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Guest Editorial 

This issue's Guest Editorial is by Birgit Loch, Senior Lecturer in the 
Mathematics Discipline and Head of the Mathematics and Statistics 
Support Centre, Swinburne University of Technology. Birgit has an 
interest in technology use and adoption in mathematics education, 
and was co-coordinator of the Special Session on Mathematics 
Education at the recent AustMS meeting in Brisbane. 

In their editorial for the first edition of this newsletter, Bill Barton and 
Mike Thomas raised a number of important issues in research into the nature 
of undergraduate teaching and learning in the mathematical sciences. I will 
touch on the following here: Is the lecture and tutorial model the best 
teaching approach, or can we improve on it? If so, how? What should be the 
role of technology in the undergraduate mathematical sciences? Should it be 
used, and if so what kind of technology and to what extent? How might 
course content change when technology is integrated? These are all valid 
questions. Researching answers and sharing already existing knowledge is a 
timely task considering the growing disjunction between the current use of 
technology in mathematics learning and teaching at undergraduate level, and 
the adoption, proliferation and ubiquitousness of technologies in the world 
around us. Let me explain this further. 

Many students entering university in the near future, in Australia at least, 
will have been using laptop or tablet computers for learning for years, thanks 
to an Australian Government initiative which provided funding to schools to 
purchase these computers. Many will own an iPad or similar tablet device. 
Others will have iPhones, or one of an ever-growing range of other 
smartphones. These devices are always with the students. They are used for 
communication, making friends, file storage, input of information, sharing, 
collaboration, searching for answers and definitions, playing music and 
videos, and gaming – and self-directed learning. They are embedded in 
students’ private and university lives and the students no longer regard them 
as technology. 

How could we benefit from this enthusiasm for technologies? Can we 
transfer it to the learning of mathematical concepts in Matlab or Maple, two 
tools that are implemented into undergraduate teaching at many universities? 
If so, how? Can we slip in the learning of mathematical concepts, 
undercover, so students don’t think of it as learning mathematics? This may 
sound far fetched now, but could we develop a mathematical game that will 
teach students how to find an integral by substitution, where they will 
willingly follow all the steps because they can’t advance a level in the game 
they are addicted to without providing the solution? (You may remember Bill 
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Barton suggesting that we get students addicted to mathematics in the first 
edition of this newsletter). 

Could we get across the importance of mathematics and its direct 
relevance to the student’s professional life after university by getting them to 
enter an interactive web-based game that lets them face situations they will 
encounter in their future jobs, and which require mathematical problem 
solving skills on the spot? Could this reverse a lack of interest in mathematics 
by “service course” students? I can think of a nurse calculating drug dosages, 
and an engineer working out the maximum weight a bridge can take.  

Could we redefine assessment and ask students to go on the Web with 
their always connected devices, in teams, to search not for answers to 
problems, but for methods for solving them, and then explain to other teams 
how the methods are used? Would this be better than having the lecturer 
provide all methods with interaction from only a small number of good 
students? When the methods have been presented and discussed, then the 
focus could move towards practicing the actual solving.  

Could we give students a screencast to show them how we want an 
assignment question written, rather than wait until we see their first 
assignment and mark them down for inadequate explanation of how they 
derived their answer? Could we provide students with recorded “lectures” 
that introduce new concepts, expect them to watch them before class, and 
focus on resolving misunderstandings in face-to-face classes instead?  

This is where I see the disjunction. How many of us are doing at least one 
of the above now?  

Many of the suggestions and questions I’ve raised also apply to other 
disciplines. So I come to the questions that I would hope research and shared 
knowledge published in this newsletter could attempt to answer. What is best 
practice in the use of technologies in learning and teaching in the 
mathematical sciences? How can we get lecturers involved in the effective 
use of contemporary technologies, and what type of professional 
development is needed?  

What if a regular contribution to this newsletter was a column on “the 
three technological interventions that have made the most difference in my 
students’ learning”? 

 
Birgit Loch 
Birgit.loch@swin.edu.au 
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A Changing Cohort—What Do High School Students 
Remember and What Does it Mean for University 

Lecturers? 
Michael Jennings 

The University of Queensland 

Until the late-1990s the first-year engineering cohorts at The University of 
Queensland (UQ) were very different to recent cohorts. At school, students 
had to have studied both intermediate and advanced mathematics, plus 
chemistry and physics, in order to enter engineering. Since the late-1990s, 
students have only needed intermediate mathematics plus chemistry or 
physics to enrol. As such, only 60% of recent first-year engineering students 
have studied both intermediate and advanced mathematics at school (UQ 
entry data, 2010).  

The number of students choosing engineering in the 1990s was also very 
different. In 1991 there were 400 first-year students and in 2008-2010 there 
were 970. This increase in numbers has meant an increased diversity of 
backgrounds, knowledge and abilities, but there has not been a significant 
change in the way that engineering and mathematics is taught.  In order to 
better understand this new group of students, staff decided in 2007 to 
reintroduce diagnostic testing.  

Diagnostic testing had been conducted on first-year engineering cohorts at 
UQ from 1972-1994 (Pemberton & Belward, 1996). The test was the same 
every year with questions covering the Years 11 and 12 intermediate and 
advanced mathematics syllabi. The 2007 diagnostic test was quite different. 
Questions came from both the senior intermediate mathematics syllabus and 
the Queensland Years 1-10 mathematics syllabus (specifically topics which 
form the basis for the senior secondary topics). A typical course of study in 
Queensland senior intermediate mathematics can be found in Table 1. 

Test questions involved purely mathematical calculations as well as 
worded real-life problems. The test was given to all first-semester advanced 
mathematics bridging students (n=457) and Calculus and Linear Algebra 1 
students (n=583) in their first lecture. It was a pen-and-paper test with no 
prior notice. Demographic and enrolment data collected as part of this test 
revealed that most students studying the advanced mathematics bridging 
course have either completed intermediate mathematics at a Queensland high 
school or the equivalent subject interstate or overseas. Calculus and Linear 
Algebra 1 students have usually studied intermediate and advanced 
mathematics at secondary school (or completed the advanced mathematics 
bridging course at UQ). Both first semester cohorts are typically made up of 
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first-year engineering students (17-18 years old) who completed secondary 
school in Queensland.  
Table 1. Typical Queensland Intermediate Mathematics Outline 

Date Topics 

Year 11 Term 1 Fundamental concepts, applied statistical analysis, periodic 
functions and applications  

Year 11 Term 2 Functions – limits, composite, inverse, non-linear 
Year 11 Term 3  Periodic functions and applications, exponential and log 

functions 
Year 11 Term 4 Rates of change, optimisation using derivatives, applied 

statistical analysis 
Year 12 Term 1 Rates of change, optimisation using derivatives, 

introduction to integration – numerical 
Year 12 Term 2  Periodic functions, exponential and log functions 
Year 12 Term 3 Exponential and log functions, optimisation, introduction to 

integration – area under & between curves, rates of change 
– log functions, derivatives & graphing 

Year 12 Term 4 Applied statistical analysis, optimisation 

Students had approximately 20-25 minutes to complete the test and were 
asked not to use calculators. Students did not need to show working but had 
three options when answering each question. They could write their answer 
in the box, or tick one of two boxes: “never seen” or “can’t remember”. One 
reason these two options were included was to discover if some students, 
particularly the non-Queensland students, had not seen some of the topics 
before. The second reason was to gauge which topics the students felt 
comfortable in answering and which they did not. An explanation of the test 
was given to students beforehand, which included students being told that if a 
question looks familiar but you can’t remember how to solve it, then tick the 
“can’t remember” box and move on. A summary of test items is given in 
Figure 1. 

Students’ answers to Question 1 were perhaps the most surprising. Only 
27% of the advanced mathematics bridging students and 57% of the Calculus 
and Linear Algebra 1 students answered correctly. The most common wrong 

answers were 
22

8
+x

 (added numerators and added denominators, 8% of 

students) and 
2

10
+x  

(added 2 to both the numerator and denominator of the 

first fraction, 6% of students). Four percent of students had the correct 
denominator but incorrect numerator (eight different numerators overall). 



5  CULMS Newsletter No.2, November 2010 

Percentages of “can’t remember” responses were quite high for Questions 
7, 12-16. These were questions on topics that students had seen only in Years 
11 and 12. An in-depth analysis of the 2007 test results can be found in 
Jennings (2008, 2009); however, students performed considerably better in 
topics to which they had more exposure. Questions on calculus, an area only 
studied in Years 11 and 12, had the lowest success rate. Little feedback was 
given to the students, other than the test and solutions being posted on course 
websites.  
1. Write as a single fraction 
 
 

9. Given the right-angled triangle 
below (picture supplied), state the 
value of cosθ.  

2. Solve   5 +     = 2 + x 10. A surveyor standing at a point B, 
40m from the base of the tower, has 
measured the angle to the top of the 
tower as 60° (pictured supplied).  
Write an expression for the height of 
the tower in terms of the angle. 

3. Expand and simplify   (2x – y)2 11. Let f(x) = x2 – .  
 Determine f (4). 

4. Factorise   9x2 – 64  12. When is P(t) = t2 – 6t + 16 a 
maximum? 

5. Solve   x2 + 6x + 8 = 0 13. Determine the first derivative of  
        f(x) = xex 

6. Simplify   (x1/2 × y)2/x2 14. Determine the first derivative of 
       f(x) = sin(7x) 

7. Evaluate   log39 + log42 15. Evaluate the integral

€ 

x  dx∫  

8. You need to make 500mL of a 
solution that contains 10% (by 
volume) hydrochloric acid (HCl). 
What volumes of pure 100% HCl and 
distilled water do you need to make 
this solution? 

16. Evaluate the definite integral  

 

€ 

−2x + 3( )dx
0

2

∫  

Figure 1. Summary of test items. 

The time taken to mark the 1000-plus tests was lengthy so online tests 
were considered for 2008. Unfortunately it was not possible to design one in 
time for the beginning of Semester 1. In late 2008 a team of engineering and 
science academics received a UQ Teaching and Learning grant to design an 
electronic diagnostic test to assess knowledge of high school maths, physics, 
and chemistry, and also the ability of the students to apply this knowledge. 

! 

x

2

53

+
+
xx

2

x
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Survey Monkey was used to run the test; however, limitations on entering 
mathematics symbols meant that the test was multiple-choice, with carefully 
chosen distracters. Also included were the “never seen” or “can’t remember” 
options.  

The test was run just before Semester 1 began 2009, again with no prior 
notice, with students accessing the test at university or at home. The 
participation rate was disappointing (n=388), just over a third of the cohort. 
Given the poor results in the algebraic fractions and calculus questions in 
2007, it was decided to add: 

a numerical fractions question –  Write          as a single fraction,  
a simple differentiation question –  

Determine the first derivative of f (x) = x3 + 2x2 − 7x + 4 ,  
and a simple integration question –  

Find the integral 3x2 + 4x −1dx∫ .  
Another integration question was also added. 
Find the area of the shaded region that is bounded by the curve, the x-axis, 
the y-axis and the line x=3, giving the answer to one decimal place. The 
graph shown here is a graph of y = x2 − 2x + 2 . 
 

 
 
 
 
 
 
 
 

The remaining questions were the same as the 2007 test. While the raw 
percentages for most questions were better than the 2007 test, the order of 
difficulty remained the same. That is, questions on topics that students had 
first seen in Years 11 and 12 were not done as well as topics that students had 
had longer exposure to. It was not possible to analyse students’ responses in 
terms of how many mathematics subjects they studied at high school. 
Feedback to students was limited to the correct answer appearing after each 
question was answered. 

A re-test (n=103) was undertaken at the beginning of Semester 2, 2009, to 
see how students performed in comparison to the beginning of the year. 
Improvement was seen in all questions, particularly in solving a quadratic, 
chain and product rules, composition of functions, and definite integral.  

Staff now had two years’ worth of data so it was a matter of working out 
what do. Midway through 2009 mathematics staff met with the engineering 

4

3

3

2
+
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staff who taught applied mechanics to students studying both their course and 
the advanced mathematics bridging course at the same time. The applied 
mechanics lecturers had previously mentioned that students’ integration skills 
were poor, but integration was taught at the end of semester in mathematics. 
A decision was made to reorder the topics in the advanced mathematics 
bridging course from 2010, bringing differentiation and integration to the 
start of semester and moving sequences and series to the end. Integration 
questions on the end of semester examinations in the advanced mathematics 
bridging course were done poorly, so the hope was that this reordering of 
topics would not only benefit students in their applied mechanics study but 
also in their mathematics study.  

In addition to this change in order of topics, a new drop-in centre was 
opened in 2010 for two hours a week, run by a lecturer, to complement the 
First Year Learning Centre, staffed by postgraduate students (open for two 
hours a day Monday to Friday). Online and paper resources were also 
developed for topics in the advanced mathematics bridging course (Jennings, 
2008). 

In 2010 the same test was run again (n=623, approximately two-thirds of 
the cohort). Feedback to students was greatly improved, with each student 
receiving a personalised report detailing their mark for each question (correct 
or incorrect), which first-year course(s) each question was important for, and 
for each question at least one website to visit in order to improve their 
knowledge and understanding. Many students commented positively on this 
detailed feedback. 

The 2010 cohort was made up of students with higher overall high school 
results compared with the 2009 cohort, and they performed better in all 
questions. It was possible to analyse student performance according to how 
many mathematics subjects they studied at high school, with the students 
who had studied both intermediate and advanced mathematics performing 
considerably better than those who had only studied intermediate 
mathematics. As in 2007 and 2009, students performed considerably better in 
topics to which they had more exposure. A re-test (n=107) was undertaken at 
the beginning of Semester 2, 2010; however, of these 107 students only 46 
did the original test so comparisons are difficult to make.  

The applied mechanics staff reported at the end of Semester 1, 2010, that 
their students seemed to be better prepared as a result of integration being 
taught earlier in the advanced mathematics bridging course. However, there 
appeared to be little change in the advanced mathematics bridging course as 
students still had considerable difficulty answering integration questions on 
the final exam. 
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Where to From Here? 
The diagnostic test as it stands gives teaching staff some idea of what the 

students can do, but it doesn’t give staff much of an idea of what students 
understand. In 2011 the plan is to run the test electronically, yet with as few 
multiple-choice questions as possible. Some of the questions will remain; 
others will be replaced with questions that allow students to demonstrate their 
understanding, as opposed to demonstrating which algorithms they 
remember. 

 One likely question, and one that was asked on last semester’s advanced 
mathematics bridging course exam, is to give students a graph with a local 
maximum and minimum (e.g., y = x3 + 3x2 − 9x + 4 ) and ask them on which 
interval(s) the derivative is negative. A very young student can be taught the 
algorithm to derive a function, but knowing where a derivative is negative is 
a more complex question. Other possible questions include: 

• giving students a graph of a function and asking which of four other 
graphs is the graph of the derivative (or integral); 

• find the integral x + 2 dx
−3

3

∫  (Eisenberg & Dreyfus, 1991); 

• find the maximum slope of y = −x3 + 3x2 + 9x + 27  (Eisenberg & 
Dreyfus, 1991). 

Another question to show students’ understanding of calculus is the one 
designed by Yoon, Dreyfus and Thomas (2009). Students are given the 
gradient graph of a tramping track and are asked to find the distance-height 
graph of the original track. The format of the current diagnostic test does not 
allow for graphs to be drawn; however, this question could be done in 
tutorials. 

Conclusion 
Are the test results surprising? Apart from the algebraic fractions 

question, not really. Should we complain about how much the students 
remember from high school? Probably not. The title of this article is A 
changing cohort - what do high school students remember and what does it 
mean for university lecturers? The answer to the first part of this question is 
“it depends”. Given the nature of the curriculum in Queensland (no external 
exams, integration only studied for part of Year 12), plus the fact that 
students would have done no mathematics for the best part of four or five 
months, it doesn’t come as a surprise that students don’t remember the 
product and chain rules or how to find xdx∫ .  

As for what does it mean for university lecturers, it is not possible to 
squeeze 200 hours of high school mathematics into 39 50-minute lectures. It 
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is therefore important to have a good understanding of what students 
remember and understand from high school so staff can appropriately tailor 
their courses. Suggestions for changes to the test and for new questions that 
allow staff to see what students understand have been made in this article. 

Students who do the one-semester advanced mathematics bridging course 
are considered by the university to be at the same level as those students who 
did both intermediate and advanced mathematics at school. An analysis of 
students’ final exams and overall grades in Calculus and Linear Algebra 1 for 
the past five years show that students who had studied both intermediate and 
advanced mathematics at school performed considerably better than those 
who had only studied intermediate mathematics. This appears consistent with 
Barry and Chapman’s (2007) and Wilson and MacGillivray’s (2007) research 
that showed performance at the tertiary level is dependent on secondary 
school performance.  

Several questions require thinking about: 
1. Should the advanced mathematics bridging course run for a year? 
2. Should the diagnostic test be run in Week 2 or 3, once students’ 

minds have been working for a few weeks? 
3. Should the test be run before semester and then again in Week 2 or 

3? 
4. In addition to the feedback given to students, should a revision 

manual like McMaster University’s be created? (Kajander & 
Lovric, 2005). 
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Today’s Students are Technoliterate:  
Texting for Communication 
Sheena Parnell and Moira Statham 

The University of Auckland 

Introduction 
The Tertiary Foundation Certificate Programme (TFC) at The University 

of Auckland is a full year pre-degree programme designed to prepare 
students for tertiary study.  Each year it is offered to two hundred students 
who do not have the required entry qualifications for university, but who 
have the desire to succeed academically. Participants may have been out of 
school for some time, or may be recent school leavers.  

The University of Auckland has produced a guide to parents on the 
transition from school to university. The key message is the shift towards 
students taking responsibility for and control of their own lives. Parents are 
advised that the university can offer some support, but only at the student’s 
request. The stylized graph, shown in Figure 1, was produced in the guide, to 
document the emotional rollercoaster that students experience in their 
transition into first year degree study. Foundation students are similar to 
Stage One students in the transition but we would claim ‘even more so’, 
because they are often living at the margins, with greater problems in terms 
of finance, transport, living conditions and parental support.  

Students applying for TFC undergo a selection process. Over five hundred 
applicants attend for entry tests in English and Mathematics, about three 
hundred of these are interviewed, from which two hundred are chosen for the 
available places. The excitement phase is a feature of their year as much as it 
is for any other student.  However the anxiety phase often sets in too quickly 
for comfort and needs addressing as it manifests itself in absence from class, 
and in worry about the work. As these students may have parents with no 
experience of the demands of university education, the tutors need to be in a 
position to step in effectively. Because the TFC mathematics classes are 
relatively small at fewer than forty students, the tutors can act as a caring 
parent might. The aim is to stop the anxiety phase tracking down to a point 
where it is irretrievable. 

The TFC student body is diverse, not only in terms of age and ethnicity, 
but most importantly in background knowledge of mathematics, which is a 
compulsory subject along with English (or Academic Literacy). The students 
in the TFC mathematics courses are a step back from first year 
undergraduates in many ways. Those who have come straight from school 
have already experienced failure in their attempt to gain university entrance 
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through the usual channels. Those who are mature students returning to study 
are unsure and lack confidence for a variety of reasons. As a whole, the 
students are likely to be more fragile, more needy, and more prone to 
dropping out when compared with the usual first year undergraduate. 

 
Figure 1. Highs and lows: A guide to a typical first year at university for TFC students.  

As a first step towards counteracting some foundation students’ traditional 
negative emotions and low confidence (Anthony, 2000) we need to promote 
good communication between tutors and students. We are aiming to turn 
around their failure, to boost their confidence, to stop them dropping out and 
to make them into successful learners. These are changes in their own 
disposition, so as adult mentors what can we do to help? Over the last few 
years there has been a noticeable and rapid change in the nature of students’ 
expectations that is linked to the advent of technology. As tutors in a 
university–based foundation programme, this made us think about ways that 
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technology could play a part in improving tutor to student communication. 
One of the most obvious pieces of technology was the cell-phone: they all 
have cell-phones, they all text incessantly. We decided to use texting to 
support good attendance as a first step to promoting a work ethic. By 
demonstrating that attendance is a first priority we hoped to focus their 
attention on factors for success. 

Text Messaging Made Easy: Web to Text  
Using an Office Computer 

Although all students can theoretically be contacted via email, in practice 
as Carnevale (2006) indicates, this is dependent on them accessing a 
computer. Secondly the time delay can be significant. 

As some students reduce their use of e-mail in favor of other means of 
communication, colleges are trying new technologies to reach them. Among the 
new techniques: Cell-phone Text Messages. Students live and die by their cell-
phones. (Carnevale, 2006) 
Many schools in NZ are using texting as a way to improve attendance. 

When students are absent without notification, parents are texted and the 
responsibility is passed to the parent to explain the absence or to round up 
their offspring and get them to school. In the TFC programme, responsibility 
for attendance needs to be clearly shifted to the student.  

The TFC Mathematics tutors applied to Vodafone to set up a computer 
web to text system. Our office computers are used, via a commercial web 
site, to access students’ cell-phones. This involves compiling a database of 
cell-phone numbers in the appropriate format for all of the students. To 
contact a student by text, it is only necessary to type their name in the ‘To’ 
line of an email. Replies from students come back to our computers and the 
site provides a permanent record of all texts and all replies. Some success in 
2008, even beginning at the halfway point of the programme, encouraged us 
to keep the system in place for the future. At present we make continual use 
of the system and it has become part of the everyday means of 
communication between tutors and students. 

The features of this messaging tool include: 
• sending messages as an email to and receiving responses from 

standard mobile phones using a maximum of 160 characters per 
message; 

• message tracking; 
• centralised address books; 
• standard web browser access; 
• reply functionality delivering return messages back to the 

originating person; and 
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• one account per organization and messages are free for the students 
to receive on their mobiles. 

The benefits for us were: 
• the time saved in communicating with students; 
• being able to contact multiple mobiles with one message; 
• the fact that there were no changes required to the current computer 

network setup, just simple browser access; 
• it was quick and simple to use. 

Absence from class 
In the first weeks of a semester, at the first missed class, we text the 

student. This is the first indication to those students coming straight from 
school that now they need to take responsibility for themselves, but that we 
care about them. The message is couched in a friendly, concerned tone with a 
request for a reply to set up the communication that we are promoting. In 
most cases we have instant contact with students, and we hope that early 
intervention in problems with attendance will prevent their escalation into 
large irreversible issues. Generally the student will respond immediately, by 
reply text or by appearing in person. 

Absence from a test 
Facing up to the threat of a test can be a problem for foundation students. 

One of their avoidance techniques is to be ‘sick’. At the beginning, we chase 
these up via text, asking sensitively if they are in any trouble, and can they 
contact us. At this time we will offer encouragement and the opportunity to 
take the test when they are ‘better’. Again the communication will often 
forestall further deterioration in the student’s disposition. 

Summary 
In a practical sense, we need to retain these students in order to give them 

their only real chance of gaining a university entrance qualification. 
Foundation programmes like TFC offer the opportunity for institutions to tap 
into a valuable pool of non-traditional students. The interest in such 
programmes is growing, diversity in the student body is increasing and the 
lecturers responsible for teaching the students need to keep pace with the 
demands of a technologically aware clientele. Maintaining personal contact 
with students via text messaging has shown to be useful. 

The tenacity shown by students, often in the face of compounding negativity, was 
positively correlated to connections made with teaching staff. An awareness by 
teaching staff of personal impinging factors appeared to create definitive turning 
points for individuals, if staff were actively engaged in pastoral as well as 
academic assistance.  (Morgan, 2004, p. 25) 
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By providing opportunities for students to communicate more with their 
tutors, it is perhaps possible to alleviate some of the issues in the affective 
domain between attitudes and emotions. Conversational support is a non-
threatening and technologically possible strategy to enhance the experience 
of foundation students in a university environment. The 21st Century student 
has different expectations for communication. Tapping into their 
technoliteracy makes extra lines of communication to enhance their student 
experience. 
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Report: AustMS Teaching and Learning Workshop 

The inaugural Effective Teaching, Effective Learning workshop 
chaired by Diane Donovan (The University of Queensland (UQ)) and 
Birgit Loch (Swinburne University of Technology) was held in 
September 2010 in conjunction with the 54th Annual Conference of 
the Australian Mathematical Society at UQ.  There were 65 
participants from around 20 universities. The workshop is part of a 
professional development program for lecturers and tutors teaching in 
disciplines in the mathematical sciences funded by the Australian 
Learning and Teaching Council (ALTC) and offered in conjunction 
with the Australian Mathematical Society (AustMS).  The project 
team is Leigh Wood (Macquarie University (MQ)), Nalini Joshi (The 
University of Sydney), Diane Donovan (UQ), Birgit Loch 
(Swinburne), Walter Bloom (Murdoch University), Matt Bower 
(MQ), Jane Skalicky and Natalie Brown (University of Tasmania).  

Each year in Australia, around 18,000 undergraduate students study a 
subject in the mathematical sciences. Mathematics teaching staff receive 
some training in learning and teaching but many of the courses run at 
university level are not tailored to the mathematical sciences. This workshop 
and associated professional development activities will offer teaching staff in 
quantitative disciplines a way to enhance their teaching and the learning of 
their students in conjunction with their discipline professional body, the 
AustMS. 

At the workshop, PhD students and early career academics came together 
with ‘old hands’ to discuss and brainstorm strategies for responding to the 
continually changing landscape of teaching university-level mathematics. 
The workshop was a chance to showcase the teaching and learning programs, 
staff and facilities of the host university. Three local UQ staff from a variety 
of departments facilitated workshop sessions, a UQ mathematics graduate 
delivered a plenary focused on the transition to industry, and a session was 
run in UQ’s renowned Advanced Concepts Teaching Space laboratory where 
participants experimented with using tablet screens. After an inspiring 
plenary from Bill Barton (The University of Auckland), interactive sessions 
focused on class and unit planning, assessment, planning your career, 
evidence-based teaching and service teaching. The sessions on educational 
technology were very popular and looked at delivery platforms, online 
tutorials and the use of mathematical typesetting for students. The teaching 
strategies offered in the workshop are applicable across the quantitative 
disciplines.  

The workshop was designed to benefit all, irrespective of whether they are 
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teaching into mathematics or into service disciplines. The evaluations were 
positive and the vast majority would attend again and recommend the 
workshop to their colleagues. After such positive evaluations, we are already 
planning the next workshop for the 55th Annual meeting of AustMS at the 
University of Wollongong on 29-30 September 2011. Staging the workshop 
each year will build capability across the higher education sector as the 
AustMS meeting moves around Australia and different universities take 
ownership of the development each year. Regular face-to-face workshops are 
a key avenue for fostering enthusiasm, inspiration and innovation as linked to 
focussed knowledge on best-practice teaching. Many PhD students and early 
career researchers participated: these are our future academics and academic 
leaders. We hope the impact on the profession and the student experience 
will be significant. 

The professional development works at three levels, teaching classes, 
coordinating units (papers) and leading programs. The three levels should be 
aligned as in Table 1.  
Table 1. Alignment Overview for the Planning Classes Session 

 

The sessions at the workshop were interactive and several case studies 
were presented which generated lively discussion. For example, try Exercise 1 
with your new staff. 

Exercise 1: Case Study for the Planning Classes session. 
Your students are really keen and needy. They want you to post solutions to 
everything – extra examples fully worked through. You are their 
hero/heroine because you are doing so much for them.  What do you do?  
Quotes from participants 
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• You're never too old to learn more. 
• Planning and structuring a lecture is important. 
• Tasks can and should assess a variety of outcomes. 
• Such a variety of ways to engage students online! 
• That I need to become familiar with more technology so I'm not left 

behind!!! 
We extend the invitation to teaching staff in the quantitative disciplines to 

attend the next workshop in Wollongong, Australia on 29-30 September 
2011. Why not come for the Australian Mathematical Society conference 
from 26 September as well?  
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What is the Probability That a Randomly  
Chosen Triangle is Obtuse? 

Andy Begg  
Auckland University of Technology 

In May 2010 Gilbert Strang (who has spent much of his teaching career at 
MIT) gave an interesting lecture about the “probability of a randomly chosen 
triangle being obtuse”. The problem seems to be over 100 years old and was 
published by Charles Dodgson in “Pillow Problems”. Gilbert and his 
colleagues had spent some time on the problem, investigated a number of 
approaches, and in the lecture gave a solution that involved a 3-D graph. 

I wondered after the lecture, how many of the audience took the problem 
home and worked on it, or are we as mathematicians, like our students, 
becoming consumers rather than producers of mathematics.  

I did keep thinking about it and thought why do we need three dimensions 
for a problem in two-dimensional geometry. My working went as follows 
(and I have left it to each reader to do some mathematics by constructing the 
graph): 

To find the probability that a randomly chosen triangle is obtuse. 
Consider any triangle with angles X, Y, and Z, and we know that  
Z = 180 – X – Y  

(or instead of 180˚, 2 right angles, or 1 half turn). 
and that:  0 < X < 180 
and 0 < Y < 180 
and 0 < 180 – X – Y < 180  (i.e. 180 > X + Y > 0) 
If a graph is drawn with these three sets of parallel boundaries, then the 

intersection of the three regions represents the sample space for all randomly 
chosen triangles. 

If the triangle is acute then: 
0 < X < 90, 
and 0 < Y < 90 
and 0 < 180 – X – Y < 90  (i.e. 180 > X + Y > 90) 

and these three sets of parallel boundaries intersect for the sample space for 
all acute-angled triangle. 

From the graph it is obvious that 
         P(obtuse)  = 1 – ¼ 

   = ¾  
Perhaps this begs the question, is a visual proof a proof? 
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Perceptions, Operations and Proof in  
Undergraduate Mathematics 

David Tall 
University of Warwick  

Teaching and learning undergraduate mathematics involves the 
introduction of ways of thinking that at the same time are intended to be 
more precise and logical, yet which operate in ways that are unlike students’ 
previous experience. 

When we think of a vector, in school it is a quantity with magnitude and 
direction that may be visualized as an arrow, or a symbol with coordinates 
that can be acted upon by matrices. In university mathematics it is an element 
in an axiomatic vector space. 

As I reflected on this situation I realised that these three entirely different 
ways of thinking apply in general throughout the whole of mathematics (Tall 
2004, 2008). The two ways encountered in school depend on the one hand on 
our physical perception and action and dynamic thought experiments as we 
think about relationships, on the other they depend on operations that we 
learn to perform such as counting and sharing which in turn are symbolised 
as mathematical concepts such as number and fraction. 

At university, all this is turned on its head and reformulated in terms of 
axiomatic systems and formal deduction. Our previous experiences are now 
to be refined and properties are only valid if they can be proved from the 
axioms and definitions using mathematical proof. The formal approach gives 
a huge bonus. No longer do proofs depend on a particular situation: they will 
hold good in any future situation we may meet provided only that the new 
context satisfies the specific axioms and definitions. However, the new 
experience is also accompanied by mental confusion as links, previously 
connected in perception and action, now require reorganisation as formal 
deductions, and subtle implicit links from experience may be at variance with 
the new formal setting. 

Further analysis of the development of mathematical thinking reveals 
three quite different forms of thinking and development that I term 
conceptual embodiment, operational symbolism and axiomatic formalism.  
These operate in such different ways—not only at a given point in time, but 
also in their long-term development—that I called them three mental worlds 
of mathematics. 

Conceptual embodiment and operational symbolism develop in 
complementary ways in school mathematics in which physical operations 
relate to algebraic symbolism (Thomas, 1988). The world of conceptual 
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embodiment is based on our operation as biological creatures, with gestures 
that convey meaning, perceptions of objects that recognise properties and 
patterns, thought experiments that imagine possibilities, and verbal 
descriptions and definitions that formulate relationships and deductions as 
found in Euclidean geometry and other forms of figures and diagrams. The 
world of operational symbolism involves practising sequences of actions 
until we can perform them accurately with little conscious effort. It develops 
beyond the learning of procedures to carry out a given process (such as 
counting) to the concept created by that process (such as number). Gray and 
Tall (1994) formulated this flexibility by speaking of such symbols as 
‘procepts’ that act dually as process and concept. The operational world of 
symbolism develops in a spectrum of ways from limited procedural learning 
to flexible proceptual thinking. 

The third world of axiomatic formalism builds from lists of axioms 
expressed formally through sequences of theorems proved deductively with 
the intention of building a coherent formal knowledge structure. Its major 
criterion is that relationships must in principle be deducible by formal proof. 
However, students and mathematicians interpret formalism in a variety of 
ways, depending on the links with embodiment and symbolism. Some build 
naturally on their previous experience to give meaning to definitions. For 
instance, the idea of a sequence   (sn )  tending to a limit may be seen by 
plotting the successive points   (n,sn )  and seeing that, the sequence tends to a 
limit L if, given a required error  ε > 0 , then from some value N onwards, (for 
 n ≥ N ) the terms  sn  lie between two horizontal lines  L ± ε . Others build 
formally by extracting meaning from the definition by learning to reproduce 
it and practising formal proofs until it becomes a familiar mode of operation. 
Both approaches are possible and can lead to successful formal thinking, 
although both can fail, either because the new formal ideas conflict with 
beliefs built from earlier experience or because the multi-quantified 
definitions are just too difficult to handle (Pinto, 1998; Pinto & Tall, 1999).  

The question arises as to how this framework of three worlds of 
mathematics can help us as mathematicians to encourage our students to 
think in successful mathematical ways. The framework is general. Although 
embodiment starts earlier than operational symbolism, and formalism occurs 
much later still, when all three possibilities are available at university level, 
the framework says nothing about the sequence in which teaching should 
occur. Indeed, in the learning of mathematical analysis some students clearly 
follow a natural approach based on their thought experiments and concept 
imagery while others are more comfortable working in a purely formal 
context. Not only is it possible to use embodied examples to give meaning to 
a formal theory, it is also possible to use a formal theory to highlight the 
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essential properties in an embodied example. 
The framework can be better understood by reflecting on specific cases. 

Consider, for example the notion of continuity. Embodiment clearly gives 
powerful insights that can be used to motivate symbolic relationships and 
formal definitions. For instance, the dynamic idea of natural continuity arises 
from the physical drawing of a graph with a ‘continuous’ stroke of the pencil 
remaining on the paper and leaving a continuous trace. While this is often 
considered to be an ‘intuitive’ notion of continuity that lacks a formal 
definition, it is also possible to envisage the graph as a stroke of a pencil 
which covers the theoretical graph with a stripe of height ±ε. If a small 
portion of the graph is stretched horizontally, while maintaining the vertical 
height, the graph will ‘pull flat’ in the sense that, for some δ > 0, then for any 
x between   x0 − δ  and   x0 + δ , the value of   f (x)  will lie between   f (x0 ) − ε  
and   f (x0 ) + ε  (Tall, 2009). In this way it is possible to have a natural 
transition from embodied continuity to the formal definition in mathematical 
analysis, which may help a natural learner but may be unnecessary for a 
formal learner. 

Elementary calculus is highly amenable to a natural approach that links 
together visual insight and symbolic manipulation without introducing formal 
epsilon-delta definitions. Using computer technology to magnify graphs 
reveals the property that many continuous graphs visibly approximate to a 
straight line under high magnification. Such a graph is said to be ‘locally 
straight’. The slope of a locally straight graph can be seen by highly 
magnifying a portion of a graph to visualize it as essentially straight and to 
measure its slope. This gives a natural distinction between continuity of a 
graph drawn with a pencil or with pixels on a graphic display (which will 
‘pull flat’) and differentiability (which involve graphs that are ‘locally 
straight’). It enables students to visualize non-differentiability (with ‘corners’ 
having different left and right derivatives, or even functions that are so 
wrinkled that they do not look straight no matter how much they are 
magnified) and to realise that most continuous functions are not 
differentiable (Tall, 2009). Such an approach, although based on visual and 
symbolic techniques only, gives far greater insight into the meaning of the 
notions of continuity and differentiability. 

Furthermore, for a locally straight function, the Leibniz notation   dy / dx  
may be interpreted as a quotient of the components of the tangent vector, as 
originally conceived by Leibniz himself. In such an interpretation, dx and dy 
can be called differentials, representing the components of the tangent vector 
up to a scalar multiple. Now a first-order differential equation is just that: it 
formulates the direction of the tangent in which the differentials are the 
components dx and dy. 



CULMS Newsletter No.2, November 2010  24 

Software can be programmed to build up the numerical slope of a graph 
dynamically by shifting along and computing   ( f (x + h) − f (x)) / h  for 
variable x and fixed h. This can be drawn as a practical slope function that 
stabilizes on a visible graph on screen for small values of h, revealing the 
stabilized graph as the derivative. The embodied action of looking along a 
graph, imagining its changing slope operates on a visual object, (the graph of 
f) and gives a new object (the stabilized graph Df). For instance, if 
  f (x) = sin x , then looking at the changing slope along the graph gives 

  Df (x) = cos x . The symbol D is here an embodied operator that means ‘look 
along the graph and see its slope function Df). 

Focusing on a specific point x, gives the equation 
 
 
 

where   Df (x)  is the value of the function produced by the operation D 
calculated at x and dx and dy are differentials (components of the tangent). 
This leads to the natural idea of blending of the two meanings by writing 

  
dy
dx

=
d( f (x))

dx
=

d
dx

f (x)  

and allowing the symbol   d / dx  to be interchanged with the operation D. 
This approach is a quite different from that suggested by the APOS theory 

of Dubinsky (e.g. Asiala et al., 1996), which speaks of focusing on a process, 
here the limit process   limh→0 ( f (x + h) − f (x)) / h , and encapsulating it as an 
object. Fundamentally, operating on an object to construct a visible object is 
far more elementary than encapsulating a process to give an as yet unknown 
object. Research results speak for themselves: the visual approach is highly 
successful (Tall, 1986) whereas the APOS view, programming functions 
symbolically to compute a practical derivative that is to be encapsulated as a 
symbolic object proves to be far more elusive (Cottrill et al., 1996). 

There is a clear distinction between a natural approach to elementary 
calculus and a formal approach to mathematical analysis. Elementary 
calculus blends together experiences in embodiment and symbolism without 
entering the complicated formal world of mathematical analysis that is 
characterised by the multi-quantified epsilon-delta definition of limit. 

Notice that I am not saying that one approach should be privileged over 
another. It is not a question of whether one should teach the formal definition 
of limit or not, it is a question of the objective of the particular course and its 
appropriateness for the current development of the learner. 

If the objective is to give insight into the calculus as an operational system 
in applications in which the Leibniz notation plays its part, then a locally 
straight approach gives both human meaning and operational symbolism. If 

  
Df (x) = dy

dx
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the objective is to develop logical mathematical analysis (preferably as a 
course that follows elementary calculus), then the handling of multi-
quantified definitions is part of the toolkit required for rigorous mathematical 
thinking. The most important aspect is to decide upon the aims of the course 
and not to inflict formal subtleties on students who are better served by a 
meaningful blend of embodiment and symbolism. 

The three worlds of mathematics each offer their own distinct advantages: 
• embodiment gives a basis of human meaning that can be translated into 

flexible symbolism, 
• symbolism offers a powerful tool for suitably accurate computation and 

precise symbolic solutions, 
• formalism offers precise logical deduction that will operate in any context 

where the axioms and definitions are satisfied. 
Consider, for example, the manipulation of multi-quantified statements. 

Embodiment will allow thought experiments to think about how to negate 
such a statement, to allow one to realise that to prove that a universal 
statement is not true, one only needs a single counter-example and that to 
prove an existence statement is not true requires a universal statement of its 
falsehood. 

Symbolism translates these statements into ¬∀ ≡ ∃¬  and ¬∃ ≡ ∀¬ . In 
this way the definition of continuity of a function f at a point x on a domain D 
can be written as 

  ∀ε > 0 ∃δ > 0 ∀y ∈D x − y < δ ⇒ f (x) − f ( y) < ε( )  
and its negation can be found by placing the negation symbol in front and 
passing it successively over each quantifier, swapping one to the other to get 

  ∃ε > 0 ∀δ > 0 ∃y ∈D x − y < δ  and f (x) − f ( y) ≥ ε( ) . 
This symbolic manipulation is easier to handle than thinking through the 

full embodiment of the meaning all at once. It enables a more compressed 
form of thinking that is supportive in building formal proofs. 

What is essential in learning is to build on the previous experience of the 
students to enable them to make personal sense of the new constructs. 

In the case of vectors, a vector also has three different meanings: as a 
geometric quantity with magnitude and direction, as an algebraic entity 
written as a column vector and as an element in a formal vector space. As a 
geometric quantity, it can be represented as a physical action, say as a 
translation of an object such as a triangle on the surface of a flat table. A 
given point A on the object will be shifted by a translation to a point B and 
represented as the shift   AB

 

 from a starting point to a finishing point in which 
any two such arrows will all have the same magnitude and direction. The 
translation can therefore be represented by a single arrow of given magnitude 
and direction that can be placed anywhere to represent the start and end of the 
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shift of a particular point. This gives an embodied arrow of given magnitude 
and direction that represents the translation. Again we start with an object on 
the table and a process of translating it to represent the translation as an 
embodied object, the free vector. Representing the composite of two 
translations, one after another, the result is represented by the unique free 
vector that has the same effect. This conception of a free vector then has a 
meaning that translates naturally to the triangle law or the parallelogram law. 

A scalar multiple of a translation can be imagined as retaining the 
direction but multiplying the magnitude by the scalar (or reversing the 
direction if the scalar is negative). This applies to free vectors by multiplying 
the magnitude of the vector by the scalar in the same way. 

The symbolic representation of a vector arises naturally through the 
solution of a system of linear equations in n variables. For n = 1, 2, 3, such 
equations can be represented in 1, 2, or 3 dimensional space. The symbolic 
techniques naturally extend to n variables and, even if the ideas are no longer 
easily visualised in higher dimensions, they can be represented by coordinate 
vectors with n components with transformations represented by matrices. 

The formal representation of a vector is quite different. A vector space is 
specified as an additive abelian group V with the action of a field of scalars F 
that satisfies appropriate axioms. Such vectors now no longer have 
magnitude or direction, but by introducing the notion of linear independence 
and spanning set, a structure theorem may be proved to show that any finite 
dimensional vector space over F is isomorphic to a space  F n  represented as 
n-dimensional coordinates. In the case of n = 2 or 3 and   F =   gives an 
embodiment of the vector space almost like   2  or   3 . I say ‘almost’ because 
the vectors in the vector space do not yet have a conception of magnitude or 
direction. To do this, one needs to add an inner product to enable one to 
specify lengths and angles. 

The problem for the teacher and the student is to be aware what 
assumptions are being made. Are vector spaces being studied formally based 
only on deductions from axioms or naturally, based on experiences of 
perceptions and actions in two and three-dimensional real space? The choice 
is up to the teacher, but it needs to be explicit. 

A natural approach would involve beginning from conceptions that are 
familiar: solving linear equations in one, two and three variables and 
generalizing them to n variables, which involves essentially the same 
symbolic solution technique although no longer visualizable in higher 
dimensional space. A formal approach would begin by abstracting the 
axioms for a vector space and writing down the list of axioms, and eventually 
proving a structure theorem from the axioms that vectors in a finite 
dimensional vector space can be represented by coordinate vectors with n 
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components. Of course, if a natural learners are presented with a formal 
approach, then the initial theorems and proofs may make little sense and the 
course may only come alive for them when the structure theorem for finite 
dimensional vector spaces has been proved and they are asked to solve linear 
equations operationally using symbolic vectors.  

The same can be said for other topic areas, for instance, groups studied as 
embodied operations of actions on figures with symmetry, or symbolic 
operations as permutations of n elements prior to a formal axiomatic 
approach. 

Formally, the various lecture courses, be they in analysis, vector space 
theory, group theory, or whatever, often begin with a formal axiomatic 
structure and formal deductions. Part of the way through the course a 
structure theorem is proven to give the axiomatic system a structure that can 
be embodied in a manner now based deductively on the axioms with an 
operational symbolism that can be used solve problems symbolically. 

For instance, in analysis, the axioms for a complete ordered field identify 
it uniquely up to isomorphism, allowing it to be visualised as a real line and 
symbolised as infinite decimals. In vector space theory, a finite dimensional 
vector space over F is isomorphic to  F n , allowing it to be symbolised as n-
tuples and embodied in   2  or   3 . In group theory, a finite group is 
isomorphic to a subgroup of permutations. 

The roles played by embodiment, symbolism and formalism are very 
different and the teacher has to make it explicitly clear what approach is 
being taken. Is the course to be a formal course that requires formal 
deduction from axioms? This may be built entirely formally until structure 
theorems give it forms of embodiment and symbolism based on those 
axioms. Is it a formal course to be constructed naturally to enable students to 
give meaning to formal definitions through a range of examples? Or is the 
course intended to develop the necessary symbolic algorithms to enable the 
ideas to be used in specific applications, with examples relevant to the area of 
application? 

My own view is that it would help students enormously to gain an insight 
into the strategy, which many lecturers use implicitly but is rarely made 
explicit. That is that formal mathematics clarifies issues by specifying 
explicit axioms that are the ‘rules of the game’ and formal proofs deduced 
using these rules are proven once and for all in any situation where the rules 
are satisfied. The initial deductions from the rules are often quite technical 
and form a barrier for many students. But once a structure theorem has been 
proved, the techniques developed are now proven to work in all situations, 
whether known now or to be encountered in the future. This formal 
foundation is a gift worth having and it can be acquired by the formal thinker 
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who deduces only from the axioms using formal proof, or by the natural 
thinker who sees the generalities bringing together many experiences that 
give meanings to the formalities. 

An understanding of three different approaches to mathematics would be 
invaluable, made explicit both to teachers and to students to be aware of the 
different objectives of mathematical thinking, consisting of: 

• ideas based on human perceptions and actions with thought 
experiments to suggest what might be true, 

• operations based on actions that give subtle mathematical processes to 
express and solve problems symbolically, and 

• formal axioms, definitions and proof that give a coherent framework of 
mathematics, supporting perception and operation with an underlying 
formal structure that applies in any situation where the axioms and 
definitions hold. 
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Thinking about the Teaching of Linear Algebra  
Sepideh Stewart & Michael O. J. Thomas 

The University of Auckland 

Is there a better way to teach linear algebra? Over the past three decades, 
a number of researchers have been concerned with the difficulties related to 
learning problems in first year linear algebra courses. They believe that 
teaching and learning this ‘high cognitively demanding’ course (Dorier & 
Sierpinska, 2001) is a frustrating experience for both teachers and students, 
and despite all efforts to improve the curriculum, “linear algebra remains a 
cognitively and conceptually difficult subject” (Dorier & Sierpinska, 2001, p. 
255). One major problem seems to be that students often cope with the 
procedural aspects of the course, manipulating matrices etc, and hence may 
perform well enough in examinations, but struggle to understand the crucial 
conceptual ideas underpinning the procedures. They either don’t understand 
the need for definitions of concepts presented in natural language, or don’t 
see how to incorporate them into their thinking. Mathematicians, of course, 
consider definitions to be a fundamental starting point for concept formation 
and deductive reasoning in advanced mathematics. Hence they may believe, 
like Sierpinska, Nnadozie and Okta (2002, p. 1), that many students are 
wasting their intellectual talents, since “linear algebra, with its axiomatic 
definitions of vector space and linear transformation, is a highly theoretical 
knowledge, and its learning cannot be reduced to practicing and mastering a 
set of computational procedures”.  

One of the tensions within the teaching of linear algebra is this balancing 
of the need for a definitions and theorems approach with procedural aspects 
such as Gaussian elimination or Jacobi’s method. Students often find the 
former hard because it is their first experience of a systematic construction of 
mathematical theory, and in this respect linear algebra is very different from 
calculus (Harel, 1997). Moreover, while the formal definitions of calculus 
concepts, such as function, limit and continuity, may resonate in an embodied 
way with students’ previous experiences, they may have less intuition for 
linear algebra constructs, such as basis or eigenvector. This is especially the 
case in countries, such as New Zealand, where matrices and transformations 
are no longer taught in the school system. 

In considering alternative ways of teaching linear algebra we engaged in 
construction of a theoretical framework that might suggest ways to advance 
students’ conceptual understanding of the basic linear algebra concepts. Our 
starting point was to consider two theoretical perspectives that we had 
previously found useful as research descriptors and predictors. First, the 
action-process-object-schema (APOS) development in learning proposed by 
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Dubinsky and others (Dubinsky & McDonald, 2001) suggests an approach 
different from the definition-theorem-proof that often characterises university 
courses. Instead mathematical concepts are described in terms of a genetic 
decomposition, divided into their constituent actions, process and objects in 
the order the learner should experience them in order to construct 
understanding.  

Second, Tall (2004, 2008; see also the article in this issue) introduced a 
framework for mathematical thinking based on three worlds: the embodied; 
symbolic; and formal. The embodied world is enactive and visual. It contains 
embodied objects (Gray & Tall, 2001); it is where we think about the 
physical world, using “…not only our mental perceptions of real-world 
objects, but also our internal conceptions that involve visuo-spatial imagery” 
(Tall, 2004, p. 30). The symbolic world is the world of procepts, where 
actions, processes and their corresponding objects are realized and 
symbolized, and the formal world comprises defined objects (Tall et al., 
2000), presented in terms of their properties, with new properties deduced 
from objects by formal proof. While these worlds describe a hierarchy of 
qualitatively different ways of thinking that individuals develop as new 
conceptions are compressed into more thinkable concepts (Tall & Mejia-
Ramos, 2006), all the worlds continue to be available to, and used by, 
individuals as they engage with mathematical thinking. In particular, “formal 
mathematics does not arise in isolation” (Tall, 2008, p. 4). Instead, the three 
worlds of mathematical thinking combine so that “three interrelated 
sequences of development blend together to build a full range of thinking” 
(Tall, 2008, p. 3). 

Our view was that one could benefit from the synergy of combining these 
two perspectives into a single framework, even though APOS theory refers to 
learners’ general cognitive thinking, while Tall’s worlds are specifically 
about mathematical thinking. This was possible since, we suggest, they are 
complementary, in the sense that for any given construct one can consider 
what the mathematical action and process perspectives, which give rise to 
properties of the object under consideration, would be like in each of the 
embodied, symbolic and formal worlds. Thus our framework was constructed 
by blending the two theories orthogonally into a single construct that could 
be employed to examine embodied, symbolic and formal action, process, and 
object thought processes. The medium of presentation was a matrix in which 
the left-hand column comprised the action, process and object dimensions 
while the top cells represented the three mathematical worlds: embodied; 
symbolic (divided into algebraic and matrix); and formal. One novel aspect 
of this approach is the recognition that actions, processes and objects can be 
instantiated in visual, geometric, and embodied forms. An example of part of 
the framework for the concept of basis can be seen in Figure 1.  
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Symbolic World 
APOS Embodied World 

Algebra Matrix 
Formal World 

Action 
Can see 3 specific non-
coplanar vectors as a 
basis of R3 

 

e.g., The standard basis 
for R3 

Can find a basis for S, 
where S is a two-
dimensional subspace 
of R3 satisfying an 
equation such as  
x+2y–z=0. 

Can find a specific 
Nul A, the general 
solution of a system 
Ax=0. 

Can find a basis for the 
vector space in  R3  

spanned by given vectors  
e.g.  

 

Can find the nullspace of 
a specific matrix A, and a 
basis for Nul A or Col A.  

  

Process 
Can picture general orth-
ogonal (or orthonormal) 
bases. Can see certain 
transformations (e.g, 
rotation, reflection) of a 
basis as also providing a 
basis in R3  

     

Can describe a basis 
for any vector space 
in Rn.  

  

Can generalise the 
method for finding a basis 
for Col A or Nul A to 
describe the resulting 
bases. Can find a basis for 
any vector space in Rn 

Understands that 
linear 
independence 
ensures that there 
are not too many 
vectors in a basis, 
and spanning 
ensures that there 
are not too few. 

Object 
Can operate on a basis, 
with certain transform-
ations (e.g, rotation, 
reflection) to provide 
another basis for R3. 

 

Can see a set of 
vectors  

{v1,  v2,…,  vn} form 
a basis for all of Rn   

because they are 
linearly independent 
and span  Rn.  

Can see the columns of an 
invertible n×n matrix 
forming a basis for all of  

Rn  because they are 
linearly independent and 
span  Rn. 

Understanding the 
formal definition 
of a basis: A basis 
for a subspace H 
of Rn  is a linearly 
independent set in 
H that spans H. 

Figure 1. A section of the framework showing some aspects of the concept of basis. 

Our aim was to use the framework to investigate difficulties in 
understanding linear algebra concepts, and to propose potential paths for 
preventing them. By constructing such a model for basic linear algebra 
concepts of scalar and vector, linear combination, linear 
independence/dependence, span, basis, Eigenvalue and Eigenvector we were 
able to consider possible teaching trajectories that would enrich students’ 
concept images. Such a framework allows teachers and instructors to cover 
ideas from a spectrum of representations in the classroom in a manner that 
can help students build linear algebra knowledge and give them the 
impression that mathematics is not a long-finished subject. Furthermore, it 
gives researchers the opportunity to evaluate students’ conceptual 
understanding of linear algebra and provides a foundation for observation of 
the way students learn. 

We assessed the feasibility of this framework as a teaching and research 
tool for describing the level of students’ conceptual and procedural 
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understanding of the linear algebra concepts, their difficulties with these 
concepts, and the effects of using embodied ideas in the teaching of linear 
algebra using case studies of stage (year) one and two university students.  

Findings from the Research Programme 
The findings from the seven case studies we have conducted show that 

most first and second year university students have difficulties understanding 
basic linear algebra concepts. Further, the evidence was that the majority of 
students had little embodied world thinking, instead they were mainly 
thinking and representing their understanding of the concepts in a manner 
described by the action-symbolic-matrix and/or process-symbolic-matrix 
cells of the framework. Lacking embodied aspects of concepts students were 
trapped in the symbolic world, unable to move to the formal world of 
mathematical thinking. 

However, those exposed to a teaching trajectory based on the framework 
appeared to construct richer conceptual structures and were better able to 
make connections between ideas (see Stewart, 2008; Stewart & Thomas, 
2007, 2008, 2009, 2010). It seems that having a grasp of the concepts in the 
embodied world helped them to move more confidently toward the symbolic 
and the formal worlds and begin to develop more versatile thinking (Thomas, 
2008). When we examined students’ formal understanding of concepts 
through written definitions we found students in two separate groups. The 
first group comprised students who struggled to give a clear definition of the 
required term. Many students could not remember the definition and were 
confused about the concepts, so they sometimes described an action related 
to the concept in the symbolic-matrix world. For example, one student said 
“linear combination, hmm...I can’t quite remember the definition, I can just 
remember those forms something like b = x1v1 + x2v2 and something like 
that, and x belong to IR. I only can remember these things”. The second group 
consisted mainly of students who had experienced embodied teaching; they 
were happy to give a definition and their definitions usually contained the 
key elements of the concept. However, in interviews most students said that 
while solving problems they did not think about definitions. There seems to 
be a disjunction for many students between thinking about concepts and ideas 
and solving problems. 

It is difficult to evaluate fully the effectiveness of this framework, given 
the limited data available. Nevertheless, the framework proved to be a 
valuable tool in analysing students’ thinking, providing evidence of the level 
of thinking based on the specific cells or regions of the framework. For 
example we could use the framework to trace where students’ thinking was, 
and where the weak points in their understanding and thinking were. Thus the 
lecturer could see both the areas that need improvement, and how to address 
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them.  
A question that we have not yet answered is whether it is possible to track 

the progression of student understanding of linear algebra over time, either in 
a traditional course, or using this framework. To our knowledge there has 
been no study examining the development through the three worlds of 
student understanding of concepts of advanced mathematics. Thus we do not 
know whether to construct rich conceptual understanding one has to start 
from the embodied, travel through the symbolic, and finally arrive at the 
formal world. Tall proposes that in an ideal world this is likely the case, but 
of course teaching and learning often does not follow this route. Most 
students need to symbolise the embodiment and embody the symbolism first, 
and only after fully integrating them they will reach the formal world. 
However, in the real world it is possible to be solely in the symbolic world of 
thinking, following the steps of the lecturer in class and trying to build the 
embodiments for oneself. In contrast, a mathematician can comfortably live 
in the symbolic, embodied and formal worlds, since he is able to reverse and 
construct embodied views, as well as going forward to the formal world. The 
possession of a rich schema produces versatile thinking that enables him to 
tie all the pieces of his knowledge in a way that the student may not be able 
to. Thus, the hypothesis that still requires justification is that for many 
students it is the embodied view that gives deep meaning to the concept 
allowing us move toward the formal world.  

In summary we believe that research with this framework has highlighted 
many areas of difficulties that students have with linear algebra concepts, 
evidencing major problems they have in understanding concepts that form 
the foundation of linear algebra courses. However, including embodied ideas 
and using multiple representations can effect students’ understanding 
positively. Employing a visual, embodied approach to the teaching of linear 
algebra concepts, rather than simply treating them symbolically or formally, 
may enrich students’ understanding.  

As lecturers we may often feel that we would like to show more pictures 
or describe concepts in more detail, but are constrained by lack of time and 
so we omit what in many cases are fundamental building blocks of the 
mathematical concepts. However, we suggest that the investment in time is 
well worth the effort since investigating concepts from a standpoint such as  
the theoretical framework in this study can offer a broader view of 
mathematics, incorporating a variety of representations that may deepen 
learners’ conceptual understanding. 
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