Department of Mathematics
MATHS 190, Semester 1, 2007
Assignment 3
Due: Thursday, April 5th

1. (a) Show that the five consecutive integers that begin with the number $(1 \times 2 \times 3 \times 4 \times 5 \times 6)+2$ are all non-primes.
(b) Is it true that for any finite integer N, there exists a run of N consecutive integers, all of which are non-prime? Explain your answer.
2. Australian Tax File Numbers are generated using a check-digit error detection algorithm kept secret by the Tax Office to prevent people creating fake but valid-looking numbers. The algorithm was rather easily discovered by examining large numbers of examples; here are the details: The numbers are 9 -digits long; a number $n_{1} n_{2} n_{3} n_{4} n_{5} n_{6} n_{7} n_{8} n_{9}$ is a valid Tax File Number if and only if it satisfies the equation,

$$
n_{1}+4 n_{2}+3 n_{3}+7 n_{4}+5 n_{5}+8 n_{6}+6 n_{7}+9 n_{8}+10 n_{9} \equiv 0 \bmod 11
$$

For example, the number 555000555 is a valid Tax File Number, because

$$
\left.\begin{array}{rl}
5 \times 1+5 \times 4+5 \times 3+ & 0 \times 7+0 \times 5+0 \times 8+5 \times 6+5 \times 9+5 \times 10 \\
= & 5+20+15+0
\end{array}\right) 0+0+30+45+50=165=15 \times 11 \equiv 0 \bmod 11 .
$$

(a) Show that 262702231 is not a valid Tax File Number.
(b) With what digit should you swap the 7 to make 262702231 a valid Tax File Number?
3. Decide which of the following numbers are rational and rewrite them as fractions:

$$
\sqrt{5}, \quad 1 . \dot{9} 8=1.989898 \ldots, \quad \sqrt{9}, \quad 0.101001000100001000001 \ldots, \quad 3.14159265 .
$$

4. Let q and r be rational numbers with $q<r$. Find an irrational number lying between them on the real number line, i.e., an irrational number I such that $q<I<r$. Be sure to clearly explain why your number I is irrational. You may use without proof the fact that $\sqrt{2}$ is an irrational number. (Hint. The number $1 / \sqrt{2}$ satisfies the inequality $0<1 / \sqrt{2}<1$.)
5. Is it possible to build an irrational number whose decimal digits are just 1's and 2's and only finitely many 2's appear? If so, describe such a number. If not, explain why not.
