obtain a solution 42 of the 2nd congruence,
and by (CRT) this solution is unique (mod 95). It remains to look for solutions of the 1st congruence among
the integers 42 + 95t for t ∈ Z; by (EA) or (I) we find that t = −1 works. Invoking (CRT) again, we have a
unique solution x ≡ −53 (mod 380).

An extension of the CRT to arbitrary moduli was described in full detail by Qin Jiushao in the 13th century
AD (parts of it were known to Yih-Hing in the 7th century AD).

Theorem 2. Let m1,m2, . . . ,ms be integers ≥ 2 and let b1, b2, . . . , bs be any integers. Then the s congruences

x ≡ bi (mod mi) have a simultaneous solution if and only if gcd(mi,mj) divides bi−bj whenever i 6= j. When

this is satisfied, the solution is unique mod lcm(m1,m2, . . . ,ms).

Proof. Necessity and uniqueness are easy. Sufficiency: For each i replace xi ≡ bi (mod mi) with an equivalent
set of congruences xi ≡ bi (mod q)), where q are the prime power factors in the factorisation of mi. For a
given prime p, let e be the largest integer such that pe divides some mi. If now pk divides an mj with j 6= i,
then k ≤ e and hence pk divides bi − bj since gcd(mi,mj) does. In this case x ≡ bi (mod pe) implies x ≡ bj

(mod pk). Thus, from the new set of congruences we may discard, for a given p, all congruences except for
the one with the highest power of p. Apply CRT. �

Structure of the ring Zm. As in Theorem 1, let m1,m2, . . . ,ms be pairwise coprime integers ≥ 2, and
m = m1m2 · · ·ms.
The mapping f : Z → R = Zm1

⊕ Zm2
⊕ · · · ⊕ Zms

given by

n 7→ (n mod m1, n mod m2, . . . , n mod ms)

is a ring homomorphism (easy exercise). Its kernel consists of all multiples of m = lcm(m1, . . . ,ms). By the
first isomorphism theorem, the image of f is therefore isomorphic to Zm. Counting the number of elements
in R and in Zm (there are m elements in each of them), we see that f is onto. This provides an alternative
proof of Theorem 1.

The numbers ei = nin̄i in the proof of Theorem 1 have the property that ei ≡ 1 (mod mi) and ei ≡ 0
(mod mj) for j 6= i. Moreover, e2

i ≡ ei (mod m) for all i and
∑

i ei ≡ 1 (mod m).

Theorem 1 reduces the study of the rings Zn for arbitrary n ∈ N to the study of the rings Zpk where p is a
prime number.

GAP Commands:

ChineseRem([55,17],[1,0]); finds an integer x ∈ [0, lcm(55, 17)) which satisfies x ≡ 1 (mod 55) and x ≡ 0
(mod 17).

Similarly: ChineseRem([13,101,59,54,77],[1,2,3,4,5]); for 5 simultaneous congruences.

If you say ChineseRem([55,33],[0,1]); GAP will complain, because it is only a computer program and
cannot perform the impossible (see Theorem 2).
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