Department of Mathematics Maths 190 and Maths 190G Tutorial 3

For this tutorial, please organize yourselves into groups of three (preferable) or four. Hand in your solution to the boxed question with Assignment 2.

1. Express each of the following numbers as a product of primes: $6,24,27,35,120$.
2. Does a nonprime divided by a nonprime ever result in a prime? Always? Sometimes?

Never? Explain your answers.
3. Express the first 15 even numbers greater than 2 as as the sum of two prime numbers. Is every even number the sum of two primes?
4. (Hand in with Assignment 2) Can every odd number greater than 3 be written as a sum of two primes? Why/Why not?

For the final exercise each group will need a calculator (or computer) that is able raise one number to the power of another, e.g., to compute $5^{10}=9,765,625$.
5. Establishing shared secret passwords. In this exercise two of your group members (let's call them Alice and Bob) will generate a shared secret password (to access a bank account, for example). They do this by individually making certain calculations, by publicly declaring the results, and by making a second calculation to determine the password. (In practice this password exchange could take place without Alice or Bob actually meeting, e.g., by publishing their results in a newspaper.) The remaining group member(s) must try to discover the password.

To describe the details, we,need the following mathematical notation: "A mod B" refers to the remainder obtained when A is divided by B. For example, $18 \bmod 7=4$ because 18 divided by 7 is 2 with a remainder of 4 .

Agree who is to be Alice and Bob and who will observe. Then:
(a) Alice randomly picks a number between 1 and 10 (let's call it A) and tells it to no one. Bob does the same (let's call this number B).
(b) Alice calculates $5^{A} \bmod 23$ (let's call this number C) and writes the result down on a piece of paper viewable by all group members: " $C=\ldots$." Similarly, Bob calculates $5^{B} \bmod 23$ (let's call this number D) and writes the result underneath: " $D=\ldots$."
(c) Alice now calculates $D^{A} \bmod 23$. This is Alice's secret password. Bob calculates C^{B} mod 23. This is Bob's secret password and it is the same as that of Alice! Can you see why?
(d) The remaining group members attempt to discover the shared password, given the values of C and D written down, together with what they know about how the password was generated.
(e) Discuss your observations, and if time permits change roles.

